go back
go back
Volume 16, No. 12
ADOps: An Anomaly Detection Pipeline in Structured Logs
Abstract
Anomaly detection has been extensively implemented in industry. The reality is that an application may have numerous scenarios where anomalies need to be monitored. However, the complete process of anomaly detection will take much time, including data acquisition, data processing, model training, and model deployment. In particular, some simple scenarios do not require building complex anomaly detection models. This results in a waste of resources. To solve these problems, we build an anomaly detection pipeline(ADOps) to modularize each step. For simple anomaly detection scenarios, no programming is required and new anomaly detection tasks can be created by simply modifying the configuration file. In addition, it can also improve the development efficiency of complex anomaly detection models. We show how users create anomaly detection tasks on the anomaly detection pipeline and how engineers use it to develop anomaly detection models.
PVLDB is part of the VLDB Endowment Inc.
Privacy Policy