26. ICML 2009:
Montreal,
Quebec,
Canada
Andrea Pohoreckyj Danyluk, Léon Bottou, Michael L. Littman (Eds.):
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009.
ACM International Conference Proceeding Series 382 ACM 2009, ISBN 978-1-60558-516-1
- Ryan Prescott Adams, Zoubin Ghahramani:
Archipelago: nonparametric Bayesian semi-supervised learning.
1
- Ryan Prescott Adams, Iain Murray, David J. C. MacKay:
Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities.
2
- Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
Route kernels for trees.
3
- David Andrzejewski, Xiaojin Zhu, Mark Craven:
Incorporating domain knowledge into topic modeling via Dirichlet Forest priors.
4
- Raphaël Bailly, François Denis, Liva Ralaivola:
Grammatical inference as a principal component analysis problem.
5
- Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston:
Curriculum learning.
6
- Alina Beygelzimer, Sanjoy Dasgupta, John Langford:
Importance weighted active learning.
7
- Guillaume Bouchard, Onno Zoeter:
Split variational inference.
8
- Abdeslam Boularias, Brahim Chaib-draa:
Predictive representations for policy gradient in POMDPs.
9
- Craig Boutilier, Kevin Regan, Paolo Viappiani:
Online feature elicitation in interactive optimization.
10
- Thomas Bühler, Matthias Hein:
Spectral clustering based on the graph p-Laplacian.
11
- Michael C. Burl, Esther Wang:
Active learning for directed exploration of complex systems.
12
- Alberto Giovanni Busetto, Cheng Soon Ong, Joachim M. Buhmann:
Optimized expected information gain for nonlinear dynamical systems.
13
- Deng Cai, Xuanhui Wang, Xiaofei He:
Probabilistic dyadic data analysis with local and global consistency.
14
- Cassio Polpo de Campos, Zhi Zeng, Qiang Ji:
Structure learning of Bayesian networks using constraints.
15
- Nicolò Cesa-Bianchi, Claudio Gentile, Francesco Orabona:
Robust bounds for classification via selective sampling.
16
- Kamalika Chaudhuri, Sham M. Kakade, Karen Livescu, Karthik Sridharan:
Multi-view clustering via canonical correlation analysis.
17
- Jianhui Chen, Lei Tang, Jun Liu, Jieping Ye:
A convex formulation for learning shared structures from multiple tasks.
18
- Yihua Chen, Maya R. Gupta, Benjamin Recht:
Learning kernels from indefinite similarities.
19
- Chih-Chieh Cheng, Fei Sha, Lawrence K. Saul:
Matrix updates for perceptron training of continuous density hidden Markov models.
20
- Weiwei Cheng, Jens C. Huhn, Eyke Hüllermeier:
Decision tree and instance-based learning for label ranking.
21
- Youngmin Cho, Lawrence K. Saul:
Learning dictionaries of stable autoregressive models for audio scene analysis.
22
- Myung Jin Choi, Venkat Chandrasekaran, Alan S. Willsky:
Exploiting sparse Markov and covariance structure in multiresolution models.
23
- Stéphan Clémençon, Nicolas Vayatis:
Nonparametric estimation of the precision-recall curve.
24
- Wenyuan Dai, Ou Jin, Gui-Rong Xue, Qiang Yang, Yong Yu:
EigenTransfer: a unified framework for transfer learning.
25
- Samuel I. Daitch, Jonathan A. Kelner, Daniel A. Spielman:
Fitting a graph to vector data.
26
- Hal Daumé III:
Unsupervised search-based structured prediction.
27
- Jesse Davis, Pedro Domingos:
Deep transfer via second-order Markov logic.
28
- Marc Peter Deisenroth, Marco F. Huber, Uwe D. Hanebeck:
Analytic moment-based Gaussian process filtering.
29
- Ofer Dekel, Ohad Shamir:
Good learners for evil teachers.
30
- Meghana Deodhar, Gunjan Gupta, Joydeep Ghosh, Hyuk Cho, Inderjit S. Dhillon:
A scalable framework for discovering coherent co-clusters in noisy data.
31
- Carlos Diuk, Lihong Li, Bethany R. Leffler:
The adaptive k-meteorologists problem and its application to structure learning and feature selection in reinforcement learning.
32
- Chuong B. Do, Quoc V. Le, Chuan-Sheng Foo:
Proximal regularization for online and batch learning.
33
- Trinh Minh Tri Do, Thierry Artières:
Large margin training for hidden Markov models with partially observed states.
34
- Finale Doshi-Velez, Zoubin Ghahramani:
Accelerated sampling for the Indian Buffet Process.
35
- Gabriel Doyle, Charles Elkan:
Accounting for burstiness in topic models.
36
- Lixin Duan, Ivor W. Tsang, Dong Xu, Tat-Seng Chua:
Domain adaptation from multiple sources via auxiliary classifiers.
37
- John Duchi, Yoram Singer:
Boosting with structural sparsity.
38
- Alireza Farhangfar, Russell Greiner, Csaba Szepesvári:
Learning to segment from a few well-selected training images.
39
- M. Julia Flores, José A. Gámez, Ana M. Martínez, Jose Miguel Puerta:
GAODE and HAODE: two proposals based on AODE to deal with continuous variables.
40
- Chuan-Sheng Foo, Chuong B. Do, Andrew Y. Ng:
A majorization-minimization algorithm for (multiple) hyperparameter learning.
41
- Wenjie Fu, Le Song, Eric P. Xing:
Dynamic mixed membership blockmodel for evolving networks.
42
- Rahul Garg, Rohit Khandekar:
Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property.
43
- Roman Garnett, Michael A. Osborne, Stephen J. Roberts:
Sequential Bayesian prediction in the presence of changepoints.
44
- Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:
PAC-Bayesian learning of linear classifiers.
45
- Fabian Gieseke, Tapio Pahikkala, Oliver Kramer:
Fast evolutionary maximum margin clustering.
46
- Eduardo Rodrigues Gomes, Ryszard Kowalczyk:
Dynamic analysis of multiagent Q-learning with ε-greedy exploration.
47
- John Guiver, Edward Snelson:
Bayesian inference for Plackett-Luce ranking models.
48
- Peter Haider, Tobias Scheffer:
Bayesian clustering for email campaign detection.
49
- Elad Hazan, C. Seshadhri:
Efficient learning algorithms for changing environments.
50
- Verena Heidrich-Meisner, Christian Igel:
Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search.
51
- Thibault Helleputte, Pierre Dupont:
Partially supervised feature selection with regularized linear models.
52
- Junzhou Huang, Tong Zhang, Dimitris N. Metaxas:
Learning with structured sparsity.
53
- Tzu-Kuo Huang, Jeff Schneider:
Learning linear dynamical systems without sequence information.
54
- Laurent Jacob, Guillaume Obozinski, Jean-Philippe Vert:
Group lasso with overlap and graph lasso.
55
- Tony Jebara, Jun Wang, Shih-Fu Chang:
Graph construction and b-matching for semi-supervised learning.
56
- Nikolay Jetchev, Marc Toussaint:
Trajectory prediction: learning to map situations to robot trajectories.
57
- Shuiwang Ji, Jieping Ye:
An accelerated gradient method for trace norm minimization.
58
- Wei Jin, Hung Hay Ho:
A novel lexicalized HMM-based learning framework for web opinion mining.
59
- Jason K. Johnson, Vladimir Y. Chernyak, Michael Chertkov:
Orbit-product representation and correction of Gaussian belief propagation.
60
- Hetunandan Kamisetty, Christopher James Langmead:
A Bayesian approach to protein model quality assessment.
61
- Nikolaos Karampatziakis, Dexter Kozen:
Learning prediction suffix trees with Winnow.
62
- Balázs Kégl, Róbert Busa-Fekete:
Boosting products of base classifiers.
63
- Stanley Kok, Pedro Domingos:
Learning Markov logic network structure via hypergraph lifting.
64
- J. Zico Kolter, Andrew Y. Ng:
Near-Bayesian exploration in polynomial time.
65
- J. Zico Kolter, Andrew Y. Ng:
Regularization and feature selection in least-squares temporal difference learning.
66
- Risi Imre Kondor, Nino Shervashidze, Karsten M. Borgwardt:
The graphlet spectrum.
67
- Wojciech Kotlowski, Roman Slowinski:
Rule learning with monotonicity constraints.
68
- Matthieu Kowalski, Marie Szafranski, Liva Ralaivola:
Multiple indefinite kernel learning with mixed norm regularization.
69
- Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:
On sampling-based approximate spectral decomposition.
70
- Jérôme Kunegis, Andreas Lommatzsch:
Learning spectral graph transformations for link prediction.
71
- Ondrej Kuzelka, Filip Zelezný:
Block-wise construction of acyclic relational features with monotone irreducibility and relevancy properties.
72
- Yanyan Lan, Tie-Yan Liu, Zhiming Ma, Hang Li:
Generalization analysis of listwise learning-to-rank algorithms.
73
- Tobias Lang, Marc Toussaint:
Approximate inference for planning in stochastic relational worlds.
74
- John Langford, Ruslan Salakhutdinov, Tong Zhang:
Learning nonlinear dynamic models.
75
- Neil D. Lawrence, Raquel Urtasun:
Non-linear matrix factorization with Gaussian processes.
76
- Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng:
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations.
77
- Bin Li, Qiang Yang, Xiangyang Xue:
Transfer learning for collaborative filtering via a rating-matrix generative model.
78
- Ping Li:
ABC-boost: adaptive base class boost for multi-class classification.
79
- Yu-Feng Li, James T. Kwok, Zhi-Hua Zhou:
Semi-supervised learning using label mean.
80
- Percy Liang, Michael I. Jordan, Dan Klein:
Learning from measurements in exponential families.
81
- Han Liu, Mark Palatucci, Jian Zhang:
Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery.
82
- Jun Liu, Jieping Ye:
Efficient Euclidean projections in linear time.
83
- Yan Liu, Alexandru Niculescu-Mizil, Wojciech Gryc:
Topic-link LDA: joint models of topic and author community.
84
- Zhengdong Lu, Prateek Jain, Inderjit S. Dhillon:
Geometry-aware metric learning.
85
- Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
Identifying suspicious URLs: an application of large-scale online learning.
86
- Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro:
Online dictionary learning for sparse coding.
87
- Takaki Makino:
Proto-predictive representation of states with simple recurrent temporal-difference networks.
88
- Benjamin M. Marlin, Kevin P. Murphy:
Sparse Gaussian graphical models with unknown block structure.
89
- André F. T. Martins, Noah A. Smith, Eric P. Xing:
Polyhedral outer approximations with application to natural language parsing.
90
- Brian McFee, Gert R. G. Lanckriet:
Partial order embedding with multiple kernels.
91
- Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, Markus Püschel:
Bandit-based optimization on graphs with application to library performance tuning.
92
- Hossein Mobahi, Ronan Collobert, Jason Weston:
Deep learning from temporal coherence in video.
93
- Joris M. Mooij, Dominik Janzing, Jonas Peters, Bernhard Schölkopf:
Regression by dependence minimization and its application to causal inference in additive noise models.
94
- Gerhard Neumann, Wolfgang Maass, Jan Peters:
Learning complex motions by sequencing simpler motion templates.
95
- Hannes Nickisch, Matthias W. Seeger:
Convex variational Bayesian inference for large scale generalized linear models.
96
- Sebastian Nowozin, Stefanie Jegelka:
Solution stability in linear programming relaxations: graph partitioning and unsupervised learning.
97
- John William Paisley, Lawrence Carin:
Nonparametric factor analysis with beta process priors.
98
- Wei Pan, Lorenzo Torresani:
Unsupervised hierarchical modeling of locomotion styles.
99
- Jason Pazis, Michail G. Lagoudakis:
Binary action search for learning continuous-action control policies.
100
- Jonas Peters, Dominik Janzing, Arthur Gretton, Bernhard Schölkopf:
Detecting the direction of causal time series.
101
- Marek Petrik, Shlomo Zilberstein:
Constraint relaxation in approximate linear programs.
102
- Nils Plath, Marc Toussaint, Shinichi Nakajima:
Multi-class image segmentation using conditional random fields and global classification.
103
- Barnabás Póczos, Yasin Abbasi-Yadkori, Csaba Szepesvári, Russell Greiner, Nathan R. Sturtevant:
Learning when to stop thinking and do something!
104
- Duangmanee Putthividhya, Hagai Thomas Attias, Srikantan S. Nagarajan:
Independent factor topic models.
105
- Guo-Jun Qi, Jinhui Tang, Zheng-Jun Zha, Tat-Seng Chua, Hong-Jiang Zhang:
An efficient sparse metric learning in high-dimensional space via l1-penalized log-determinant regularization.
106
- Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, Lide Wu:
Sparse higher order conditional random fields for improved sequence labeling.
107
- Ariadna Quattoni, Xavier Carreras, Michael Collins, Trevor Darrell:
An efficient projection for l1,infinity regularization.
108
- Milos Radovanovic, Alexandros Nanopoulos, Mirjana Ivanovic:
Nearest neighbors in high-dimensional data: the emergence and influence of hubs.
109
- Rajat Raina, Anand Madhavan, Andrew Y. Ng:
Large-scale deep unsupervised learning using graphics processors.
110
- Sudhir Raman, Thomas J. Fuchs, Peter J. Wild, Edgar Dahl, Volker Roth:
The Bayesian group-Lasso for analyzing contingency tables.
111
- Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Anna K. Jerebko, Charles Florin, Gerardo Hermosillo Valadez, Luca Bogoni, Linda Moy:
Supervised learning from multiple experts: whom to trust when everyone lies a bit.
112
- Mark D. Reid, Robert C. Williamson:
Surrogate regret bounds for proper losses.
113
- Sushmita Roy, Terran Lane, Margaret Werner-Washburne:
Learning structurally consistent undirected probabilistic graphical models.
114
- Stefan Rueping:
Ranking interesting subgroups.
115
- Mikkel N. Schmidt:
Function factorization using warped Gaussian processes.
116
- Shai Shalev-Shwartz, Ambuj Tewari:
Stochastic methods for l1 regularized loss minimization.
117
- Blake Shaw, Tony Jebara:
Structure preserving embedding.
118
- David Silver, Gerald Tesauro:
Monte-Carlo simulation balancing.
119
- Vikas Sindhwani, Prem Melville, Richard D. Lawrence:
Uncertainty sampling and transductive experimental design for active dual supervision.
120
- Le Song, Jonathan Huang, Alexander J. Smola, Kenji Fukumizu:
Hilbert space embeddings of conditional distributions with applications to dynamical systems.
121
- Andreas P. Streich, Mario Frank, David A. Basin, Joachim M. Buhmann:
Multi-assignment clustering for Boolean data.
122
- Liang Sun, Shuiwang Ji, Jieping Ye:
A least squares formulation for a class of generalized eigenvalue problems in machine learning.
123
- Ilya Sutskever:
A simpler unified analysis of budget perceptrons.
124
- Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári, Eric Wiewiora:
Fast gradient-descent methods for temporal-difference learning with linear function approximation.
125
- Istvan Szita, András Lörincz:
Optimistic initialization and greediness lead to polynomial time learning in factored MDPs.
126
- Arthur Szlam, Guillermo Sapiro:
Discriminative k-metrics.
127
- Gavin Taylor, Ronald Parr:
Kernelized value function approximation for reinforcement learning.
128
- Graham W. Taylor, Geoffrey E. Hinton:
Factored conditional restricted Boltzmann Machines for modeling motion style.
129
- Tijmen Tieleman, Geoffrey E. Hinton:
Using fast weights to improve persistent contrastive divergence.
130
- Robert E. Tillman:
Structure learning with independent non-identically distributed data.
131
- Marc Toussaint:
Robot trajectory optimization using approximate inference.
132
- Nicolas Usunier, David Buffoni, Patrick Gallinari:
Ranking with ordered weighted pairwise classification.
133
- Manik Varma, Bodla Rakesh Babu:
More generality in efficient multiple kernel learning.
134
- Xuan Vinh Nguyen, Julien Epps, James Bailey:
Information theoretic measures for clusterings comparison: is a correction for chance necessary?
135
- Nikos Vlassis, Marc Toussaint:
Model-free reinforcement learning as mixture learning.
136
- Maksims Volkovs, Richard S. Zemel:
BoltzRank: learning to maximize expected ranking gain.
137
- Kiri L. Wagstaff, Benjamin Bornstein:
K-means in space: a radiation sensitivity evaluation.
138
- Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, David M. Mimno:
Evaluation methods for topic models.
139
- Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, Josh Attenberg:
Feature hashing for large scale multitask learning.
140
- Max Welling:
Herding dynamical weights to learn.
141
- Frank Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, Yee Whye Teh:
A stochastic memoizer for sequence data.
142
- Linli Xu, Martha White, Dale Schuurmans:
Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning.
143
- Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, Irwin King:
Non-monotonic feature selection.
144
- Liu Yang, Rong Jin, Jieping Ye:
Online learning by ellipsoid method.
145
- Yi Sun, Daan Wierstra, Tom Schaul, Jürgen Schmidhuber:
Stochastic search using the natural gradient.
146
- Chun-Nam John Yu, Thorsten Joachims:
Learning structural SVMs with latent variables.
147
- Jia Yuan Yu, Shie Mannor:
Piecewise-stationary bandit problems with side observations.
148
- Kai Yu, John D. Lafferty, Shenghuo Zhu, Yihong Gong:
Large-scale collaborative prediction using a nonparametric random effects model.
149
- Xiaotong Yuan, Bao-Gang Hu:
Robust feature extraction via information theoretic learning.
150
- Yisong Yue, Thorsten Joachims:
Interactively optimizing information retrieval systems as a dueling bandits problem.
151
- Alan L. Yuille, Songfeng Zheng:
Compositional noisy-logical learning.
152
- Peng Zang, Peng Zhou, David Minnen, Charles Lee Isbell Jr.:
Discovering options from example trajectories.
153
- De-Chuan Zhan, Ming Li, Yu-Feng Li, Zhi-Hua Zhou:
Learning instance specific distances using metric propagation.
154
- Kai Zhang, James T. Kwok, Bahram Parvin:
Prototype vector machine for large scale semi-supervised learning.
155
- Wei Zhang, Akshat Surve, Xiaoli Fern, Thomas G. Dietterich:
Learning non-redundant codebooks for classifying complex objects.
156
- Zhi-Hua Zhou, Yu-Yin Sun, Yu-Feng Li:
Multi-instance learning by treating instances as non-I.I.D. samples.
157
- Jun Zhu, Amr Ahmed, Eric P. Xing:
MedLDA: maximum margin supervised topic models for regression and classification.
158
- Jun Zhu, Eric P. Xing:
On primal and dual sparsity of Markov networks.
159
- Jinfeng Zhuang, Ivor W. Tsang, Steven C. H. Hoi:
SimpleNPKL: simple non-parametric kernel learning.
160
- Corinna Cortes:
Invited talk: Can learning kernels help performance?
161
- Yoav Freund:
Invited talk: Drifting games, boosting and online learning.
162
- John Mark Agosta, Russell Almond, Dennis M. Buede, Marek J. Druzdzel, Judy Goldsmith, Silja Renooij:
Workshop summary: Seventh annual workshop on Bayes applications.
163
- Robert F. Murphy, Chun-Nan Hsu, Loris Nanni:
Workshop summary: Automated interpretation and modelling of cell images.
164
- Kay Yu, Ruslan Salakhutdinov, Yann LeCun, Geoffrey E. Hinton, Yoshua Bengio:
Workshop summary: Workshop on learning feature hierarchies.
165
- David Wingate, Carlos Diuk, Lihong Li, Matthew Taylor, Jordan Frank:
Workshop summary: Results of the 2009 reinforcement learning competition.
166
- Chris Drummond, Nathalie Japkowicz, William Klement, Sofus A. Macskassy:
Workshop summary: The fourth workshop on evaluation methods for machine learning.
167
- Jean-Yves Audibert, Peter Auer, Alessandro Lazaric, Rémi Munos, Daniil Ryabko, Csaba Szepesvári:
Workshop summary: On-line learning with limited feedback.
168
- Matthias Seeger, Suvrit Sra, John P. Cunningham:
Workshop summary: Numerical mathematics in machine learning.
169
- Özgür Simsek:
Workshop summary: Abstraction in reinforcement learning.
170
- Douglas Eck, Dan Ellis, Philippe Hamel:
Workshop summary: Sparse methods for music audio.
171
- Alina Beygelzimer, John Langford, Bianca Zadrozny:
Tutorial summary: Reductions in machine learning.
172
- Eyal Even-Dar, Vahab S. Mirrokni:
Tutorial summary: Convergence of natural dynamics to equilibria.
173
- Volker Tresp, Kai Yu:
Tutorial summary: Learning with dependencies between several response variables.
174
- Manfred K. Warmuth, S. V. N. Vishwanathan:
Tutorial summary: Survey of boosting from an optimization perspective.
175
- Yael Niv:
Tutorial summary: The neuroscience of reinforcement learning.
176
- Paul N. Bennett, Misha Bilenko, Kevyn Collins-Thompson:
Tutorial summary: Machine learning in IR: recent successes and new opportunities.
177
- Sanjoy Dasgupta, John Langford:
Tutorial summary: Active learning.
178
- Jure Leskovec:
Tutorial summary: Large social and information networks: opportunities for ML.
179
- Noah A. Smith:
Tutorial summary: Structured prediction for natural language processing.
180
Copyright © Mon Mar 15 03:40:25 2010
by Michael Ley (ley@uni-trier.de)