
Towards Foundation Database Models
Johannes Wehrstein

Google
Carsten Binnig

Google
Fatma Özcan

Google
Shobha Vasudevan

Google

Yu Gan
Google

Yawen Wang
Google

Abstract
Recently, machine learning models have been utilized to realize
many database tasks in academia and industry. To solve such inter-
nal tasks of database systems, the state-of-the-art is one-off models
that need to be trained individually per task and even per dataset,
which causes extremely high training overheads. In this paper, we
argue that a new learning paradigm is needed that moves away
from such one-off models towards generalizable models that can be
used with only minimal overhead for an unseen dataset on a wide
spectrum of tasks. While recently, several advances towards more
generalizable models have been made, still no model exists that can
generalize across both datasets and tasks. As such, we propose a
new direction which we call foundation models for databases which
is pre-trained in both task-agnostic and dataset-agnostic manner
which makes it possible to use the model with low overhead to
solve a wide spectrum of downstream tasks on unseen datasets. In
this vision paper, we propose an architecture for such a foundation
database model, describe a promising feasibility study with a first
prototype of such a model, and discuss the research roadmap to
address the open challenges.

1 Introduction
Learning database tasks.Many of the most complex components
in database management systems (DBMSs) involve solving non-
trivial problems. To tackle them, classical DBMS components rely
on heuristics or simplified analytical models, which cause, how-
ever, inferior performance of a DBMS in many cases. Hence, in the
recent years, the database community has outlined a new direc-
tion of so-called learned DBMS components. Examples, where such
learned approaches have successfully been used, include a wide
spectrum of DBMS components such as learned query optimizers,
[7, 9, 12, 14, 19], learned query scheduling strategies, [3, 11, 18],
or even learned storage layouts and indexes [2, 5, 8, 17] amongst
many other examples. Early results suggest that learned approaches
can outperform classical approaches significantly and provide or-
ders of magnitude performance improvement when integrated into
DBMSs.
Instance-specific learning. The predominant approach today for
learning database components is instance-specific learning. The
idea of instance-specific learning is to execute a representative

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

Single Dataset

Single
Task

Multiple
Tasks

Multiple Datasets

Instance-
Specific

Multi-Task
Models

Zero-Shot
Models

Foundational
Model (ours)

Task 1 +

Task 1 +

Task 2 +

Task 2 +

Task 1
+

Task 2

Task 1
+

Task 2

Task 1 +

Task 2 +

Task 1
+

Task 2

Low overhead:
One model for all
datasets & tasks

Medium overhead:
One multi-task

model per dataset

Medium overhead:
One multi-dataset

model per task

High overhead:
One model per
dataset & task

Figure 1: Foundation database models can generalize across
tasks and datasets which is very different from current ap-
proaches where we need to train multiple models either per
task (Zero-shot) or per dataset (Multi-Task) or even per com-
bination (Instance-specific).

workload (i.e., a set of SQL queries) over a given database1 and
then use the observations to train ML models to solve database
tasks. For example, for a learned query optimizer, [9, 12–14] a large
set of SQL queries needs to be executed to collect query plans and
their runtimes, which then serve as training data for learning an
ML model that can determine an optimal query plan (i.e., a plan
with minimal runtime) for a given SQL query. The rationale is to
exploit instance-specific information to overcome the failures made
by traditional approaches using generic heuristics and simplifying
assumptions. However, training one-off models comes at the cost of
high training overheads and the cost of maintaining many models.
High overheads for learning. The high cost for training a one-
off model result from collecting training data by executing a large
number of queries on potentially large databases. For instance, in
[13] it was shown that tens of thousands of SQL queries need to
be executed to collect training data for learning an accurate query
optimizer where running the training queries can take hours or
even days. As such, as shown in Figure 1 (left-bottom) for every
new dataset and task at hand, a different one-off model needs to be
trained from scratch which causes extremely high overhead since
for every new dataset and task, training data needs to be collected
and a new model instance needs to be trained. Combined with the
need to maintain many models, instance-specific approaches have
limited adaption in industry.
1Throughout this proposal, we use the term database and dataset interchangeably to
refer to a particular dataset of tables with certain data characteristics.

1

Figure 2: Foundation database models build on a mixture pre-trained experts where some experts learn representations in-
dependently (e.g., the data expert) and experts that enrich representations (e.g., the logical plan and physical plan expert).
Shallow downstream models take these representation as input and solve a particular database task.

Towards generalizable models. As such, to lower training over-
heads, new approaches for learning database tasks have been pro-
posed. A recent interesting direction is multi-task learning ap-
proaches for learned database components that enable the same
model to be used across several database tasks by using shared
knowledge. For example, [21] has presented a multi-task model
that can be used for cardinality estimation and cost estimation.
While these models can lower the training overhead since shared
parts that are similar across tasks only need to be trained once,
these models still require that one model is trained per dataset (see
Figure 1, top-left). Another direction is to use models that can gen-
eralize to unseen dataset (see Figure 1, right-bottom). For example,
[4] presented a zero-shot cost model which is pre-trained across
several datasets which can then can be used on unseen datasets
out-of-the-box. Unlike multi-task approaches, zero-shot approaches
can generalize across datasets, however, on the contrary they still
require one model per task.
Foundation database models. In this paper, we propose a differ-
ent approach to learned database tasks which we call foundation
database models. The key difference to existing learning approaches
is that foundation database models can generalize across both tasks
and datasets (see Figure 1, top-right) and thus reduce training over-
head significantly. Recent advances in LLMs have proven that gener-
alizable (i.e., foundation) models for text, coupled with fine-tuning,
can be used to solve a wide variety of NLP problems[16]. In this
paper, we suggest a similar approach for database tasks and thus
call this model a foundation model for databases.

The insight to realize such a foundation model for database tasks
is that we use a mixture of pre-trained expert models as shown in
Figure 2 which enable generalizability along the two dimensions: (1)
To generalize across datasets, we provide a data expert that learns
to summarize databases into learned embeddings which represent
the characteristics of a given dataset. The data expert does not use
database specific information such as particular constants in the
data or attribute and table names to learn the embedding, but it uses

a new transferable-encoding of databases which allows the data
expert to learn general data characteristics of a database such as
data distributions and correlations. (2) Moreover, foundation data-
base models come with additional pre-trained experts that enrich
the data expert to solve a wide range of downstream tasks with
only low overheads. For example, as shown in Figure 2 the learned
data representation of an expert for data summarization can be en-
riched by logical plan expert which captures the knowledge of how
relational algebra transforms data. The logical plan representation
as such enriches the data representation and can be used to solve
tasks such as cardinality estimation or even approximate query an-
swering where this information is needed. (3) Finally, there might
be many more dimensions that foundation models should general-
ize beyond datasets and tasks. One example is that databases are
deployed on different hardware resources which typically require
that models (e.g., a learned cost model) need to be retrained per
hardware platform. As we discuss in the next section, our frame-
work of using pre-trained experts allows the easy addition of new
experts to enable generalization across more dimensions.
Contributions and Outline. As the main contribution of this
paper, we present the vision of foundation database models. We
present an implementation of our proposed model architecture,
and present initial results that show the feasibility and efficacy
of this idea. The remainder of the paper is structured as follows:
Section 2 outlines our model architecture to enable foundation
database models. Afterwards, we present a feasibility study with a
first prototype for such a model in Section 3, showing promising
results on various tasks that require different inputs. Finally, we
discuss the research roadmap in Section 4.

2 The Vision: Foundation Database Models
In this section, we discuss the key ideas that enable a foundation
database model that can generalize across tasks, datasets and be-
yond.

2

2.1 Expert Models
At the core of our foundation model for database tasks are var-
ious expert models that are pre-trained to learn representations
of data, logical and physical query plans and beyond that can be
used to solve a wide spectrum of downstream tasks. The basic
idea is that each expert learns rich representations (i.e., vectors in
high dimensional embedding spaces) that capture relevant informa-
tion for individual aspects relevant for different database tasks. An
overview of expert models, the representations they learn, as well
as the downstream tasks enabled by the representations is shown
in Figure 2. Important is that the overview shown in Figure 2 is a
framework where additional experts and representations can be
added to support generalization across more dimensions and thus
even more downstream tasks.

For all the expert models, we differentiate between two types
of experts. (1) The first type are base experts that learn represen-
tations independently of other experts (see bottom layer in Figure
2). These base expert models can be used standalone to support a
certain downstream task or enriched by other (dependent) experts.
One example for a base expert is the data expert model, that learns
to summarize tabular data using learned data representations. An-
other example for a base expert is a resource expert, which learns
to summarize hardware characteristics of the infrastructure a data-
base is running on. (2) The second type of experts, which we call
dependent experts, are models that learn to enrich representations
from base experts (see upper layers in Figure 2). These dependent
experts use representations of other experts as input and add more
information to their representations. For example, the logical plan
expert produces representations that capture the effects of logical
query plans when applied to a set of tables. As such it uses the table
representations as input and produces an output vector that repre-
sents the data characteristics of a query result which then can be
used for tasks such as cardinality estimation or approximate query
answering. Another example is a physical expert which builds on
the resource and the logical plan expert and adds information about
(algorithmic) query complexity to the representations of logical
plans and resources. For example, the physical plan representation
jointly capture effects of algorithms (e.g., hash vs. nested loop join)
and hardware (e.g., memory speeds and size) which are important
for downstream tasks such as runtime estimation or knob tuning.

2.2 Pre-Training of Experts
An important aspect of expert models is that once they are pre-
trained, they then can be used out-of-the-box or with only minimal
fine-tuning to solve a new downstream task (e.g., cardinality estima-
tion) on a new dataset. Important is that the pre-training captures
the relevant information which allows the experts to generalize
while experts have different roles.

A core expert to enable the generalizability of foundation models
across datasets is the data expert. During pre-training, the data ex-
pert model learns to capture important information like table sizes
and distribution of data in a table in a succinct database-independent
manner. That way, once pre-trained, the data expert can be used
to summarize unseen datasets as a vector. As we discuss later in
Section 3, to learn such a data representation, we encode the data of
tables using a new relative encoding which allows the data expert

to capture the nature of data distributions (e.g., uniform vs. skewed)
in a dataset independent manner. During pre-training, we use a
set of novel pre-training tasks which capture data characteristics
along rows and columns (cf. Section 3). In future, the data expert
can be extended even further to also capture aspects of physical
data layouts such as sorting keys and partitioning information.

Similarly, the other experts are also pre-trained such that they
capture relevant information for producing rich output representa-
tions. It is important that during pre-training the individual experts
learn the intrinsic characteristics of the component they represent
in a task-independent manner with particular designed pre-training
task. This allows the learned representations to be useful across a
wide spectrum of downstream tasks. For example, as mentioned be-
fore, the physical plan expert learns the inherent characteristics of
physical query plans (i.e., the complexity of the physical operators
in a plan). For pre-training such an expert, as we discuss in Section 3,
we use simple query cost models from traditional database systems
which capture effects of runtime and I/O for physical plans and
train the expert such that we can predict these cost from the learned
physical plan representation. As we see later, this representation
can then be used for various tasks which need to understand query
complexity such as runtime estimation but also other cost-related
tasks such as index selection.

2.3 Realizing Downstream Tasks
Based on the pre-trained expert models, we can then realize models
for downstream tasks which use the learned representations of the
experts as input. As representations are rich, it often suffices to
use a simple, shallow model to implement a downstream task as
we will show in our feasibility study in Section 3. For instance, it
suffices to use a simple shallow MLP regression model which uses
the learned logical plan representation as input to solve the cardi-
nality estimation task. Similarly, for a runtime estimation model,
we could use another regression MLP which uses the physical plan
representation as input and predicts runtime as a regression task.
However, the output representations of the pre-trained experts can
also be coupled with more involved model architectures to solve
more complex problems such as knob tuning. Figure 2 shows a
collection of possible downstream tasks and their required input
representations. An important aspect is that building upon the pre-
trained experts reduces the need for task-specific training data for
a downstream model, which is much less than learning the task
from scratch. Furthermore, once a downstream model (e.g., for car-
dinality or runtime estimation) is trained, it can be reused and do not
need to be retrained for different databases. This is due to the nature
of foundation models where the data expert captures information
about tabular data in a database-independent manner.

3 Feasibility Study: A First Prototype
In this section, we present a feasibility study of implementing a first
foundation database model. For our initial validation, we developed
three expertmodels: the data expert to enable generalizability across
datasets, as well as a logical plan expert and a physical plan expert
to support various different downstream tasks that are based on
representations of these experts. Further experts such as a resource
experts which allows foundational models to generalize across

3

Figure 3: The data expert model aggregates data character-
istics of tabular data at different levels. The data experts fo-
cuses on learning statistical and distribution information of
tabular data and thus use different features including statis-
tical information such as table sizes and number of unique
values per column as well as novel row- and column-wise
pre-train objectives to aggregate data characteristics.

different hardware or other experts are interesting avenues of future
work. In the following, we explain the model architectures and pre-
training of the three before-mentioned experts as well as how we
realized downstream tasks using these experts. At the end of the
section, we present results of an initial evaluation.

3.1 Model Architecture
We next provide details of the model architectures used for the
different expert models in our prototype.

Data Expert: The task of the data expert model is to learn rep-
resentations of tabular data that capture important data charac-
teristics for a wide spectrum of possible database tasks that are
either supported directly on the output of the data expert or by
further processing the representation by other expert models as we
describe in the next section. For this, the data expert model (shown
in Figure 3) captures data characteristics at the cell levels and aggre-
gates the information along rows and columns to capture important
column statistics (e.g., data distributions within a column), as well
as value co-occurrences in rows. For computing a representation of
a table, we sample a variable number of rows from the base table
and featurize them cell by cell. We featurize cells by normalizing
to values between 0 and 1 [10]. To encode categorical and string
values, we first assign numeric identifiers in lexicographical order
before applying the normalization mentioned before.

Such normalized featurization is needed to learn representations
that are not tied to actual values in a particular database. In ad-
dition, higher level statistics such as number of rows in the table,
unique values per column, the NULL-ratio, etc. are added as input
features to the data expert model. As such, two tables from different
domains but with the same sizes and data distributions (e.g., all uni-
form) will result in similar representations. The representation thus
summarize important data characteristics in a dataset-independent
manner, which allows us to use the data expert on unseen datasets
as we show in our experimental evaluation in Section 3.3.

To compute the table representation from the data of a given
table , we first encode cell values and features by a 4-layer MLP

Q-error
(Median)

Q-error
(95th)

1-dimensional 1.89 78.68
2-5 dimensional 2.32 193.85
Overall 1.97 90.06

Table 1: Accuracy of the column-wise pre-training task of
histogram reconstruction to learn data distributions. Re-
sults are averaged over all 19 datasets.

Correlation of Data
Accuracy

(validation data)
Accuracy

(unseen dataset)
High 93% 80%
Low 91% 77%

Table 2: Accuracy of the row-wise pre-training task. We re-
port results split into high correlation rows (𝑃𝑒𝑎𝑟𝑠𝑜𝑛 > 0.8
between input and predicted row value) and low correlation
(𝑃𝑒𝑎𝑟𝑠𝑜𝑛 |𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 |𝑅𝐷𝐶 > 0.75)). Higher correlation values
are easier to reconstruct.

per cell as shown in Figure 3. We use these cell representations
to construct row and column representation. For row representa-
tions, we append all cell representations of a row into a vector and
use another 4-layer MLP to compute a row representation (blue
nodes in Figure 3). The row-representation for the rows in the data
sample of a table are then passed through a row aggregator which
summarizes characteristics across rows (i.e., avg-pooling on top of
rows). Similarly, we use avg-pooling on top of a column resulting
in a column representation. The learned row embedding and the
column embeddings are then passed to a final MLP producing the
final table representation. To achieve this, we use an architecture
with 3 MLPs (4 layers each).

Discussion.We want to call out that our data expert is different
than existing line of work on table representation learning such
as TURL [1]. These earlier approaches for table representation
learning aim for a semantic understanding of the table data to solve
tasks such as semantic type annotation or entity linking. However
solving performance related learning problems in databases, such as
cardinality estimation or knob tuning, such semantic understanding
of the table data is in most cases not really necessary. Instead, our
models focus on learning statistical and distribution information
of tabular data and thus use different features including statistical
information such as table sizes and number of unique values per
column. Moreover, we use pre-train objectives for our data expert
which are different from pre-training objectives used by existing
table representation learning approaches as we discuss below.
Logical Plan Expert: A logical plan can be naturally described by
a directed acyclic graph (DAG) where leaf nodes use representa-
tions of the data expert as input. To that end, we use graph neural
networks (GNNs) to learn representations of logical query plans
as shown in Figure 4 (blue area). We use a heterogeneous graph
where each node represents a logical plan operator, and there are as
many node types as the different plan operators (tables, filters, joins
etc.). The table node types are initialized by the data expert model.
We define details of each operator as node features. For example, a
filter operator has features like comparison operator (>, >= etc.) and
filter literal where the literal is encoded with normalized, relative

4

Figure 4: The logical plan expert (blue) is layered on top of the data expert (green). The physical plan expert (orange) is layered
on top of the logical expert (blue). The experts uses a relative encoding of data and predicate constants as shown on the left.
Downstream models (red) predict cardinalities or runtime of query plans based on the output of the two plan experts.

Figure 5: Training Steps. 1. Pre-Training the base experts (e.g. Data Expert). 2 & 3: Pre-train derived experts by making use of
preceding experts. 4. Task-specific downstream models are learned. Steps 1 to 4 are performed on 18 datasets (different from
our target database). 5. Fine-tune the experts and the downstream model on the target database is optional.

values. The GNN topological message passing follows the direction
of the logical plan graph (from leaf nodes to a single root). In every
iteration of message passing, a GNN-MLP (Multi-Layer-Perceptron)
is used to combine the incoming message with the node’s hidden
state. This staging of intermediate results of applying each operator
essentially models the filter and join operations over the original
data. The hidden state of the single root node is finally read and
passed to the downstream tasks. We use a GNN-MLP with 6 layers.
Physical Plan Expert: For the physical plan expert model, we
extend the GNN architecture of the logical plan expert. The nodes
of the physical plan expert are physical operators, and edges corre-
spond to the data flow between them as shown in Figure 4 (orange
area). Each node in the logical plan graph has a corresponding node
in the physical plan graph describing how the logical operator is
executed in terms of physical operators. Both nodes are connected
via an edge. The learned representation of the logical plan node will
be passed to the corresponding physical plan node during message
passing. Figure 4 shows the correspondence between the logical
plan graph (blue) and physical plan graph (orange). Notably, the
embedding vectors for intermediate results from the logical plan

are passed along the connecting edges to the corresponding nodes
in the dependent physical plan expert. This is an important step,
since these embeddings capture data characteristics of intermediate
results such as cardinalities.

3.2 Training Procedure and Details
Our training methodology is shown in Figure 5. The initial phase
involves pre-training of our expert models (step 1-3) which needs to
be done once on a large training corpora. Afterwards, downstream
models are realized on a per-task basis with only minimal training
data (step 4). Optionally, fine-tuning can be used to further improve
accuracy (step 5).
Pre-training. The data expert is pre-trained first (step 1 in Figure
5) in order to learn table representations. For the data expert, we
apply pre-training on a disjoint set of databases not used for the
evaluation of the downstream tasks to show that our models enable
the generalization to unseen databases.We use the database corpora
provided in [4, 15] and split the corpus such that 18 databases are

5

used for pre-training and the 19th database is used for evaluation2.
We pre-train the data expert with 1000 row samples per table. We
use two pre-training tasks (1) column-wise distribution learning and
(2) masked-out row value reconstruction. The first pre-train tasks to
learn column-wise distributions is to restore histogram information
(i.e., bucket counts) for up to 1-5 dimensional histograms from
column embeddings, while the second task restores masked out
row values from row embeddings. The results of pre-training the
data expert can be seen in Tables 1 and 2.

The logical plan expert pre-training (step 2 in Figure 5) takes
as input the learned data representation and a logical query plan
to construct the GNN for the logical plan expert. To pre-train the
GNN-based model of the logical plan expert in our prototype, we
executed in total 150k SQL queries uniformly distributed over 18
data sets and collected the logical plans and the query results for
those queries. For the pre-training, we use the same tasks as for the
data expert but apply them to the logical query plan representation
which represents the query result. In the current setup of our case
study, the pre-training dataset contains queries with up to 2 joins
and 5 filters, following the observation of [20] that most queries
in analytical workloads come with less than 2 joins. However, in
future we plan to scale up the logical plan expert to more joins or
explore other directions such as how fine-tuning of the experts (see
below) can be used to expand to more complex workloads while
using only simple workloads for pre-training.

Finally, the physical plan expert is pre-trained using learned
representations of the logical plan as input to construct the GNN
for the physical plan expert (step 3 in Figure 5). For the pre-training
of the physical expert, we use the physical plans of the same 150k
SQL queries over the 18 data sets we use for the pre-training of
the logical plan expert. As pre-traning task, we learn to predict
query cost coming from a traditional database cost model from the
representation of the physical expert.
Realizing downstream models. Based on the the learned repre-
sentations of the experts from the pre-training phase, models for
different downstream tasks can be realized (step 4-5 in Figure 5). It
is important that the learned representations of step 1-3 support
to realize multiple tasks with low overhead. For our case study, we
trained only simple MLPs for the downstream tasks. The initial
evidence for this is shown in our initial evaluation at the end of
this section. In future, we aim to show that a foundation database
model which uses an architecture as discussed above can generalize
across many more tasks.
Fine-tuning. Finally, we want to emphasize that we can use fine-
tuning to improve the accuracy of the experts and a task-specific
downstream model on a new unseen dataset (step 6 in Figure 5)
in an end-to-end manner. In our initial evaluation, we fine-tune
experts and downstream models on an unseen database with 512
additional queries, showing the efficiency of our pre-training. For
a comparison, one-off models need 100k queries per database to
learn a new unseen task on a given database, making fine-tuning
with a few hundred queries a highly appealing option considering
the small amount of training data that is needed.

2IMDB has been left out due to licensing issues of the data set which disallowed the
use inside Google.

Ours Ours (FT) PG DeepDB MSCN
Q-error 2.12 1.69 1.98 1.83 1.68
(Median)
Q-error 92.92 26.08 294.15 152.23 3120
(95th)

Table 3: Cardinality estimation using the logical plan expert.
The workload is composed of query plans with up to 2 joins
and up to 5 filter predicates. Results are averaged with leave-
one-out cross validation over all 19 unseen datasets. Fine-
tuning (FT) has seen 512 queries on the target database.

3.3 Initial Evaluation
In the following, we show the results of our initial evaluation where
we use the pre-trained experts, as explained before, and learn three
different downstream task models based on the representations.
Task 1: Cardinality Estimation with Data & Logical Expert.
First, we evaluate on the task of cardinality estimation using a re-
gression MLP which takes the logical plan representation as input
which builds on the data expert. For learning the task, we use a
workload comprised of query plans with up to two joins and filters
with up to five predicates. We tested the learned cardinality esti-
mator with and without fine-tuning with 512 additional queries on
the unseen datasets. As our results in Table 3 show, our foundation
model (i.e., the pre-trained experts with the downstream model
for cardinality estimation) can outperform Postgres and achieves
competitive performance w.r.t DeepDB [6] and MSCN [7], which
are one-off models that need to be trained per task and database.
Task 2: AQP using the sameData and Logical Expert. To show
task-independence of our logical plan representation, we use the
the same representation as for the previous task but now for ap-
proximate query answering which is implemented as a second MLP
on top of the same representation. We predict results of average,
and min/max aggregation queries with 1-5 filter predicates and
up to two joins. Again, we achieve high accuracy (i.e., a median
q-error of 1.27 for avg and 1.31 for min/max) on an unseen database
without fine-tuning.
Task 3: Runtime Estimation by adding the Physical Expert.
Finally, as a last task we implement runtime estimation as a MLP
on top of the physical plan expert to show that through stacking
of experts we can enrich embeddings and thus enable additional
tasks. The q-error for this downstream task is shown in Table 4.
We compare to a state of the art learned cost model which uses a
task-specific but zero-shot architecture that can generalize across
databases (ZS Cost [4]), as well as a Postgres-based cost estimator.
As we can see, our foundation model, which is task-independent
provides high accuracy out-of-the-box and is highly competitive
with the task-specific ZS model in particular when our model is
fine-tuned on the unseen data set with a few queries only.

4 Research Roadmap
While the feasibility study in Section 3 shows promising results,
this paper is just a starting point. To deliver on this vision, with
this paper we aim to foster research in this direction.
Further tasks and experts.While our feasibility study showcases
a foundation model based on three expert models that can already
solve different core database tasks, we believe that a much wider

6

Ours Ours (FT) ZS Cost PG Cost
Q-error 1.87 1.5 1.08 6.44
(Median)
Q-error 10.76 6.83 1.7 19.73
(95th)

Table 4: Runtime estimation using the physical plan expert.
Workload is composed of query plans with 0-2 joins and 0-
5 filter predicates. Results are averaged with leave-one-out
cross validation over all 19 unseen datasets. Fine-tuning (FT)
has seen 512 query plans on the target dataset.

spectrum of database tasks can be supported by the architecture
proposed in this paper. First, even with the three expert models
many more tasks can be realized. Moreover, when adding more
expert models, existing downstream tasks can either be extended or
more tasks can be supported. For example, when adding an expert
model that understands effects of different hardware resources
(CPU, memory/disk, network) as shown in Figure 2 one could enable
run-time estimation models that take effects of different hardware
into account. Furthermore, when adding other experts such as an
expert for SQL query strings, new tasks such as query rewrite on
the query string level or query completion can be realized.
Deploying in the cloud. Foundation database models eliminate
the high training cost of one-off models as discussed before. Al-
though this is a huge opportunity for wide adaption in the cloud,
there are still many open research challenges involved with foun-
dation database models. For example, an open question is how
much pre-training these models require to generalize robustly to a
wide spectrum of tasks. Moreover, foundation models bring other
benefits beyond reducing the high efforts that come with one-off
models. For example, an often ignored problem of cloud providers
is that they are not allowed to use the customer databases to collect
training data by running queries, due to strict security regulations
that cloud providers impose. Hence, foundation models might be
extremely attractive to address this problem since they can be pre-
trained on available non-customer databases (e.g., public data), and
then be used out-of-the-box or with minimal fine-tuning on a un-
seen customer database.
Beyond database systems. Finally, we believe that our approach
of using composable expert models that learn representations of
individual aspects are a much generic paradigm for learned systems
tasks and can be used beyond database systems. For example, cloud
resourcemanagement problems of non classical database workloads
(e.g., ML training or inference) also need to understand workload
characteristics as well as available hardware resources to make an
optimal decision. Leveraging insights from our work, this learned
optimization may also be broken down into a workload expert and
a hardware expert. Each expert can be trained independently with
large amounts of data that capture complexity and diversity in cloud
workloads or hardware configurations. These experts will then be
combined with different downstream models to jointly optimize
goals such as reducing application run time or improving server
resource utilization.

Acknowledgments
We thank Yannis Chronis (Google SRG) and Sami Abu-El-Haija
(Google Research) for their support and discussions on this paper.

References
[1] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table

Understanding through Representation Learning. arXiv:2006.14806 [cs] (Dec.
2020).

[2] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-Dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (Oct. 2020), 74–86.

[3] Roman Heinrich, Carsten Binnig, Harald Kornmayer, and Manisha Luthra. 2024.
Costream: Learned Cost Models for Operator Placement in Edge-Cloud Envi-
ronments. In 40th IEEE International Conference on Data Engineering, ICDE 2024,
Utrecht, The Netherlands, May 13-16, 2024. IEEE, 96–109.

[4] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of-
the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361–2374.

[5] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Par-
titioning Advisor for Cloud Databases. In Proc. ACM SIGMOD (SIGMOD ’20).
Association for Computing Machinery, New York, NY, USA, 143–157.

[6] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, Not from Queries!
Proc. VLDB Endow. 13, 7 (March 2020), 992–1005.

[7] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[8] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proc. ACM SIGMOD (SIGMOD ’18).
ACM, New York, NY, USA, 489–504.

[9] S. Krishnan, Z. Yang, Ken Goldberg, J. Hellerstein, and I. Stoica. 2018. Learning to
Optimize Join Queries With Deep Reinforcement Learning. ArXiv abs/1808.03196
(2018).

[10] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit Chaudhuri. 2021. Pre-
training Summarization Models of Structured Datasets for Cardinality Estimation.
Proc. VLDB Endow. 15, 3 (2021), 414–426.

[11] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data Pro-
cessing Clusters. In Proceedings of the ACM Special Interest Group on Data Com-
munication (SIGCOMM ’19). Association for Computing Machinery, New York,
NY, USA, 270–288.

[12] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical.
In Proc. ACM SIGMOD (SIGMOD/PODS ’21). Association for Computing Machin-
ery, New York, NY, USA, 1275–1288.

[13] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705–1718. https:
//doi.org/10.14778/3342263.3342644

[14] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. In Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management (aiDM’18).
Association for Computing Machinery, New York, NY, USA, Article 3, 4 pages.

[15] Jan Motl and Oliver Schulte. 2015. The CTU Prague Relational Learning Reposi-
tory. CoRR abs/1511.03086 (2015).

[16] Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can
Foundation Models Wrangle Your Data? Proc. VLDB Endow. 16, 4 (2022), 738–
746.

[17] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-
ing Multi-Dimensional Indexes. In Proc. ACM SIGMOD, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.
Ngo (Eds.). ACM, 985–1000.

[18] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo. 2019.
Scheduling OLTP transactions via learned abort prediction. In aiDM@ACM SIG-
MOD. 1:1–1:8.

[19] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-Based Cost Estimator.
Proc. VLDB Endow. 13, 3 (Nov. 2019), 307–319.

[20] Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. 2024. Why TPC Is Not Enough: An Analysis of the Amazon Redshift
Fleet. Proc. VLDB Endow. 17, 11 (2024), 3694–3706.

[21] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai
Zeng, and Jingren Zhou. 2022. A Unified Transferable Model for ML-Enhanced
DBMS. In 12th Conference on Innovative Data Systems Research, CIDR 2022, Cham-
inade, CA, USA, January 9-12, 2022. www.cidrdb.org.

7

https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644

	Abstract
	1 Introduction
	2 The Vision: Foundation Database Models
	2.1 Expert Models
	2.2 Pre-Training of Experts
	2.3 Realizing Downstream Tasks

	3 Feasibility Study: A First Prototype
	3.1 Model Architecture
	3.2 Training Procedure and Details
	3.3 Initial Evaluation

	4 Research Roadmap
	References

