This website is under development. If you come accross any issues, please report them to Konstantinos Kanellis (kkanellis@cs.wisc.edu) or Yannis Chronis (chronis@google.com).

Extending Relational Query Processing with ML Inference

Authors:
Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen, Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru Krishnan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, Carlo Curino
Abstract

The broadening adoption of machine learning in the enterprise is increasing the pressure for strict governance and cost-effective performance, in particular for the common and consequential steps of model storage and inference. The RDBMS provides a natural starting point, given its mature infrastructure for fast data access and processing, along with support for enterprise features, such as encryption, auditing, and high-availability. To take advantage of all of the above, we need to address a key concern: Can in-RDBMS scoring of ML models match (outperform?) the performance of dedicated frameworks? We answer the above positively by building Raven, a system that leverages native integration of ML runtimes (such as ONNX Runtime) deep within SQL Server and a unified intermediate representation (IR) to enable advanced crossoptimizations between ML and database operators. In this optimization space, we discover the most exciting research opportunities that combine DB/compiler/ML thinking. Our initial evaluation on real data demonstrates performance gains of up to 5.5× from the native integration of ML in SQL Server and up to 24× from cross-optimizations. An early preview of the ONNX Runtime integration is currently available with Azure’s SQL Database Edge.