21. ICML 2004:
Banff,
Alberta,
Canada
Carla E. Brodley (Ed.):
Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004.
ACM International Conference Proceeding Series 69 ACM 2004
- Klaus Brinker:
Active learning of label ranking functions.
- Tong Zhang:
Solving large scale linear prediction problems using stochastic gradient descent algorithms.
- Guy Lebanon, John D. Lafferty:
Hyperplane margin classifiers on the multinomial manifold.
- Lourdes Peña Castillo, Stefan Wrobel:
A comparative study on methods for reducing myopia of hill-climbing search in multirelational learning.
- Jian Zhang, Yiming Yang:
Probabilistic score estimation with piecewise logistic regression.
- Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier:
Boosting grammatical inference with confidence oracles.
- John D. Lafferty, Xiaojin Zhu, Yan Liu:
Kernel conditional random fields: representation and clique selection.
- Remco R. Bouckaert:
Estimating replicability of classifier learning experiments.
- Daniel Grossman, Pedro Domingos:
Learning Bayesian network classifiers by maximizing conditional likelihood.
- Daniil Ryabko:
Online learning of conditionally I.I.D. data.
- Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, Yasemin Altun:
Support vector machine learning for interdependent and structured output spaces.
- Zhihua Zhang, James T. Kwok, Dit-Yan Yeung:
Surrogate maximization/minimization algorithms for AdaBoost and the logistic regression model.
- Ankur Agarwal, Bill Triggs:
Learning to track 3D human motion from silhouettes.
- Nir Krause, Yoram Singer:
Leveraging the margin more carefully.
- Kilian Q. Weinberger, Fei Sha, Lawrence K. Saul:
Learning a kernel matrix for nonlinear dimensionality reduction.
- Daan Wierstra, Marco Wiering:
Utile distinction hidden Markov models.
- Jieping Ye:
Generalized low rank approximations of matrices.
- Jieping Ye, Ravi Janardan, Qi Li, Haesun Park:
Feature extraction via generalized uncorrelated linear discriminant analysis.
- Hieu Tat Nguyen, Arnold W. M. Smeulders:
Active learning using pre-clustering.
- Ulf Brefeld, Tobias Scheffer:
Co-EM support vector learning.
- Vincent Conitzer, Tuomas Sandholm:
Communication complexity as a lower bound for learning in games.
- Ran Gilad-Bachrach, Amir Navot, Naftali Tishby:
Margin based feature selection - theory and algorithms.
- Özgür Simsek, Andrew G. Barto:
Using relative novelty to identify useful temporal abstractions in reinforcement learning.
- Wei Chu, Zoubin Ghahramani, David L. Wild:
A graphical model for protein secondary structure prediction.
- Shie Mannor, Ishai Menache, Amit Hoze, Uri Klein:
Dynamic abstraction in reinforcement learning via clustering.
- George Forman:
A pitfall and solution in multi-class feature selection for text classification.
- Odest Chadwicke Jenkins, Maja J. Mataric:
A spatio-temporal extension to Isomap nonlinear dimension reduction.
- Aaron D'Souza, Sethu Vijayakumar, Stefan Schaal:
The Bayesian backfitting relevance vector machine.
- Michael R. James, Satinder P. Singh:
Learning and discovery of predictive state representations in dynamical systems with reset.
- Mikhail Bilenko, Sugato Basu, Raymond J. Mooney:
Integrating constraints and metric learning in semi-supervised clustering.
- Sheng Gao, Wen Wu, Chin-Hui Lee, Tat-Seng Chua:
A MFoM learning approach to robust multiclass multi-label text categorization.
- Jianguo Lee, Jingdong Wang, Changshui Zhang, Zhaoqi Bian:
Probabilistic tangent subspace: a unified view.
- Eibe Frank, Stefan Kramer:
Ensembles of nested dichotomies for multi-class problems.
- Yongdai Kim, Jinseog Kim:
Gradient LASSO for feature selection.
- Kaizhu Huang, Haiqin Yang, Irwin King, Michael R. Lyu:
Learning large margin classifiers locally and globally.
- Alan Herschtal, Bhavani Raskutti:
Optimising area under the ROC curve using gradient descent.
- Robert B. Gramacy, Herbert K. H. Lee, William G. Macready:
Parameter space exploration with Gaussian process trees.
- Zhihua Zhang, Dit-Yan Yeung, James T. Kwok:
Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm.
- Charles X. Ling, Qiang Yang, Jianning Wang, Shichao Zhang:
Decision trees with minimal costs.
- Rong Jin, Huan Liu:
Robust feature induction for support vector machines.
- Cristian Sminchisescu, Allan D. Jepson:
Generative modeling for continuous non-linearly embedded visual inference.
- Duncan Potts:
Incremental learning of linear model trees.
- Saher Esmeir, Shaul Markovitch:
Lookahead-based algorithms for anytime induction of decision trees.
- Ofer Dekel, Joseph Keshet, Yoram Singer:
Large margin hierarchical classification.
- Jaakko Peltonen, Janne Sinkkonen, Samuel Kaski:
Sequential information bottleneck for finite data.
- Shai Shalev-Shwartz, Yoram Singer, Andrew Y. Ng:
Online and batch learning of pseudo-metrics.
- Aleks Jakulin, Ivan Bratko:
Testing the significance of attribute interactions.
- Antonio Bahamonde, Gustavo F. Bayón, Jorge Díez, José Ramón Quevedo, Oscar Luaces, Juan José del Coz, Jaime Alonso, Félix Goyache:
Feature subset selection for learning preferences: a case study.
- Jong-Hoon Ahn, Seungjin Choi, Jong-Hoon Oh:
A multiplicative up-propagation algorithm.
- Ted Scully, Michael G. Madden, Gerard Lyons:
Coalition calculation in a dynamic agent environment.
- Malcolm J. A. Strens:
Efficient hierarchical MCMC for policy search.
- Neil D. Lawrence, John C. Platt:
Learning to learn with the informative vector machine.
- Hisashi Kashima, Yuta Tsuboi:
Kernel-based discriminative learning algorithms for labeling sequences, trees, and graphs.
- Eduardo F. Morales, Claude Sammut:
Learning to fly by combining reinforcement learning with behavioural cloning.
- Prem Melville, Raymond J. Mooney:
Diverse ensembles for active learning.
- Roberto Esposito, Lorenza Saitta:
A Monte Carlo analysis of ensemble classification.
- Ulrich Rückert, Stefan Kramer:
Towards tight bounds for rule learning.
- Evgeniy Gabrilovich, Shaul Markovitch:
Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4.5.
- Tomer Hertz, Aharon Bar-Hillel, Daphna Weinshall:
Boosting margin based distance functions for clustering.
- Artur Merke, Ralf Schoknecht:
Convergence of synchronous reinforcement learning with linear function approximation.
- Hong Chang, Dit-Yan Yeung:
Locally linear metric adaptation for semi-supervised clustering.
- Soumya Ray, David Page:
Sequential skewing: an improved skewing algorithm.
- Ting Su, Jennifer G. Dy:
Automated hierarchical mixtures of probabilistic principal component analyzers.
- Justin Basilico, Thomas Hofmann:
Unifying collaborative and content-based filtering.
- César Ferri, Peter A. Flach, José Hernández-Orallo:
Delegating classifiers.
- Max Welling, Michal Rosen-Zvi, Yee Whye Teh:
Approximate inference by Markov chains on union spaces.
- Annalisa Appice, Michelangelo Ceci, Simon Rawles, Peter A. Flach:
Redundant feature elimination for multi-class problems.
- Nicolas Baskiotis, Michèle Sebag:
C4.5 competence map: a phase transition-inspired approach.
- Koby Crammer, Gal Chechik:
A needle in a haystack: local one-class optimization.
- Saharon Rosset:
Model selection via the AUC.
- Kristian Kersting, Martijn van Otterlo, Luc De Raedt:
Bellman goes relational.
- Shie Mannor, Duncan Simester, Peng Sun, John N. Tsitsiklis:
Bias and variance in value function estimation.
- Rómer Rosales, Kannan Achan, Brendan J. Frey:
Learning to cluster using local neighborhood structure.
- Tao Li, Sheng Ma, Mitsunori Ogihara:
Entropy-based criterion in categorical clustering.
- Qingping Tao, Stephen D. Scott, N. V. Vinodchandran, Thomas Takeo Osugi:
SVM-based generalized multiple-instance learning via approximate box counting.
- Anna Goldenberg, Andrew Moore:
Tractable learning of large Bayes net structures from sparse data.
- Chris H. Q. Ding, Xiaofeng He:
Linearized cluster assignment via spectral ordering.
- Chris H. Q. Ding, Xiaofeng He:
K-means clustering via principal component analysis.
- Glenn Fung, Murat Dundar, Jinbo Bi, R. Bharat Rao:
A fast iterative algorithm for fisher discriminant using heterogeneous kernels.
- Jelle R. Kok, Nikos A. Vlassis:
Sparse cooperative Q-learning.
- Matthew R. Rudary, Satinder P. Singh, Martha E. Pollack:
Adaptive cognitive orthotics: combining reinforcement learning and constraint-based temporal reasoning.
- Steven J. Phillips, Miroslav Dudík, Robert E. Schapire:
A maximum entropy approach to species distribution modeling.
- Austin I. Eliazar, Ronald Parr:
Learning probabilistic motion models for mobile robots.
- Xiaoli Zhang Fern, Carla E. Brodley:
Solving cluster ensemble problems by bipartite graph partitioning.
- Ronan Collobert, Samy Bengio:
Links between perceptrons, MLPs and SVMs.
- Sander M. Bohte, Markus Breitenbach, Gregory Z. Grudic:
Nonparametric classification with polynomial MPMC cascades.
- Jihun Ham, Daniel D. Lee, Sebastian Mika, Bernhard Schölkopf:
A kernel view of the dimensionality reduction of manifolds.
- Yuan (Alan) Qi, Thomas P. Minka, Rosalind W. Picard, Zoubin Ghahramani:
Predictive automatic relevance determination by expectation propagation.
- Sharlee Climer, Weixiong Zhang:
Take a walk and cluster genes: a TSP-based approach to optimal rearrangement clustering.
- Alan Fern, Robert Givan:
Relational sequential inference with reliable observations.
- Douglas Hardin, Ioannis Tsamardinos, Constantin F. Aliferis:
A theoretical characterization of linear SVM-based feature selection.
- Charles A. Sutton, Khashayar Rohanimanesh, Andrew McCallum:
Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data.
- Eric P. Xing, Roded Sharan, Michael I. Jordan:
Bayesian haplo-type inference via the dirichlet process.
- Francis R. Bach, Gert R. G. Lanckriet, Michael I. Jordan:
Multiple kernel learning, conic duality, and the SMO algorithm.
- Bianca Zadrozny:
Learning and evaluating classifiers under sample selection bias.
- Tony Jebara:
Multi-task feature and kernel selection for SVMs.
- Volkan Vural, Jennifer G. Dy:
A hierarchical method for multi-class support vector machines.
- Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov:
Training conditional random fields via gradient tree boosting.
- Avrim Blum, John D. Lafferty, Mugizi Robert Rwebangira, Rajashekar Reddy:
Semi-supervised learning using randomized mincuts.
- Pieter Abbeel, Andrew Y. Ng:
Apprenticeship learning via inverse reinforcement learning.
- Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Srujana Merugu:
An information theoretic analysis of maximum likelihood mixture estimation for exponential families.
- Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, Alex Ksikes:
Ensemble selection from libraries of models.
- Yasemin Altun, Thomas Hofmann, Alex J. Smola:
Gaussian process classification for segmenting and annotating sequences.
- Corinna Cortes, Mehryar Mohri:
Distribution kernels based on moments of counts.
- Pengcheng Wu, Thomas G. Dietterich:
Improving SVM accuracy by training on auxiliary data sources.
- Benjamin M. Marlin, Richard S. Zemel:
The multiple multiplicative factor model for collaborative filtering.
- XuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan:
Decentralized detection and classification using kernel methods.
- David M. Blei, Michael I. Jordan:
Variational methods for the Dirichlet process.
- David Wingate, Kevin D. Seppi:
P3VI: a partitioned, prioritized, parallel value iterator.
- Matthew Rosencrantz, Geoffrey J. Gordon, Sebastian Thrun:
Learning low dimensional predictive representations.
- Kristina Toutanova, Christopher D. Manning, Andrew Y. Ng:
Learning random walk models for inducing word dependency distributions.
- Cheng Soon Ong, Xavier Mary, Stéphane Canu, Alexander J. Smola:
Learning with non-positive kernels.
- Benjamin Taskar, Vassil Chatalbashev, Daphne Koller:
Learning associative Markov networks.
- Csaba Szepesvári, William D. Smart:
Interpolation-based Q-learning.
- Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, Jean-Philippe Vert:
Extensions of marginalized graph kernels.
- Cholwich Nattee, Sukree Sinthupinyo, Masayuki Numao, Takashi Okada:
Learning first-order rules from data with multiple parts: applications on mining chemical compound data.
- Moshe Koppel, Jonathan Schler:
Authorship verification as a one-class classification problem.
Copyright © Mon Mar 15 03:40:24 2010
by Michael Ley (ley@uni-trier.de)