2009 | ||
---|---|---|
60 | Alzennyr Da Silva, Yves Lechevallier, Francisco de A. T. de Carvalho: Vers la simulation et la détection des changements des données évolutives d'usage du Web. EGC 2009: 453-454 | |
59 | Rodrigo G. F. Soares, Teresa Bernarda Ludermir, Francisco de A. T. de Carvalho: An Analysis of Meta-learning Techniques for Ranking Clustering Algorithms Applied to Artificial Data. ICANN (1) 2009: 131-140 | |
58 | Alzennyr Da Silva, Yves Lechevallier, Fabrice Rossi, Francisco de A. T. de Carvalho: Clustering Dynamic Web Usage Data. Innovative Applications in Data Mining 2009: 71-82 | |
57 | Alzennyr Da Silva, Yves Lechevallier, Francisco de A. T. de Carvalho: Comparing Clustering on Symbolic Data. Intelligent Text Categorization and Clustering 2009: 81-94 | |
56 | Francisco de A. T. de Carvalho, Yves Lechevallier: Partitional clustering algorithms for symbolic interval data based on single adaptive distances. Pattern Recognition 42(7): 1223-1236 (2009) | |
55 | Francisco de A. T. de Carvalho, Marc Csernel, Yves Lechevallier: Clustering constrained symbolic data. Pattern Recognition Letters 30(11): 1037-1045 (2009) | |
2008 | ||
54 | André Luis Santiago Maia, Francisco de A. T. de Carvalho: Neural Networks and Exponential Smoothing Models for Symbolic Interval Time Series Processing - Applications in Stock Market. HIS 2008: 326-331 | |
53 | Francisco de A. T. de Carvalho, Luciano D. S. Pacifico: A Weighted Partitioning Dynamic Clustering Algorithm for Quantitative Feature Data Based on Adaptive Euclidean Distances. HIS 2008: 398-403 | |
52 | Kelly P. Silva, Rodrigo G. F. Soares, Francisco de A. T. de Carvalho, Teresa Bernarda Ludermir: Evolving both size and accuracy of RBF networks using Memetic Algorithm. IJCNN 2008: 1938-1944 | |
51 | Rodrigo G. F. Soares, Kelly P. Silva, Teresa Bernarda Ludermir, Francisco de A. T. de Carvalho: An evolutionary approach for the clustering data problem. IJCNN 2008: 1945-1950 | |
50 | Kelly P. Silva, Francisco de A. T. de Carvalho, Marc Csernel: Clustering of symbolic data through a dissimilarity volume based measure. IJCNN 2008: 2865-2871 | |
49 | André Luis Santiago Maia, Francisco de A. T. de Carvalho: Fitting a Least Absolute Deviation Regression Model on Interval-Valued Data. SBIA 2008: 207-216 | |
48 | Valmir Macário Filho, Ricardo Bastos Cavalcante Prudêncio, Francisco de A. T. de Carvalho, Leandro R. Torres, Laerte Rodrigues Jr., Marcos G. Lima: Automatic Information Extraction in Semi-structured Official Journals. SBRN 2008: 51-56 | |
47 | Eufrasio de A. Lima Neto, Francisco de A. T. de Carvalho: Centre and Range method for fitting a linear regression model to symbolic interval data. Computational Statistics & Data Analysis 52(3): 1500-1515 (2008) | |
2007 | ||
46 | Alzennyr Da Silva, Yves Lechevallier, Fabrice Rossi, Francisco de A. T. de Carvalho: Construction et analyse de résumés de données évolutives : application aux données d'usage du Web. EGC 2007: 539-544 | |
45 | Renata M. C. R. de Souza, Francisco de A. T. de Carvalho: A Clustering Method for Mixed Feature-Type Symbolic Data using Adaptive Squared Euclidean Distances. HIS 2007: 168-173 | |
44 | Camilo P. Tenorio, Francisco de A. T. de Carvalho, Julio T. Pimentel: A Partitioning Fuzzy Clustering Algorithm for Symbolic Interval Data based on Adaptive Mahalanobis Distances. HIS 2007: 174-179 | |
43 | Eleonora Ma. Jesus Oliveira, Paulemir G. Campos, Teresa Bernarda Ludermir, Francisco de A. T. de Carvalho, Wilson Rosa de Oliveira: Application of a Hybrid Classifier to the Recognition of Petrochemical Odors. HIS 2007: 78-83 | |
42 | Francisco de A. T. de Carvalho, Julio T. Pimentel, Lucas X. T. Bezerra: Clustering of symbolic interval data based on a single adaptive L1 distance. IJCNN 2007: 224-229 | |
41 | Eufrasio de A. Lima Neto, Francisco de A. T. de Carvalho, Jose F. Coelho Neto: Inequality Constraints in Regression Models to Symbolic Interval Variables. IJCNN 2007: 801-806 | |
40 | Francisco de A. T. de Carvalho, Julio T. Pimentel, Lucas X. T. Bezerra, Renata M. C. R. de Souza: Clustering symbolic interval data based on a single adaptive hausdorff distance. SMC 2007: 451-455 | |
39 | Eufrasio de A. Lima Neto, Francisco de A. T. de Carvalho, Jose F. Coelho Neto: Constrained linear regression models for interval-valued data with dependence. SMC 2007: 456-461 | |
38 | Francisco de A. T. de Carvalho: Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognition Letters 28(4): 423-437 (2007) | |
2006 | ||
37 | Fabrice Rossi, Francisco de A. T. de Carvalho, Yves Lechevallier, Alzennyr Da Silva: Comparaison de dissimilarité pour l'analyse de l'usage d'un site web. EGC 2006: 409-414 | |
36 | Fabio C. D. Silva, Francisco de A. T. de Carvalho, Renata M. C. R. de Souza, Joyce Q. Silva: A Modal Symbolic Classifier for Interval Data. ICONIP (2) 2006: 50-59 | |
35 | André Luis Santiago Maia, Francisco de A. T. de Carvalho, Teresa Bernarda Ludermir: A Hybrid Model for Symbolic Interval Time Series Forecasting. ICONIP (2) 2006: 934-941 | |
34 | Francisco de A. T. de Carvalho: A Fuzzy Clustering Algorithm for Symbolic Interval Data Based on a Single Adaptive Euclidean Distance. ICONIP (3) 2006: 1012-1021 | |
33 | Gecynalda Soares S. Gomes, André Luis Santiago Maia, Teresa Bernarda Ludermir, Francisco de A. T. de Carvalho, Aluizio F. R. Araújo: Hybrid model with dynamic architecture for forecasting time series. IJCNN 2006: 3742-3747 | |
32 | Alzennyr Da Silva, Yves Lechevallier, Francisco de A. T. de Carvalho, Brigitte Trousse: Mining Web Usage Data for Discovering Navigation Clusters. ISCC 2006: 910-915 | |
31 | Renata M. C. R. de Souza, Francisco de A. T. de Carvalho, Daniel F. Pizzato: A Partitioning Method for Mixed Feature-Type Symbolic Data Using a Squared Euclidean Distance. KI 2006: 260-273 | |
30 | Eufrasio de A. Lima Neto, Francisco de A. T. de Carvalho, Lucas X. T. Bezerra: Linear Regression Methods to Predict Interval-Valued Data. SBRN 2006: 125-130 | |
29 | André Luis Santiago Maia, Francisco de A. T. de Carvalho, Teresa Bernarda Ludermir: Symbolic interval time series forecasting using a hybrid model. SBRN 2006: 202-207 | |
28 | Francisco de A. T. de Carvalho, Renata M. C. R. de Souza, Lucas X. T. Bezerra: A dynamical clustering method for symbolic interval data based on a single adaptive Euclidean distance. SBRN 2006: 42-47 | |
27 | Francisco de A. T. de Carvalho: Fuzzy clustering algorithms for symbolic interval data based on adaptive and non-adaptive Euclidean distances. SBRN 2006: 60-65 | |
26 | Byron L. D. Bezerra, Francisco de A. T. de Carvalho, Valmir Macário Filho: C^2: : A Collaborative Recommendation System Based on Modal Symbolic User Profile. Web Intelligence 2006: 673-679 | |
25 | Francisco de A. T. de Carvalho, Camilo P. Tenorio, Nicomedes L. Cavalcanti Junior: Partitional fuzzy clustering methods based on adaptive quadratic distances. Fuzzy Sets and Systems 157(21): 2833-2857 (2006) | |
24 | Francisco de A. T. de Carvalho, Renata M. C. R. de Souza, Marie Chavent, Yves Lechevallier: Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recognition Letters 27(3): 167-179 (2006) | |
2005 | ||
23 | Nicomedes Cavalcanti, Francisco de A. T. de Carvalho: An Adaptive Fuzzy c-Means Algorithm with the L2 Norm. Australian Conference on Artificial Intelligence 2005: 1138-1141 | |
22 | Eufrasio de A. Lima Neto, Francisco de A. T. de Carvalho, Eduarda S. Freire: Applying Constrained Linear Regression Models to Predict Interval-Valued Data. KI 2005: 92-106 | |
21 | Luciano Barbosa, Ana Carolina Salgado, Francisco de A. T. de Carvalho, Jacques Robin, Juliana Freire: Looking at both the present and the past to efficiently update replicas of web content. WIDM 2005: 75-80 | |
2004 | ||
20 | Byron L. D. Bezerra, Francisco de A. T. de Carvalho: A Symbolic Hybrid Approach to Face the New User Problem in Recommender Systems. Australian Conference on Artificial Intelligence 2004: 1011-1016 | |
19 | Eufrasio de A. Lima Neto, Francisco de A. T. de Carvalho, Camilo P. Tenorio: Univariate and Multivariate Linear Regression Methods to Predict Interval-Valued Features. Australian Conference on Artificial Intelligence 2004: 526-537 | |
18 | Byron L. D. Bezerra, Francisco de A. T. de Carvalho, Gustavo Alves: Collaborative Filtering Based on Modal Symbolic User Profiles: Knowing You in the First Meeting. IBERAMIA 2004: 235-245 | |
17 | Renata M. C. R. de Souza, Francisco de A. T. de Carvalho, Camilo P. Tenorio: Two Partitional Methods for Interval-Valued Data Using Mahalanobis Distances. IBERAMIA 2004: 454-463 | |
16 | Simith T. D'Oliveira Junior, Francisco de A. T. de Carvalho, Renata M. C. R. de Souza: A Classifier for Quantitative Feature Values Based on a Region Oriented Symbolic Approach. IBERAMIA 2004: 464-473 | |
15 | Alzennyr Da Silva, Francisco de A. T. de Carvalho, Teresa Bernarda Ludermir, Nicomedes Cavalcanti: Comparing Metrics in Fuzzy Clustering for Symbolic Data on SODAS Format. IBERAMIA 2004: 727-736 | |
14 | Simith T. D'Oliveira Junior, Francisco de A. T. de Carvalho, Renata M. C. R. de Souza: Classification of SAR Images Through a Convex Hull Region Oriented Approach. ICONIP 2004: 769-774 | |
13 | Renata M. C. R. de Souza, Francisco de A. T. de Carvalho, Fabio C. D. Silva: Clustering of Interval-Valued Data Using Adaptive Squared Euclidean Distances. ICONIP 2004: 775-780 | |
12 | Francisco de A. T. de Carvalho, Eufrasio de A. Lima Neto, Camilo P. Tenorio: A New Method to Fit a Linear Regression Model for Interval-Valued Data. KI 2004: 295-306 | |
11 | Francisco de A. T. de Carvalho, Renata M. C. R. de Souza, Fabio C. D. Silva: A Clustering Method for Symbolic Interval-Type Data Using Adaptive Chebyshev Distances. SBIA 2004: 266-275 | |
10 | Sérgio R. de M. Queiroz, Francisco de A. T. de Carvalho: Making Collaborative Group Recommendations Based on Modal Symbolic Data. SBIA 2004: 307-316 | |
9 | Byron L. D. Bezerra, Francisco de A. T. de Carvalho: A symbolic approach for content-based information filtering. Inf. Process. Lett. 92(1): 45-52 (2004) | |
8 | Renata M. C. R. de Souza, Francisco de A. T. de Carvalho: Clustering of interval data based on city-block distances. Pattern Recognition Letters 25(3): 353-365 (2004) | |
7 | Ricardo Bastos Cavalcante Prudêncio, Teresa Bernarda Ludermir, Francisco de A. T. de Carvalho: A Modal Symbolic Classifier for selecting time series models. Pattern Recognition Letters 25(8): 911-921 (2004) | |
2002 | ||
6 | Byron L. D. Bezerra, Francisco de A. T. de Carvalho, Geber Ramalho, Jean-Daniel Zucker: Speeding up Recommender Systems with Meta-prototypes. SBIA 2002: 227-236 | |
5 | Ivan R. Teixeira, Francisco de A. T. de Carvalho, Geber Ramalho, Vincent Corruble: ActiveCP: A Method for Speeding up User Preferences Acquisition in Collaborative Filtering Systems. SBIA 2002: 237-247 | |
4 | Sérgio R. de M. Queiroz, Francisco de A. T. de Carvalho, Geber Ramalho, Vincent Corruble: Making Recommendations for Groups Using Collaborative Filtering and Fuzzy Majority. SBIA 2002: 248-258 | |
3 | Ivan G. Costa, Francisco de A. T. de Carvalho, Marcílio Carlos Pereira de Souto: A Symbolic Approach to Gene Expression Time Series Analysis. SBRN 2002: 25-30 | |
2 | Ivan G. Costa, Francisco de A. T. de Carvalho, Marcílio Carlos Pereira de Souto: Stability Evaluation of Clustering Algorithms for Time Series Gene Expression Data. WOB 2002: 88-90 | |
1 | Ivan G. Costa, Francisco de A. T. de Carvalho, Marcílio Carlos Pereira de Souto: Comparative study on proximity indices for cluster analysis of gene expression time series. Journal of Intelligent and Fuzzy Systems 13(2-4): 133-142 (2002) |