Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases.
Rakesh Agrawal, King-Ip Lin, Harpreet S. Sawhney, Kyuseok Shim:
Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases.
VLDB 1995: 490-501@inproceedings{DBLP:conf/vldb/AgrawalLSS95,
author = {Rakesh Agrawal and
King-Ip Lin and
Harpreet S. Sawhney and
Kyuseok Shim},
editor = {Umeshwar Dayal and
Peter M. D. Gray and
Shojiro Nishio},
title = {Fast Similarity Search in the Presence of Noise, Scaling, and
Translation in Time-Series Databases},
booktitle = {VLDB'95, Proceedings of 21th International Conference on Very
Large Data Bases, September 11-15, 1995, Zurich, Switzerland},
publisher = {Morgan Kaufmann},
year = {1995},
isbn = {1-55860-379-4},
pages = {490-501},
ee = {db/conf/vldb/AgrawalLSS95.html},
crossref = {DBLP:conf/vldb/95},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
Abstract
We introduce a new model of similarity of time sequences that captures theintuitive notion that two sequences should be considered similar if they have enough non-overlapping time-ordered pairs of subsequences thar are similar.
The model allows the amplitude of one of the two sequences to be scaled byany suitable amount and its offset adjusted appropriately.
Two subsequences are considered similar if one can be enclosed within an envelope of a specified width drawn around the other.
The model also allows non-matching gaps in the matching subsequences.
The matching subsequences need not be aligned along the time axis.
Given this model of similarity, we present fast search techniques for discovering all similar sequences in a set of sequences.
These techniques can also be used to find all (sub)sequences similar to a given sequence.
We applied this matching system to the U.S. mutual funds data and discovered interesting matches.
Copyright © 1995 by the VLDB Endowment.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and
its date appear, and notice is given that copying
is by the permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.
Online Paper
CDROM Version: Load the CDROM "Volume 1 Issue 5, VLDB '89-'97" and ...
DVD Version: Load ACM SIGMOD Anthology DVD 1" and ...
Printed Edition
Umeshwar Dayal, Peter M. D. Gray, Shojiro Nishio (Eds.):
VLDB'95, Proceedings of 21th International Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland.
Morgan Kaufmann 1995, ISBN 1-55860-379-4
Contents
References
- [1]
- Rakesh Agrawal, Christos Faloutsos, Arun N. Swami:
Efficient Similarity Search In Sequence Databases.
FODO 1993: 69-84
- [2]
- Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami:
Database Mining: A Performance Perspective.
IEEE Trans. Knowl. Data Eng. 5(6): 914-925(1993)
- [3]
- Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger:
The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles.
SIGMOD Conference 1990: 322-331
- [4]
- Donald J. Berndt, James Clifford:
Using Dynamic Time Warping to Find Patterns in Time Series.
KDD Workshop 1994: 359-370
- [5]
- Thomas Brinkhoff, Hans-Peter Kriegel, Bernhard Seeger:
Efficient Processing of Spatial Joins Using R-Trees.
SIGMOD Conference 1993: 237-246
- [6]
- ...
- [7]
- ...
- [8]
- ...
- [9]
- ...
- [10]
- Christos Faloutsos, M. Ranganathan, Yannis Manolopoulos:
Fast Subsequence Matching in Time-Series Databases.
SIGMOD Conference 1994: 419-429
- [11]
- ...
- [12]
- Antonin Guttman:
R-Trees: A Dynamic Index Structure for Spatial Searching.
SIGMOD Conference 1984: 47-57
- [13]
- Klaus Hinrichs, Jürg Nievergelt:
The Grid File: A Data Structure to Support Proximity Queries on Spatial Objects.
WG 1983: 100-113
- [14]
- ...
- [15]
- ...
- [16]
- ...
- [17]
- ...
- [18]
- ...
- [19]
- Timos K. Sellis, Nick Roussopoulos, Christos Faloutsos:
The R+-Tree: A Dynamic Index for Multi-Dimensional Objects.
VLDB 1987: 507-518
- [20]
- ...
- [21]
- Jason Tsong-Li Wang, Gung-Wei Chirn, Thomas G. Marr, Bruce A. Shapiro, Dennis Shasha, Kaizhong Zhang:
Combinatorial Pattern Discovery for Scientific Data: Some Preliminary Results.
SIGMOD Conference 1994: 115-125
- [22]
- Sun Wu, Udi Manber:
Fast Text Searching Allowing Errors.
Commun. ACM 35(10): 83-91(1992)
Copyright © Tue Mar 16 02:22:05 2010
by Michael Ley (ley@uni-trier.de)