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ABSTRACT
In this paper we present techniques to incrementally harvest and
query arbitrary metadata from machine learning pipelines, without
disrupting agile practices. We center our approach on the developer-
favored technique for generating metadata — log statements —
leveraging the fact that logging creates context. We show how hind-
sight logging [8] allows such statements to be added and executed
post-hoc, without requiring developer foresight. Relational views
of incomplete metadata can be queried to dynamically materialize
new metadata in bulk and on demand across multiple versions of
work!ows. This is done in a “metadata later” style, o" the critical
path of agile development. We realize these ideas in a system called
FlorDB and demonstrate how the data context framework covers a
range of both ad-hoc metadata as well as special cases treated today
by bespoke feature stores and model repositories. Through a usage
scenario—including both ML and human feedback—we illustrate
how the component techniques come together to resolve classic
software engineering trade-o"s between agility and discipline.

1 INTRODUCTION
In the rapidly evolving #eld of Arti#cial Intelligence (AI) and Ma-
chine Learning (ML), the management of metadata has emerged
as an enduring challenge [9, 19]. As machine learning models and
their applications become increasingly integral to business and
technology, the need for accurate and comprehensive metadata
management has never been more critical. However, this require-
ment presents numerous di$culties, primarily due to the highly
diverse mix of systems and artifacts involved in MLOps. Compound-
ing this complexity is the necessity for robust feedback loops that
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span organizational boundaries—such as those between design and
deployment teams—and extend over time.

1.1 A Crisis of Metadata Management
One persistent challenge is balancing agility with the rigor of up-
front documentation or “metadata #rst” approaches. Detailed docu-
mentation andmetadata are essential for reproducibility, debugging,
and collaboration. Unfortunately, insisting on comprehensive meta-
data from the start can hinder the agility and speed that are often
crucial in early development stages.

The tradeo" between discipline and agility is an enduring open
problem, evident in various contexts including the dichotomy be-
tween schema-#rst and NoSQL databases, and the contrast between
data warehouses and data lakes. Schema-#rst and warehouse ap-
proaches o"er discipline and structure but lack the !exibility needed
for rapidly evolving requirements. Conversely, NoSQL and data
lake approaches provide the necessary agility but can lead to in-
consistency and disarray in metadata management.

To address this, two core goals can be established for resolving
what has been considered an inherent con!ict:

(1) Goal 1. AgileDevelopment Loop:Metadata capture should
be gradually incorporated into the agile work!ows of data
scientists and MLEs without interference. For data scientists,
metadata capture should #t naturally into their open-source
development environment. For MLEs, metadata should #t
into standard tools for work!owmanagement and scalability,
such as relational databases and CI/CD pipelines, without
requiring lock-in on yet another service for metadata man-
agement.

(2) Goal 2. Metadata on Demand:Metadata generation, like
other features, should be able to evolve incrementally, im-
proving organically with project needs. Ideally we want a
“metadata later” approach that easily back-propagates meta-
data discipline into earlier versions of the project — at just
the time when someone regrets not having the metadata
they need.
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1.2 Goals and Contributions
Ourwork is built on FlorDB1, the scope of whichwe signi#cantly ex-
panded to encompass the entire ML lifecycle. FlorDB now captures
complete pipelines and their regular execution, rather than just
individual tasks. These extensions apply to mechanisms managed
by the FlorDB API, initially designed for multiversion hindsight log-
ging but now adapted to include incremental context maintenance
over work!ows. Despite these extensions, FlorDB maintains API
stability and backward compatibility with multiversion hindsight
logging.

Key goals and contributions include:

(1) Incremental Context Maintenance for Agile DevOps:
Our system allows developers to log and analyze metadata
in a standard, open, low-friction manner. Metadata can be
captured naturally through Python log statements as part
of the development work!ow, without imposing signi#cant
overhead. Subsequently, these log statements can be read
directly as tabular data using standard Python dataframes,
queried via Pandas or SQL, without requiring data wrangling.

(2) Ad-Hoc Metadata on Demand Enabled by Hindsight
Logging: FlorDB enables agile metadata evolution through
multiversion hindsight logging, which operates as a record-
replaymechanism.While traditional logging systems require
prede#ned schemas, our approach captures su$cient exe-
cution state during recording, and allows the extraction of
arbitrary expression values derivable from that state during
replay. This means metadata collection isn’t limited to just
what was explicitly recorded; developers can compute arbi-
trary new properties and relationships from the execution
record after the fact. Like materializing a view, developers
can declare what metadata they want to extract, but unlike
views, the source material extends beyond stored data to
encompass both the complete execution record and the uni-
verse of derivable properties. This powerful mechanism frees
developers from “metadata #rst” constraints while enabling
unbounded possibilities for post-hoc metadata computation
and analysis.

(3) Uni!ed, OpenMetadata for Machine Learning: Last, the
open, standard approach of FlorDB simpli#es and improves
the abstraction of metadata, incorporating features from
various bespoke ML metadata systems such as feature stores,
model registries, and labeling systems into a uni#ed and
robust framework.

We demonstrate these contributions through a document intelli-
gence use-case, highlighting the importance of context in stream-
lining development cycles and improving operational e$ciency.

2 MULTIVERSION HINDSIGHT LOGGING
This section provides background on Flor and FlorDB, highlighting
their evolution and key features in managing the machine learning
lifecycle. Flor, originally designed as a record-replay system for
model training [8], o"ers two main features: i) low-overhead adap-
tive checkpointing, minimizing computational resources during

1https://github.com/ucbrise/!or

model training, and ii) low-latency replay from checkpoints, lever-
aging memoization and parallelism speed ups. Flor’s record-replay
mechanism introduced the notion of hindsight logging, allowing
for post-hoc and on-demand querying of e"ectively unbounded
context.

We adopt the term “context” from the Ground project [12], as a
signi#er for an all-encompassing view of metadata that goes beyond
traditional relational metadata. Here, “context” includes anything
that could be emitted by a log statement in any running process, be
it an ML training job, a data wrangling script, a live inference server,
a log processor handling usage feedback, or even an orchestration
framework that knits these other tools together.

FlorDB extends Flor’s capabilities by integrating automatic ver-
sion control, adding a relational data model for querying logs, and
cross-version logging statement propagation for multiversion hind-
sight logging [7]. Its relational model, accessible via flor.dataframe,
maps individual logging statements into columns in a pivoted view.
This approach facilitates easy tracking of changes over time. In this
paper (Section 2.1), we further extend FlorDB to support data!ow
pipelines and manage feedback loops. This extension provides a
seamless framework for capturing arbitrary context introduced in
de#ning and executing complex, evolving ML pipelines.

To clarify the concept of multiversion hindsight logging, imagine
a scenario where a developer has run several versions of a machine
learning pipeline but later realizes that certain metadata or context
was not captured during those runs. Traditionally, retrieving this
missing information would require re-running each version of the
pipeline with the new logging statements inserted—a process that
is both time-consuming and resource-intensive. FlorDB’s multiver-
sion hindsight logging o"ers a powerful alternative that minimizes
both developer e"ort and compute resources. Developers can add
the desired logging statements to the latest version of their code,
and FlorDB will (a) inject these statements into the correct locations
in all prior versions of the code, and (b) retroactively execute these
statements across all those versions via incremental replay, without
the need for full re-execution. The former, (a), is made possible via
techniques adapted from code di$ng [6]; the latter, (b), is made
possible through a combination of di"erential execution and par-
allelism, allowing FlorDB to e$ciently replay only the necessary
parts of the pipeline to extract the new metadata. This “magic trick”
enables developers to incrementally build up context and metadata
after the fact, supporting agile practices by eliminating the need
for foresight in logging. It resolves the classic trade-o" between
starting fast and re#ning over time by providing the !exibility to
log now, and get data from the past. For technical details on how
this is achieved, we refer readers to our prior work [7].

2.1 FlorDB Extended API
FlorDB’s API captures metadata about the executing #le, eliminat-
ing the need to restate data!ow dependencies; cross-executable
dependencies declared in a typical work!ow orchestration tool
(Air!ow, MLFlow, Make, etc) su$ce. By pro#ling runtime metadata,
including the executed #le’s name, FlorDB remains agnostic to the
choice of work!ow management system, functioning seamlessly
without requiring refactoring of orchestration scripts.

The Flor API, as presented in Garcia et al. (2023) [7], includes:

https://github.com/ucbrise/flor
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• flor.log(name: str, value: T) -> T: Logs a value with a
speci#ed name, constructing a record with projid, tstamp,
filename, and nesting dimensions de#ned by flor.loop.

• flor.arg(name: str, default: T) -> T: Reads command-line
values or uses defaults, retrieving historical values during
replay.

• flor.loop(name:str, vals:Iterable[T]) -> Iterable[T]:
A Python generator maintaining global state between itera-
tions, useful for addressing flor.log records and coordinat-
ing checkpoints.

• flor.checkpointing(kwargs: Dict) -> ContextManager:
A Python "context manager" de#ning objects for adaptive
checkpointing at flor.loop iteration boundaries.

• flor.dataframe(*args) -> pd.DataFrame: Produces a Pandas
DataFrame of log information, with columns correspond-
ing to each argument in *args plus dimension columns like
projid, tstamp, filename.

To support user interactions in long-running web applications,
such as “Save & Close” buttons, FlorDB is further extended with
the following API call:

• flor.commit() -> None: An application-level transaction com-
mit marker supporting visibility control for long-running
processes. It writes a log #le, commits changes to git, and in-
crements the tstamp. This method is automatically invoked
(via atexit) at the end of a Python execution.

3 INCREMENTAL CONTEXT MAINTENANCE
The ML lifecycle is characterized by numerous fast-changing com-
ponents, where it is easy to lose track of essential metadata — what
we term context. Context represents a comprehensive framework
that captures the nature, origins, evolution, and functional signif-
icance of data and digital artifacts within an organization. It is
metadata broadly conceived, extending beyond traditional database
metadata to encompass the full spectrum of information necessary
for understanding and managing projects.

We base our conceptualization of context on the “ABCs of Con-
text” framework introduced by Hellerstein et al. (2017) [12], which
extends traditional database metadata to encompass a broader spec-
trum of information critical in ML applications. The framework
includes:

(1) Application Context (the “A”): Captures how raw data is
interpreted, including schemas, checkpoints, and parameters.
FlorDB captures application context through log statements,
allowing developers to record pertinent information during
execution.

(2) Behavioral Context (the “B”): Tracks how data is created
and used over time, relating to lineage or provenance. This
context is often contained in build #les, capturing depen-
dencies and directed acyclic graphs (DAGs) of tasks. FlorDB
captures behavioral context via its relational data model,
associating each logging statement with its originating #le-
name. This mapping reveals data!ow pathways through the
codebase, enabling analysis of data transformations and lin-
eage within the pipeline.

(3) Change Context (the “C”): Manages version histories of
both data and code. FlorDB manages change context using

loops

projid: text
tstamp: datetime
filename: text
ctx_id: integer
parent_ctx_id: integer
loop_name: text
loop_iteration: integer
iteration_value: text

logs

projid: text
tstamp: datetime
filename: text
ctx_id: integer
value_name: text
value: text
value_type: integer

ts2vid

projid: text
ts_start: datetime
ts_end: datetime
vid: text
root_target text

git

vid: text
filename: text
parent_vid: text
contents: text

obj_store

projid: text
tstamp: datetime
filename: text
ctx_id: integer
value_name: text
contents: blob

build_deps

vid: text
target: text
deps: text[]
cmds: text[]
cached: bool

Figure 1: Extended FlorDB data model in Crow’s Foot nota-
tion. Basic tables denoted in white; virtual tables in gray.

Git version control, ensuring that all runs and modi#cations
are tracked and retrievable.

This framework provides a structured approach to understanding
and managing the rich tapestry of information that underpins real-
world ML applications.

3.1 Application Context
Application Context represents core information describing what
raw data an application processes and interprets [12]. This includes
all information that could be logged, such as the values of arbitrary
expressions at runtime. FlorDB can capture this information post-
hoc using multiversion hindsight logging (Section 2) and manages
it through a uni#ed API. This approach provides a system that
supports !exible, NoSQL-like data writes and powerful, SQL-like
data reads.

FlorDB provides a straightforward interface for logging via
flor.log(name, value) statements, ensuring that each log entry
is accompanied by crucial structured metadata such as projid,
tstamp, filename, and ctx_id. This metadata is captured at the
time of import and embedded within every log entry, enabling
unambiguous identi#cation of the log’s origin and context. The
ctx_id is generated during the initialization of flor.loop and in-
dicates the speci#c loop context a log entry belongs to, providing
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1 # Makefile

2

3 prep:

4 python prep.py

5

6 infer: prep

7 python infer.py

8

9 run: infer

10 flask run

11

12 train: prep

13 python train.py

Figure 2: ML Pipeline with Feedback: Make!le, Data"ow Diagram, and Flor Dataframe.

1 for doc_name in flor.loop(!document!, os.listdir (...)):

2 N = get_num_pages(doc_name)

3 for page in flor.loop(!page!, range(N)):

4 # text_src is !OCR! or !TXT!

5 text_src , page_text = read_page(doc_name , page)

6 flor.log(!text_src!, text_src)

7 flor.log(!page_text!, page_text)

8

9 # Run some featurization

10 headings , page_numbers = analyze_text(page_text)

11 flor.log(!headings!, headings)

12 flor.log(!page_numbers!, page_numbers)

Figure 3: Data featurization with FlorDB

visibility into nested operations and possible cross-iteration depen-
dencies (see logs and loops in Figure 1).

In Figure 3, we give an example of how FlorDB’s logging mech-
anism captures data features during a document analysis process.
The example illustrates how multiple documents are processed,
each consisting of several pages. This example shows how FlorDB
captures a wide range of metadata without requiring a prede#ned
schema. The resulting data, including the logs of headings, page
numbers, text sources, and page texts, is then accessible through
the flor.dataframe. As shown in the bottom part of Figure 3, the
dataframe presents this metadata in a structured layout, allowing
users to query and analyze the data more e$ciently [11].

3.2 Behavioral & Change Context
Behavioral and change context are naturally intertwined in ML
pipelines: every execution both advances through the dependency

graph (behavioral) and creates a new version in time (change). This
context emerges naturally in FlorDB via logging executions with
relevant #le names and timestamps, rather than requiring manual
documentation e"ort integrated into a work!ow manager.

Behavioral context captures how data is created and used: depen-
dency management, provenance and lineage, pipeline pathways,
and data!ow. Change context tracks the version history of data,
code, con#guration parameters, checkpoints, and associated in-
formation [12]. Together, they help answer critical development
questions: Where was this data de#ned? Where is it transformed?
Who made the last change? Where should new transformations be
added?

Currently, teams often manage these contexts through face-to-
face interactions or communication tools like Slack or email [20].
However, this approach creates friction by relying on colleagues’
availability and memory, and doesn’t scale as teams change or
projects evolve. While some teams try to maintain comprehensive
documentation, this con!icts with the rapid iteration typical in
MLOps environments.

FlorDBmanages both contexts through its logging system.When
users query a flor.dataframe, they receive not just data but its
lineage and version history. To illustrate how FlorDB handles be-
havioral and change context, let’s consider a simpli#ed version of
our document intelligence pipeline (we will cover this case in more
depth in Section 4).

Our simpli#ed pipeline comprises three main Python scripts that
interact with FlorDB:

(1) train.py: This script #ne-tunes a machine learning model
using the preprocessed data. It loads the dataset prepared
by prep.py, trains the model, and saves a model checkpoint
along with performance metrics like accuracy and recall.
Throughout the process, it logs the training data, model
parameters, and metrics, capturing the change context over
time.

(2) infer.py: This script performs inference using the most ef-
fective model checkpoint. flor.dataframe(!acc!, !recall!)

is queried to retrieve the model checkpoint with the highest
recall from the execution history. By accessing the logged
performance metrics and version timestamps, it ensures that
predictions are made using the best available model. The
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process_pdfs: $(PDFS) pdf_demux.py

@echo !Processing PDF files ...!

@python pdf_demux.py

@touch process_pdfs

featurize: process_pdfs featurize.py

@echo !Featurizing Data ...!

@python featurize.py

@touch featurize

train: featurize hand_label train.py

@echo !Training ...!

@python train.py

model.pth: train export_ckpt.py

@echo !Generating model ...!

@python export_ckpt.py

infer: model.pth infer.py

@echo !Inferencing ...!

@python infer.py

@touch infer

hand_label: label_by_hand.py

@echo !Labeling by hand!

@python label_by_hand.py

@touch hand_label

run: featurize infer

@echo !Starting Flask ...!

@flask run

Figure 4: Screenshot of the PDF Parser (left) and its respective Make!le (right).

script then processes new data and logs the predictions for
further analysis.

(3) run.py: This script launches a Flask web application that
serves the model’s predictions to end-users and collects hu-
man feedback. Users can review and correct the model’s out-
puts, providing valuable annotations. The script logs these
interactions using flor.log(name, value), capturing both
the behavioral context (how data !ows through the system)
and the change context (how feedback updates the dataset).

The dependencies between these scripts are speci#ed in a Make-
#le, which orchestrates the execution order based on these depen-
dencies (left pane, Figure 2). This dependency management ensures
that each script runs in the correct order and that each stage has
the necessary data and models from the previous stages. While
we’ve used a Make#le for simplicity, these dependencies can also be
speci#ed using other work!ow management tools like Air!ow or
ML!ow, depending on the project’s complexity and requirements.

In this pipeline, the process cycles between collecting newhuman-
reviewed data with run.py and updating the model with train.py.
The infer.py script ensures that the inference stage always utilizes
the best-performing model checkpoint.

Figure 2 illustrates the !ow of data and transformations in the
pipeline, highlighting how FlorDB captures both behavioral and

change contexts. By logging with FlorDB, machine learning engi-
neers (MLEs) not only build pipelines but also maintain a compre-
hensive history of data transformations and model updates. This
approach reduces reliance on ad-hoc communication and documen-
tation, allowing projects to evolve without losing crucial context.

4 PDF PARSER DEMO
Real-world AI/ML applications are backed by ML pipelines of
non-trivial complexity, often encompassing both computation and
human-in-the-loop feedback. This section gives an overview of the
PDF Parser Demo, a practical application of FlorDB in document
intelligence. We demonstrate how FlorDB can be e"ectively used
to manage context and data!ow that spans multiple asynchronous
tasks that can generate a variety of metadata via computation and
human feedback.

The PDF Parser2 is a Flask-based web application designed for
e$cient PDF document processing, including tasks like splitting
PDFs, extracting text, and preparing data for analysis using natu-
ral language processing (NLP) techniques. Users interact with the
parser through a simple web interface, as shown in Figure 4 (left).
This interface allows users to navigate PDF documents and select
the desired processing options.

In this demo, we aim to achieve several goals that showcase the
capabilities of FlorDB:

2https://github.com/ucbepic/pdf_parser

https://github.com/ucbepic/pdf_parser
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• Demonstrate Basic Functionality:
– Version Tracking Across Code Changes: We will show how
FlorDB’s multiversion hindsight logging operates seam-
lessly even when the code has been refactored, ensuring
that all changes are reviewable.

– Flexible Pipeline Modi!cation: The demo illustrates how
new stages can be inserted into an existing pipeline or
new pathways can be incorporated into a directed acyclic
graph (DAG) within the Flor data model, enabling dynamic
work!ow evolution.

– Incremental Replay Execution: By using the Flor dataframe,
we can drive incremental replay execution, re-running
only the parts of the work!ow that have been selected by
the user, thus saving time and resources.

• Showcase FlorDB Across Multiple Contexts:
– Feature Storage and Querying After Execution: We demon-
strate how FlorDB can store and allow queries on data
features post-execution without prior setup.

– Model Registry Functionality Post-Execution:
→ Comparative Metrics Across Models: The demo compares
performance metrics across di"erent training runs after
they have been executed.

→ Post-Hoc Governance Enforcement: We show how to ap-
ply governance policies retroactively to identify and
handle issues like corrupted or malicious datasets (e.g.,
detecting a poisoned dataset).

– Metric Registry and Visualization After Execution: FlorDB
acts as a repository for metrics post-execution, allowing
for visualization of results—similar to generating and aug-
menting TensorBoard plots—even if this wasn’t con#gured
beforehand.

Beyond highlighting the practical value of a context-rich ap-
proach, we hope this demo will serve as a reference implementation
for those looking to get started with FlorDB.

4.1 PDF Extraction & Text Featurization
Once the PDF is converted into text and image formats, ensuring
there is one document per page, the process of featurization begins
(Figure 3). This process typically involves text extraction, feature
engineering, and vectorization. This featurization process is es-
sential for transforming raw PDF data into a structured form that
is amenable to analysis and machine learning applications. The
described methodology focuses on maximizing the information ex-
tracted from each page, ensuring that both textual and visual data
contribute to the inferences made on the document. Takeaway:
When used in featurization contexts (Figure 3), FlorDB can provide
the functionality of a feature store.

4.2 Inference Pipeline
The inference pipeline automates the processing and analysis of
images organized into document-speci#c folders. FlorDB’s features
enhance this pipeline in several key ways. First, FlorDB’s compre-
hensive versioning and metadata tracking enables intelligent model
selection. Through queries to FlorDB’s uni#ed metadata store (e.g.,
flor.dataframe(!acc!, !recall!)), the pipeline can automatically
select the best-performing model checkpoint based on validation

metrics tracked across all training runs. This eliminates the need
for manual record-keeping or separate model registries.

Second, FlorDB’s logging infrastructure streamlines the process-
ing of document pages and images. As each image is processed,
pre-processed, and analyzed, FlorDB captures the full context of
transformations and model predictions. This includes tracking in-
put parameters, preprocessing steps, and model outputs in a way
that maintains clear lineage between the original documents and
their derived predictions.

Third, when issues arise in production, FlorDB’s hindsight log-
ging capability allows developers to retroactively add logging state-
ments to debug problems without re-running the entire pipeline.
The model then makes predictions on the images, with FlorDB
logging the #nal inferences alongside their complete provenance.
Takeaway: When used in inference pipelines, FlorDB functions as
a comprehensive model registry (dataframe in Figure 2), managing
not only checkpoint selection but also model versioning, meta-
data tracking, and performance metrics. This enables robust model
lifecycle management while maintaining clear provenance of how
models evolve through training iterations.

4.3 Training Pipeline
The training pipeline encapsulates a typical machine learning work-
!ow, tailored for classifying images extracted from PDF pages (Fig-
ure 5). This pipeline performs a load of training data (line 1 in
Figure 5, managed by FlorDB), and data preparation. A model ar-
chitecture is de#ned, and the model is trained over a number of
epochs. Performance is monitored by !or logging, and context is
managed and tracked using FlorDB. Takeaway: When used in
training pipelines, FlorDB can function as a training data store (line
1 in Figure 5), and a model repository (lines 3-21 in Figure 5).

4.4 Closing the Loop: Feedback via UI
Themain Flask script outlines the core functionalities of a web appli-
cation designed for handling PDF documents and associated image
#les. It includes routes for displaying and manipulating PDFs and
their converted image previews within a web interface, while also
incorporating human-in-the-loop feedback for improving model
performance. The core of the application is structured around Flask
routes that handle web requests and facilitate expert feedback.
Through the UI, domain experts can review model predictions and
provide corrective labels, which are managed with the same meta-
data infrastructure as computational steps. This human feedback
loop is crucial for iteratively improving model performance and
maintaining data quality.

Helper functions such as get_colors() fetch color data asso-
ciated with the pages of a document, integrating both automated
predictions and human-provided labels from the dataset (line 6
in Figure 6). The system maintains provenance for both machine-
generated and human-provided labels, allowing developers to track
the source and evolution of document annotations (top dataframe
in Figure 5). The developer may choose to display labels generated
by the model or labels entered manually by an expert end-user,
with the metadata system capturing the origin and timestamp of
each label.
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1 labeled_data = flor.dataframe(!first_page!, !page_color!)

2

3 hidden_size = flor.arg(!hidden!, default =500)

4 num_epochs = flor.arg(!epochs!, 5)

5 batch_size = flor.arg(!batch_size!, 32)

6 learning_rate = flor.arg(!lr!, 1e-3)

7 seed = flor.arg(!seed!, randint(0, 1e10))

8 ...

9 with flor.checkpointing(model=net , optimizer=optimizer ):

10 for epoch in flor.loop(!epoch!, range(num_epochs )):

11 for data in flor.loop(!step!, trainloader ):

12 inputs , labels = data

13 optimizer.zero_grad ()

14 outputs = net(inputs)

15 loss = criterion(outputs , labels)

16 loss.backward ()

17 flor.log(!loss!, loss.item ())

18 optimizer.step()

19 acc , recall = eval(net , testloader)

20 flor.log(!acc!, acc)

21 flor.log(!recall!, recall)

Figure 5: Training on labeled data managed by FlorDB

• The root route (“/”) displays a home page which lists all
the PDF #les located in a speci#ed directory. Each PDF #le
is represented with a preview image, and these images are
listed on the webpage using rendered HTML templates.

• The “/view-pdf” route handles requests to view a speci#c
PDF. Depending on user interactions and the #le’s existence,
it can display the document in di"erent modes such as la-
beled text or named entity recognition (NER) views. This
route also supports expert annotation interfaces where users
can correct model predictions.

• The “/save_colors” route is a POST endpoint that processes
user-submitted data concerning color settings associated
with a PDF’s pages. This route captures this feedback data,
logs it with appropriate metadata for tracking, and acknowl-
edges the successful saving of data. The human feedback is
stored with the same robust provenance tracking as compu-
tational results.

This bidirectional !ow between computational processing and
human expertise creates a complete feedback loop in the system.
When experts provide corrections through the UI, the metadata
system captures these annotations alongside the original model
predictions. This human feedback can then be incorporated into
subsequent model training iterations, with FlorDB maintaining
clear provenance of which predictions were machine-generated

1 @app.route(!/!)

2 def home ():

3 return flask.render_template(!index.html!)

4

5 def get_colors ():

6 infer = flor.dataframe(!first_page!, !page_color!)

7 infer = flor.utils.latest(
8 infer[infer.document_value == pdf_names [-1]])

9 if infer.page_color.isna (). any ():

10 color = infer[!first_page!]. astype(int). cumsum ()

11 infer[!page_color!] = color - 1

12 return infer[!page_color!]. to_list ()

13

14 @app.route(!/save_colors!, methods =[!POST!])

15 def save_colors ():

16 colors = request.get_json ().get(!colors!, [])

17 pdf_name = pdf_names.pop()

18 with flor.iteration(!document!, None , pdf_name ):

19 for i in flor.loop(!page!, range(len(colors ))):

20 flor.log(!page_color!, colors[i])

21 flor.commit ()
22 return jsonify ({!message!: !Colors"saved!}), 200

Figure 6: Flask routes demonstrating the human-in-the-
loop feedback system: The home route serves the inter-
face, get_colors() retrieves existing labels from FlorDB, and
save_colors() captures expert corrections while maintain-
ing provenance through FlorDB’s metadata management.

versus human-corrected. This systematic approach to managing
both computational and human feedback allows for continuous
improvement of the model while maintaining transparency about
the source and evolution of all labels in the system.

Takeaway: When used within human-in-the-loop interfaces,
FlorDB functions as a comprehensive feedback management system
(dataframe in Figure 5), maintaining provenance for both machine-
generated and human-provided labels while enabling continuous
model improvement through expert corrections.

5 DISCUSSION
This section discusses design features of FlorDB in the context of
modern MLOps principles and best practices. We examine how
FlorDB embodies the 3Vs of MLOps [20] and discuss its design
inspiration from the Ground data context service [12].

First, we assess how FlorDB embodies and extends the 3Vs of
MLOps [20]:

• Velocity: FlorDB enhances the speed of ML development
by getting metadata de#nition out of the critical path of
agile experimentation. Rather than requiring upfront doc-
umentation that could slow iteration, FlorDB’s hindsight
logging capability allows teams to move fast initially while
preserving the ability to retroactively capture and analyze
any needed metadata on demand. This approach maintains
development velocity without sacri#cing the rich context
needed for e"ective ML lifecycle management.

• Visibility: The system’s comprehensive logging and moni-
toring capabilities increase ML lifecycle transparency, facili-
tating debugging, optimization, and understanding of model
behavior across di"erent phases.
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• Versioning: FlorDB radically augments version control by
providing a clean, simple interface to query metadata across
versions, including technology for hindsight logging across
those versions. This enables detailed tracking and allows
teams to observe and understand arbitrary features of models
as they evolve over time.

Building on these MLOps principles, FlorDB’s design draws
inspiration from Ground’s vision for data context services [12].
Like Ground, FlorDB recognizes that e"ective metadata manage-
ment must capture not just static pre-declared descriptions but the
full context of data usage across multiple dimensions. Speci#cally,
FlorDB adapts Ground’s “ABCs of Data Context” - Applications,
Behavior, and Change - but reframes them through an MLOps lens.
While Ground focused broadly on data context for analytics, FlorDB
specializes these concepts for the machine learning lifecycle, treat-
ing ML models and pipelines as #rst-class citizens that require rich
contextual tracking.

5.1 Implications for Social Justice Research
FlorDB was developed in the context of the Berkeley EPIC Data
Lab3, whose mission encompasses democratizing data work via
no-code and low-code interfaces, informed by applications in the
social justice domain including criminal defense and investigative
journalism. FlorDB’s design principles make it particularly well-
suited for supporting social justice research e"orts. By simplifying
the tracking and organization of diverse datasets that social justice
research often requires, FlorDB enables e$cient data management
even for users without extensive technical backgrounds. This acces-
sibility is crucial for democratizing ML research capabilities across
di"erent communities and applications.

The system’s “metadata later” approach addresses key challenges
faced by resource-constrained organizations, allowing teams to
focus on urgent operational demands while maintaining the ability
to re#ne documentation post-hoc as needed. For projects involving
multiple data sources, such as public health studies or legal cases,
FlorDB simpli#es the tracking of data movement between sources,
making processes more understandable to non-specialists [5].

FlorDB’s focus on transparency and accountability (i.e. visibility)
is especially valuable for investigating algorithmic bias and fair-
ness. The system’s multiversion hindsight logging enables better
tracking of decisions made during model training and development,
helping researchers address concerns about the “black box” nature
of ML models [18]. Moreover, its !exible metadata platform sup-
ports human-in-the-loop work!ows, enabling continuous learning
based on community feedback—a necessity for ethically deploying
ML in dynamic social environments [13]. By lowering technical
barriers while enabling rigorous documentation and provenance
tracking, FlorDB helps empower marginalized communities to par-
ticipate more fully in ML research and development. This aligns
with broader goals of democratizing access to ML technologies and
ensuring their bene#ts extend equitably across society.

6 RELATEDWORK
Managing the lifecycle of ML models and associated data is crucial
for e$cient, reproducible work!ows. FlorDB builds upon existing
3https://epic.berkeley.edu

systems, o"ering comprehensive context management that inte-
grates logging into a broader ecosystem for streamlinedML lifecycle
management.

Experiment Tracking and Version Control: Systems like
MLFlow [25], DVC [1], and Weights & Biases focus on managing
experiments and ensuring reproducibility. They provide tools for
tracking experiments, packaging code, and sharing models. While
helpful for tracking model and data evolution, they primarily con-
centrate on experiment management without deeply integrating
hindsight logging capabilities. As such, they do not (currently) ad-
dress the challenges of context on demand that are the crux of our
work.

Model Management and Lineage: ModelDB, Mistique, and
Pachyderm emphasize version control and data lineage [14, 22, 23].
They track model lineage, capturing relationships between models,
training data, and code. These systems focus on managing prove-
nance and evolution of models and data, o"ering ways to query and
visualize history. However, their focus is more on artifacts and less
on process: for example, ModelDB does not automatically version
code, and has no way of recovering missing data.

End-to-EndMLWork"ows: Systems like AWS SageMaker and
Kube!ow provide comprehensive solutions for building, training,
and deploying ML models [4, 15]. They o"er tools for data label-
ing, model training, model hosting, and support for scalable ML
work!ows. Both platforms emphasize scalability and operational
e$ciency but primarily focus on deployment and operational as-
pects. FlorDB can use either system as a drop-in replacement to
Make, the default build system. Other systems in this space include
Helix [24] and Motion [21].

Visualization and Monitoring: TensorBoard [10], a visual-
ization toolkit for TensorFlow, allows users to track and visualize
metrics, graphs, and other aspects of ML experiments. FlorDB can
be used with TensorBoard to visualize training metrics.

Data Catalogs and Metadata Management: Enterprise data
catalogs like Collibra and Alation provide comprehensive solutions
for organizing and discovering data assets across organizations.
Collibra o"ers advanced governance features and automated work-
!ows for policy management, while emphasizing data quality and
observability capabilities [3]. Alation focuses on intelligent data
discovery through machine learning-powered search and active
metadata management, helping organizations understand data lin-
eage and trustworthiness [2]. In the open-source domain, DataHub
and Amundsen represent modern approaches to metadata man-
agement. DataHub provides a platform spanning data discovery,
observability, and governance [16], while Amundsen employs a
modular architecture with dedicated services for metadata, search,
and frontend interactions [17]. These systems primarily focus on
metadata discovery and governance, helping organizations create
and maintain inventories of data assets across their digital land-
scape. While these platforms excel at data discovery and gover-
nance, they lack FlorDB’s deep integration with ML work!ows and
its ability to capture and recover #ne-grained execution context.

https://epic.berkeley.edu
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7 CONCLUSION
FlorDB provides a new, general-purpose methodology and Python-
based system for managing the complex metadata—the context—
associated with the machine learning lifecycle. By resolving the
longstanding friction between discipline and agility in metadata
management, FlorDB o"ers AI/ML groups a !exible yet powerful
solution aligning with modern MLOps agile development practices.

The key contributions of FlorDB include features that enhance
the developer experience and streamline machine learning work-
!ows. First, incremental context maintenance allows developers
to gradually build out the metadata and project structure within
their existing work!ows. Second, the extensions presented to sup-
port pipelines, data!ow, and feedback are backward compatible
with multiversion hindsight logging, allowing for a “metadata later”
approach that enables the addition and re#nement of metadata
post-hoc. This capability supports rapid iteration and adaptation
without compromising the long-term maintainability of projects.
As demonstrated through the PDF Parser demo, FlorDB can take
on multiple roles within the ML pipeline, acting as a feature store,
model registry, training data store, and experiment record. This
versatility eliminates the need for multiple specialized tools while
maintaining robust metadata management throughout the project
lifecycle.

The development of FlorDB was informed by an interview study
of ML Engineers to understand how they operationalize the ma-
chine learning lifecycle [20], ensuring our design decisions were
grounded in real-world practices and needs. While this evidence-
based design approach helped shape FlorDB’s features and inter-
face, a rigorous validation of its usability and other human factors
through controlled user studies remains as important future work.

By providing a systematic way to balance agility and rigor,
FlorDB creates new possibilities for scaling ML operations, improv-
ing collaboration between teams, and ensuring long-term maintain-
ability of ML systems. As the #eld continues to evolve, FlorDB’s
!exible architecture positions it to adapt to emerging needs while
maintaining its core promise: enabling teams to move fast without
sacri#cing reproducibility and rigor.
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