KDID 2005:
Porto,
Portugal
Francesco Bonchi, Jean-François Boulicaut (Eds.):
Knowledge Discovery in Inductive Databases, 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers.
Lecture Notes in Computer Science 3933 Springer 2006, ISBN 3-540-33292-8
Invited Papers
- Arno Siebes:
Data Mining in Inductive Databases.
1-23
- Carlo Zaniolo:
Mining Databases and Data Streams with Query Languages and Rules.
24-37
Contributed Papers
- Maurizio Atzori, Paolo Mancarella, Franco Turini:
Memory-Aware Frequent k-Itemset Mining.
38-54
- Jérémy Besson, Ruggero G. Pensa, Céline Robardet, Jean-François Boulicaut:
Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data.
55-71
- Hendrik Blockeel:
Experiment Databases: A Novel Methodology for Experimental Research.
72-85
- Toon Calders, Bart Goethals:
Quick Inclusion-Exclusion.
86-103
- Tao-Yuan Jen, Dominique Laurent, Nicolas Spyratos, Oumar Sy:
Towards Mining Frequent Queries in Star Schemes.
104-123
- Stefan Kramer, Volker Aufschild, Andreas Hapfelmeier, Alexander Jarasch, Kristina Kessler, Stefan Reckow, Jörg Wicker, Lothar Richter:
Inductive Databases in the Relational Model: The Data as the Bridge.
124-138
- Taneli Mielikäinen:
Transaction Databases, Frequent Itemsets, and Their Condensed Representations.
139-164
- Siegfried Nijssen, Joost N. Kok:
Multi-class Correlated Pattern Mining.
165-187
- Csaba István Sidló, András Lukács:
Shaping SQL-Based Frequent Pattern Mining Algorithms.
188-201
- Arnaud Soulet, Bruno Crémilleux:
Exploiting Virtual Patterns for Automatically Pruning the Search Space.
202-221
- Jan Struyf, Saso Dzeroski:
Constraint Based Induction of Multi-objective Regression Trees.
222-233
- Bernard Zenko, Saso Dzeroski, Jan Struyf:
Learning Predictive Clustering Rules.
234-250
Copyright © Mon Mar 15 03:45:49 2010
by Michael Ley (ley@uni-trier.de)