go back

Volume 14, No. 5

Zen: a High-Throughput Log-Free OLTP Engine for Non-Volatile Main Memory

Authors:
Gang Liu (Chinese Academy of Sciences), Leying Chen (Chinese Academy of Sciences), Shimin Chen (Chinese Academy of Sciences)

Abstract

Emerging Non-Volatile Memory (NVM) technologies like 3DXpoint promise significant performance potential for OLTP databases. However, transactional databases need to be redesigned because the key assumptions that non-volatile storage is orders of magnitude slower than DRAM and only supports blocked-oriented access have changed. NVMs are byte-addressable and almost as fast as DRAM. The capacity of NVM is much (4-16x) larger than DRAM. Such NVM characteristics make it possible to build OLTP database entirely in NVM main memory. This paper studies the structure of OLTP engines with hybrid NVM and DRAM memory. We observe three challenges to design an OLTP engine for NVM: tuple metadata modifications, NVM write redundancy, and NVM space management. We propose Zen, a high-throughput log-free OLTP engine for NVM. Zen addresses the three design challenges with three novel techniques: metadata enhanced tuple cache, log-free persistent transactions, and light-weight NVM space management. Experimental results on a real machine equipped with Intel Optane DC Persistent Memory show that Zen achieves up to 10.1x improvement compared with existing solutions to run an OLTP database as large as the size of NVM while achieving fast failure recovery.

PVLDB is part of the VLDB Endowment Inc.

Privacy Policy