go back

Volume 16, No. 4

MultiBiSage: A Web-Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest

Authors:
Saket Gurukar, Nikil Pancha, Andrew Zhai, Eric Kim, Samson Hu, Srinivasan Parthasarathy, Charles Rosenberg, Jure Leskovec

Abstract

Graph Convolutional Networks (GCN) can efficiently integrate graph structure and node features to learn high-quality node embeddings. At Pinterest, we have developed and deployed PinSage, a data-efficient GCN that learns pin embeddings from the Pin-Board graph. Pinterest relies heavily on PinSage which in turn only leverages the Pin-Board graph. However, there exist several entities at Pinterest and heterogeneous interactions among these entities. These diverse entities and interactions provide important signal for recommendations and modeling. In this work, we show that training deep learning models on graphs that captures these diverse interactions can result in learning higher-quality pin embeddings than training PinSage on only the Pin-Board graph. However, building a large-scale heterogeneous graph engine that can process the entire Pinterest size data has not yet been done. In this work, we present a clever and effective solution where we break the heterogeneous graph into multiple disjoint bipartite graphs and then develop novel data-efficient MultiBiSage model that combines the signals from them. MultiBiSage can capture the graph structure of multiple bipartite graphs to learn high-quality pin embeddings. The benefit of our approach is that individual bipartite graphs can be processed with minimal changes to Pinterest’s current infrastructure, while being able to combine information from all the graphs while achieving high performance. We train MultiBiSage on six bipartite graphs including our Pin-Board graph and show that it significantly outperforms the deployed latest version of PinSage on multiple user engagement metrics. We also perform experiments on two public datasets to show that MultiBiSage is generalizable and can be applied to datasets outside of Pinterest.

PVLDB is part of the VLDB Endowment Inc.

Privacy Policy