2009 | ||
---|---|---|
102 | Pedro Domingos, Daniel Lowd: Markov Logic: An Interface Layer for Artificial Intelligence Morgan & Claypool Publishers 2009 | |
101 | Jesse Davis, Pedro Domingos: Deep transfer via second-order Markov logic. ICML 2009: 28 | |
100 | Stanley Kok, Pedro Domingos: Learning Markov logic network structure via hypergraph lifting. ICML 2009: 64 | |
2008 | ||
99 | Hoifung Poon, Pedro Domingos, Marc Sumner: A General Method for Reducing the Complexity of Relational Inference and its Application to MCMC. AAAI 2008: 1075-1080 | |
98 | Parag Singla, Pedro Domingos: Lifted First-Order Belief Propagation. AAAI 2008: 1094-1099 | |
97 | Jue Wang, Pedro Domingos: Hybrid Markov Logic Networks. AAAI 2008: 1106-1111 | |
96 | Pedro Domingos: Markov logic: a unifying language for knowledge and information management. CIKM 2008: 519 | |
95 | Stanley Kok, Pedro Domingos: Extracting Semantic Networks from Text Via Relational Clustering. ECML/PKDD (1) 2008: 624-639 | |
94 | Hoifung Poon, Pedro Domingos: Joint Unsupervised Coreference Resolution with Markov Logic. EMNLP 2008: 650-659 | |
93 | Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon, Matthew Richardson, Parag Singla: Markov Logic. Probabilistic Inductive Logic Programming 2008: 92-117 | |
92 | Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon, Matthew Richardson, Parag Singla, Marc Sumner, Jue Wang: Markov Logic: A Unifying Language for Structural and Statistical Pattern Recognition. SSPR/SPR 2008: 3 | |
91 | Daniel Lowd, Pedro Domingos: Learning Arithmetic Circuits. UAI 2008: 383-392 | |
90 | Pedro Domingos, Daniel Lowd, Stanley Kok, Hoifung Poon, Matthew Richardson, Parag Singla: Just Add Weights: Markov Logic for the Semantic Web. URSW (LNCS Vol.) 2008: 1-25 | |
89 | Thomas G. Dietterich, Pedro Domingos, Lise Getoor, Stephen Muggleton, Prasad Tadepalli: Structured machine learning: the next ten years. Machine Learning 73(1): 3-23 (2008) | |
2007 | ||
88 | Hoifung Poon, Pedro Domingos: Joint Inference in Information Extraction. AAAI 2007: 913-918 | |
87 | Stanley Kok, Pedro Domingos: Statistical predicate invention. ICML 2007: 433-440 | |
86 | Daniel Lowd, Pedro Domingos: Recursive Random Fields. IJCAI 2007: 950-955 | |
85 | Daniel Lowd, Pedro Domingos: Efficient Weight Learning for Markov Logic Networks. PKDD 2007: 200-211 | |
84 | Pedro Domingos, Parag Singla: Markov Logic in Infinite Domains. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 | |
83 | Pedro Domingos: Toward knowledge-rich data mining. Data Min. Knowl. Discov. 15(1): 21-28 (2007) | |
2006 | ||
82 | Parag Singla, Pedro Domingos: Memory-Efficient Inference in Relational Domains. AAAI 2006 | |
81 | Hoifung Poon, Pedro Domingos: Sound and Efficient Inference with Probabilistic and Deterministic Dependencies. AAAI 2006 | |
80 | Pedro Domingos, Stanley Kok, Hoifung Poon, Matthew Richardson, Parag Singla: Unifying Logical and Statistical AI. AAAI 2006 | |
79 | Pedro Domingos: Learning, Logic, and Probability: A Unified View. EKAW 2006: 2 | |
78 | Pedro Domingos: Learning, Logic, and Probability: A Unified View. IBERAMIA-SBIA 2006: 3 | |
77 | Parag Singla, Pedro Domingos: Entity Resolution with Markov Logic. ICDM 2006: 572-582 | |
76 | Pedro Domingos: Learning, Logic, and Probability: A Unified View. PRICAI 2006: 1 | |
75 | Matthew Richardson, Pedro Domingos: Markov logic networks. Machine Learning 62(1-2): 107-136 (2006) | |
2005 | ||
74 | Parag Singla, Pedro Domingos: Discriminative Training of Markov Logic Networks. AAAI 2005: 868-873 | |
73 | Pedro Domingos, Fernando M. Silva, Horácio C. Neto: An Efficient and Scalable Architecture for Neural Networks with Backpropagation Learning. FPL 2005: 89-94 | |
72 | Stanley Kok, Pedro Domingos: Learning the structure of Markov logic networks. ICML 2005: 441-448 | |
71 | Daniel Lowd, Pedro Domingos: Naive Bayes models for probability estimation. ICML 2005: 529-536 | |
70 | Parag Singla, Pedro Domingos: Collective Object Identification. IJCAI 2005: 1636-1637 | |
69 | Parag Singla, Pedro Domingos: Object Identification with Attribute-Mediated Dependences. PKDD 2005: 297-308 | |
68 | Michael L. Anderson, Thomas Barkowsky, Pauline Berry, Douglas S. Blank, Timothy Chklovski, Pedro Domingos, Marek J. Druzdzel, Christian Freksa, John Gersh, Mary Hegarty, Tze-Yun Leong, Henry Lieberman, Ric K. Lowe, Susann Luperfoy, Rada Mihalcea, Lisa Meeden, David P. Miller, Tim Oates, Robert Popp, Daniel Shapiro, Nathan Schurr, Push Singh, John Yen: Reports on the 2005 AAAI Spring Symposium Series. AI Magazine 26(2): 87-92 (2005) | |
67 | Steffen Staab, Pedro Domingos, Peter Mika, Jennifer Golbeck, Li Ding, Timothy W. Finin, Anupam Joshi, Andrzej Nowak, Robin R. Vallacher: Social Networks Applied. IEEE Intelligent Systems 20(1): 80-93 (2005) | |
2004 | ||
66 | Pedro Domingos: Learning, Logic, and Probability: A Unified View. ALT 2004: 53 | |
65 | Pedro Domingos: Real-World Learning with Markov Logic Networks. ECML 2004: 17 | |
64 | Daniel Grossman, Pedro Domingos: Learning Bayesian network classifiers by maximizing conditional likelihood. ICML 2004 | |
63 | Pedro Domingos: Learning, Logic, and Probability: A Unified View. ILP 2004: 359 | |
62 | Nilesh N. Dalvi, Pedro Domingos, Mausam, Sumit K. Sanghai, Deepak Verma: Adversarial classification. KDD 2004: 99-108 | |
61 | Pedro Domingos: Real-World Learning with Markov Logic Networks. PKDD 2004: 17 | |
60 | Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, Pedro Domingos: iMAP: Discovering Complex Mappings between Database Schemas. SIGMOD Conference 2004: 383-394 | |
59 | AnHai Doan, Jayant Madhavan, Pedro Domingos, Alon Y. Halevy: Ontology Matching: A Machine Learning Approach. Handbook on Ontologies 2004: 385-404 | |
58 | Matthew Richardson, Pedro Domingos: Combining Link and Content Information in Web Search. Web Dynamics 2004: 179-194 | |
2003 | ||
57 | Lise Getoor, Ted E. Senator, Pedro Domingos, Christos Faloutsos: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003 ACM 2003 | |
56 | Pedro Domingos, Matthew Richardson: Learning from Networks of Examples. EPIA 2003: 5 | |
55 | Matthew Richardson, Pedro Domingos: Learning with Knowledge from Multiple Experts. ICML 2003: 624-631 | |
54 | Daniel S. Weld, Corin R. Anderson, Pedro Domingos, Oren Etzioni, Krzysztof Gajos, Tessa A. Lau, Steven A. Wolfman: Automatically Personalizing User Interfaces. IJCAI 2003: 1613-1619 | |
53 | Matthew Richardson, Rakesh Agrawal, Pedro Domingos: Trust Management for the Semantic Web. International Semantic Web Conference 2003: 351-368 | |
52 | Matthew Richardson, Pedro Domingos: Building large knowledge bases by mass collaboration. K-CAP 2003: 129-137 | |
51 | Tessa A. Lau, Pedro Domingos, Daniel S. Weld: Learning programs from traces using version space algebra. K-CAP 2003: 36-43 | |
50 | AnHai Doan, Pedro Domingos, Alon Y. Halevy: Learning to Match the Schemas of Data Sources: A Multistrategy Approach. Machine Learning 50(3): 279-301 (2003) | |
49 | Foster J. Provost, Pedro Domingos: Tree Induction for Probability-Based Ranking. Machine Learning 52(3): 199-215 (2003) | |
48 | Tessa A. Lau, Steven A. Wolfman, Pedro Domingos, Daniel S. Weld: Programming by Demonstration Using Version Space Algebra. Machine Learning 53(1-2): 111-156 (2003) | |
47 | Pedro Domingos: Prospects and challenges for multi-relational data mining. SIGKDD Explorations 5(1): 80-83 (2003) | |
46 | AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, Alon Y. Halevy: Learning to match ontologies on the Semantic Web. VLDB J. 12(4): 303-319 (2003) | |
2002 | ||
45 | Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, Alon Y. Halevy: Representing and Reasoning about Mappings between Domain Models. AAAI/IAAI 2002: 80-86 | |
44 | Corin R. Anderson, Pedro Domingos, Daniel S. Weld: Relational Markov models and their application to adaptive web navigation. KDD 2002: 143-152 | |
43 | Geoff Hulten, Pedro Domingos: Mining complex models from arbitrarily large databases in constant time. KDD 2002: 525-531 | |
42 | Matthew Richardson, Pedro Domingos: Mining knowledge-sharing sites for viral marketing. KDD 2002: 61-70 | |
41 | AnHai Doan, Jayant Madhavan, Pedro Domingos, Alon Y. Halevy: Learning to map between ontologies on the semantic web. WWW 2002: 662-673 | |
40 | Pedro Domingos: When and How to Subsample: Report on the KDD-2001 Panel. SIGKDD Explorations 3(2): 74-75 (2002) | |
2001 | ||
39 | Pedro Domingos, Geoff Hulten: Catching up with the Data: Research Issues in Mining Data Streams. DMKD 2001 | |
38 | Pedro Domingos, Geoff Hulten: A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering. ICML 2001: 106-113 | |
37 | Corin R. Anderson, Pedro Domingos, Daniel S. Weld: Adaptive Web Navigation for Wireless Devices. IJCAI 2001: 879-884 | |
36 | Steven A. Wolfman, Tessa A. Lau, Pedro Domingos, Daniel S. Weld: Mixed initiative interfaces for learning tasks: SMARTedit talks back. IUI 2001: 167-174 | |
35 | Pedro Domingos, Matthew Richardson: Mining the network value of customers. KDD 2001: 57-66 | |
34 | Geoff Hulten, Laurie Spencer, Pedro Domingos: Mining time-changing data streams. KDD 2001: 97-106 | |
33 | Matthew Richardson, Pedro Domingos: The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank. NIPS 2001: 1441-1448 | |
32 | Pedro Domingos, Geoff Hulten: Learning from Infinite Data in Finite Time. NIPS 2001: 673-680 | |
31 | AnHai Doan, Pedro Domingos, Alon Y. Halevy: Reconciling Schemas of Disparate Data Sources: A Machine-Learning Approach. SIGMOD Conference 2001: 509-520 | |
30 | Corin R. Anderson, Pedro Domingos, Daniel S. Weld: Personalizing Web Sites for Mobile Users. WWW 2001: 565-575 | |
2000 | ||
29 | Pedro Domingos: A Unified Bias-Variance Decomposition for Zero-One and Squared Loss. AAAI/IAAI 2000: 564-569 | |
28 | Pedro Domingos: Beyond Occam's Razor: Process-Oriented Evaluation. ECML 2000: 3 | |
27 | Pedro Domingos: Bayesian Averaging of Classifiers and the Overfitting Problem. ICML 2000: 223-230 | |
26 | Pedro Domingos: A Unifeid Bias-Variance Decomposition and its Applications. ICML 2000: 231-238 | |
25 | Tessa A. Lau, Pedro Domingos, Daniel S. Weld: Version Space Algebra and its Application to Programming by Demonstration. ICML 2000: 527-534 | |
24 | Pedro Domingos, Geoff Hulten: Mining high-speed data streams. KDD 2000: 71-80 | |
23 | AnHai Doan, Pedro Domingos, Alon Y. Levy: Learning Source Description for Data Integration. WebDB (Informal Proceedings) 2000: 81-86 | |
1999 | ||
22 | Pedro Domingos: Process-Oriented Estimation of Generalization Error. IJCAI 1999: 714-721 | |
21 | Pedro Domingos: MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD 1999: 155-164 | |
20 | Pedro Domingos: The Role of Occam's Razor in Knowledge Discovery. Data Min. Knowl. Discov. 3(4): 409-425 (1999) | |
1998 | ||
19 | Pedro Domingos: A Process-Oriented Heuristic for Model Selection. ICML 1998: 127-135 | |
18 | Pedro Domingos: Occam's Two Razors: The Sharp and the Blunt. KDD 1998: 37-43 | |
17 | Pedro Domingos: Knowledge Discovery Via Multiple Models. Intell. Data Anal. 2(1-4): 187-202 (1998) | |
1997 | ||
16 | Pedro Domingos: A Comparison of Model Averaging Methods in Foreign Exchange Prediction. AAAI/IAAI 1997: 828 | |
15 | Pedro Domingos: Learning Multiple Models without Sacrificing Comprehensibility. AAAI/IAAI 1997: 829 | |
14 | Pedro Domingos: Knowledge Acquisition form Examples Vis Multiple Models. ICML 1997: 98-106 | |
13 | Pedro Domingos: Why Does Bagging Work? A Bayesian Account and its Implications. KDD 1997: 155-158 | |
12 | Pedro Domingos: Control-Sensitive Feature Selection for Lazy Learners. Artif. Intell. Rev. 11(1-5): 227-253 (1997) | |
11 | Pedro Domingos, Michael J. Pazzani: On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning 29(2-3): 103-130 (1997) | |
1996 | ||
10 | Pedro Domingos: Towards a Unified Approach to Concept Learning. AAAI/IAAI, Vol. 2 1996: 1361 | |
9 | Pedro Domingos: Fast Discovery of Simple Rules. AAAI/IAAI, Vol. 2 1996: 1384 | |
8 | Pedro Domingos: Multistrategy Learning: A Case Study. AAAI/IAAI, Vol. 2 1996: 1385 | |
7 | Pedro Domingos, Michael J. Pazzani: Simple Bayesian Classifiers Do Not Assume Independence. AAAI/IAAI, Vol. 2 1996: 1386 | |
6 | Pedro Domingos, Michael J. Pazzani: Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier. ICML 1996: 105-112 | |
5 | Pedro Domingos: Efficient Specific-to-General Rule Induction. KDD 1996: 319-322 | |
4 | Pedro Domingos: Linear-Time Rule Induction. KDD 1996: 96-101 | |
3 | Pedro Domingos: Unifying Instance-Based and Rule-Based Induction. Machine Learning 24(2): 141-168 (1996) | |
1995 | ||
2 | Pedro Domingos: Rule Induction and Instance-Based Learning: A Unified Approach. IJCAI 1995: 1226-1232 | |
1994 | ||
1 | Pedro Domingos: The RISE System: Conquering without Separating. ICTAI 1994: 704-707 |