ICMLA 2007:
Cincinnati,
Ohio,
USA
M. Arif Wani, Mehmed M. Kantardzic, Tao Li, Ying Liu, Lukasz A. Kurgan, Jieping Ye, Mitsunori Ogihara, Seref Sagiroglu, Xue-wen Chen, Leif E. Peterson, Khalid Hafeez (Eds.):
The Sixth International Conference on Machine Learning and Applications, ICMLA 2007, Cincinnati, Ohio, USA, 13-15 December 2007.
IEEE Computer Society 2008, ISBN 0-7695-3069-9
Invited Speakers
- William W. Cohen:
Machine Learning for Information Management: Some Promising Directions.
- Eric P. Xing:
Probabilistic Graphical Models-Theory, Algorithm, and Application.
- Pierre Baldi:
Machine Learning Challenges in Chemoinformatics and Drug Screening and Design.
- Shamkant B. Navathe:
Text Mining and Ontology Applications in Bioinformatics and GIS.
- Jacek M. Zurada:
Neural Networks with Complex-Valued Neurons for Recurrent and Feedforward Architectures.
- Brendan J. Frey:
Learning in Biomedicine and Bioinformatics Using Affinity Propagation.
- Bernd Wachmann:
Technologies and Solutions for Trend Detection in Public Literature for Biomarker Discovery.
Support Vector Machines
- Yulin Dong, Manghui Tu, Zhonghang Xia, Guangming Xing:
An optimization method for selecting parameters in support vector machines.
1-6
- Thanh-Nghi Do, Jean-Daniel Fekete:
Large Scale Classification with Support Vector Machine Algorithms.
7-12
- Martin Renqiang Min, Anthony J. Bonner, Zhaolei Zhang:
Modifying kernels using label information improves SVM classification performance.
13-18
- Laura Diosan, Alexandrina Rogozan, Jean-Pierre Pécuchet:
Evolving kernel functions for SVMs by genetic programming.
19-24
- Gilles Gasso, Karina Zapien Arreola, Stéphane Canu:
Sparsity regularization path for semi-supervised SVM.
25-30
Evolutionary Methods
Data Mining
- Haiyun Bian, Raj Bhatnagar, Barrington Young:
An Efficient Constraint-Based Closed Set Mining Algorithm.
67-72
- Mehdi Adda, Lei Wu, Yi Feng:
Rare Itemset Mining.
73-80
- P. Santhi Thilagam, V. S. Ananthanarayana:
Semantic Partition Based Association Rule Mining across Multiple Databases Using Abstraction.
81-86
- Claudio Haruo Yamamoto, Maria Cristina Ferreira de Oliveira, Magaly Lika Fujimoto, Solange Oliveira Rezende:
An Itemset-Driven Cluster-Oriented Approach to Extract Compact and Meaningful Sets of Association Rules.
87-92
- Dadong Yu, Dongbo Liu, Rui Luo, Jianxin Wang:
Clustering Categorical Data Based on Maximal Frequent Itemsets.
93-97
Learning
Text and Multimedia Learning
Application I
Learning
Classification
Application II
Regression/Prediction
- Balaji Kommineni, Shubhankar Basu, Ranga Vemuri:
A spline based regression technique on interval valued noisy data.
241-247
- Yang Lan, Daniel Neagu:
A new time series prediction algorithm based on moving average of nth-order difference.
248-253
- David Thornley, Maxim Zverev, Stavros Petridis:
Machine learned regression for abductive DNA sequencing.
254-259
- Jian-Wu Xu, Shipeng Yu, Jinbo Bi, Lucian Vlad Lita, Radu Stefan Niculescu, R. Bharat Rao:
Automatic medical coding of patient records via weighted ridge regression.
260-265
- Adeline Schmitz, Hamid Hefazi:
Constructive neural network ensemble for regression tasks in high dimensional spaces.
266-273
Machine Learning in Web Based Real-Time Applications
Dimensionality Reduction
Induction,
Model Selection and Evaluation
Reinforcement Learning/ Learning from Imbalanced Data/Bayesian Networks
- Victor Uc Cetina:
Supervised reinforcement learning using behavior models.
336-341
- Jan Hendrik Metzen, Mark Edgington, Yohannes Kassahun, Frank Kirchner:
Performance evaluation of EANT in the robocup keepaway benchmark.
342-347
- Taghi M. Khoshgoftaar, Chris Seiffert, Jason Van Hulse, Amri Napolitano, Andres Folleco:
Learning with limited minority class data.
348-353
- Manuel Stritt, Lars Schmidt-Thieme, Gerhard Poeppel:
Combining multi-distributed mixture models and bayesian networks for semi-supervised learning.
354-362
- Dennis J. Drown, Taghi M. Khoshgoftaar, Ramaswamy Narayanan:
Using evolutionary sampling to mine imbalanced data.
363-368
- Alexandra M. Carvalho, Arlindo L. Oliveira:
Learning bayesian networks consistent with the optimal branching.
369-374
Unsupervised Learning
- Qiyong Guo, Hongyu Li, Wenbin Chen, I-Fan Shen, Jussi Parkkinen:
Manifold clustering via energy minimization.
375-380
- Jian Zhang:
Co-clustering by similarity refinement.
381-386
- Thouraya Ayadi, Tarek M. Hamdani, Adel M. Alimi, Mohamed A. Khabou:
2IBGSOM: interior and irregular boundaries growing self-organizing maps.
387-392
- Bülent Yücesoy, Sule Gündüz Ögüdücü:
Comparison of semantic and single term similarity measures for clustering turkish documents.
393-398
- Dong Moon Kim, Kunsu Kim, Kyo-Hyun Park, Jee-Hyong Lee, Keon-Myung Lee:
A music recommendation system with a dynamic k-means clustering algorithm.
399-403
Feature Extraction and Selection / Ensemble Learning
Application III
Machine Learning Applications in Bioinformatics
- Yi Sun, Mark Robinson, Rod Adams, Neil Davey, Alistair G. Rust:
Predicting Binding Sites in the Mouse Genome.
476-481
- Glenn Fung, Renaud. Seigneuric, Sriram Krishnan, R. Bharat Rao, Brad G. Wouters, Philippe Lambin:
Reducing a Biomarkers List via Mathematical Programming: Application to Gene Signatures to Detect Time-Dependent Hypoxia in Cancer.
482-487
- Michalis E. Blazadonakis, Michalis E. Zervakis:
Polynomial and RBF Kernels as Marker Selection Tools-A Breast Cancer Case Study.
488-493
- Daniele Yumi Sunaga, Júlio C. Nievola, Milton Pires Ramos:
Statistical and Biological Validation Methods in Cluster Analysis of Gene Expression.
494-499
- Bobbie-Jo M. Webb-Robertson, Christopher S. Oehmen, William R. Cannon:
Support Vector Machine Classification of Probability Models and Peptide Features for Improved Peptide Identification from Shotgun Proteomics.
500-505
- Amit U. Sinha, Mukta Phatak, Raj Bhatnagar, Anil G. Jegga:
Identifying Functional Binding Motifs of Tumor Protein p53 Using Support Vector Machines.
506-511
Workshop Session:
Machine Learning Applications in Biomedicine
- Claire L. McCullough, Andrew J. Novobilski, Francis M. Fesmire:
Use of Neural Networks to Predict Adverse Outcomes from Acute Coronary Syndrome for Male and Female Patients.
512-517
- Janusz Wojtusiak, Ryszard S. Michalski, Thipkesone Simanivanh, Anna V. Baranova:
The Natural Induction System AQ21 and its Application to Data Describing Patients with Metabolic Syndrome: Initial Results.
518-523
- Sang-Chul Lee, Peter Bajcsy:
Understanding Challenges in Preserving and Reconstructing Computer-Assisted Medical Decision Processes.
524-529
- Rómer Rosales, Praveen Krishnamurthy, R. Bharat Rao:
Semi-Supervised Active Learning for Modeling Medical Concepts from Free Text.
530-536
- Alexander J. Senf, Carl Leonard, James M. DeLeo:
A Statistical Algorithm to Discover Knowledge in Medical Data Sources.
537-540
- Kai Xing, Donald Henson, Dechang Chen, Li Sheng:
A Clustering-Based Approach to Predict Outcome in Cancer Patients.
541-546
Workshop Session:
Machine Learning Applications in Genomics
- Mingzhou (Joe) Song, Robert M. Haralick, Stéphane Boissinot:
Maximum Likelihood Quantization of Genomic Features Using Dynamic Programming.
547-553
- Kwangmin Choi, Youngik Yang, Sun Kim:
CLASSEQ: Classification of Sequences via Comparative Analysis of Multiple Genomes.
554-559
- Li Chen, Chen Wang, Le-Ming Shih, Tian-Li Wang, Zhen Zhang, Yue Wang, Robert Clarke, Eric Hoffman, Jianhua Xuan:
Biomarker Identification by Knowledge-Driven Multi-Level ICA and Motif Analysis.
560-566
- Dietmar H. Dorr, Anne Denton:
Generalized Sequence Signatures through Symbolic Clustering.
567-572
- Mark A. Kon, Yue Fan, Dustin T. Holloway, Charles DeLisi:
SVMotif: A Machine Learning Motif Algorithm.
573-580
Workshop Session:
Machine Learning Applications in Proteomics
- Thomas Villmann, Frank-Michael Schleif, Martijn van der Werff, André M. Deelder, Rob A. E. M. Tollenaar:
Association Learning in SOMs for Fuzzy-Classification.
581-586
- Ronald C. Taylor, Mudita Singhal, Don Simone Daly, Kelly Domico, Amanda M. White, Deanna L. Auberry, Kenneth J. Auberry, Brian Hooker, Gregory B. Hurst, Jason McDermott, W. Hayes McDonald, Dale Pelletier, Denise Schmoyer, William R. Cannon:
SEBINI-CABIN: An Analysis Pipeline for Biological Network Inference, with a Case Study in Protein-Protein Interaction Network Reconstruction.
587-593
- Jia Song, Chunmei Liu, Yinglei Song, Junfeng Qu:
Alignment of Multiple Proteins with an Ensemble of Hidden Markov Models.
594-599
- Dongxiao Zhu, Hua Li:
Improvement of Bayesian Network Inference Using a Relaxed Gene Ordering.
600-605
Workshop Session:
Machine Learning Applications in Transcriptomics
- Young-Rae Cho, Xian Xu, Woochang Hwang, Aidong Zhang:
Feature Extraction from Microarray Expression Data by Integration of Semantic Knowledge.
606-611
- Huilin Xiong, Ya Zhang, Xue-wen Chen:
Normalized Linear Transform for Cross-Platform Microarray Data Integration.
612-617
- Leif E. Peterson, Matthew Coleman:
Logistic Ensembles for Random Spherical Linear Oracles.
618-623
- Zhenqiu Liu:
Cox's Proportional Hazards Model with Lp Penalty for Biomarker Identification and Survival Prediction.
624-628
- Lynne Billard, Duck-Ki Kim, Chan-Hee Lee, Sung Duck Lee, Keon-Myung Lee, Sung-Soo Kim:
Modeling Spatial-Temporal Epidemics Using STBL Model.
629-633
Copyright © Mon Mar 15 03:40:25 2010
by Michael Ley (ley@uni-trier.de)