
OSDB: Exposing the Operating System’s Inner Database
Robert Soulé
Yale University

USA

George Neville-Neil
Yale University

USA

Stelios Kasouridis
Yale University

USA

Alex Yuan
Yale University

USA

Avi Silberschatz
Yale University

USA

Peter Alvaro
UCSC
USA

ABSTRACT
Operating systems must provide functionality that closely resem-
bles that of a data management system, but existing query mech-
anisms are ad-hoc and idiosyncratic. To address this problem, we
argue for the adoption of a relational interface to the operating
system kernel. While prior work has made similar proposals, our
approach is unique in that it allows for incremental adoption over
an existing, production-ready operating system. In this paper, we
present progress on a prototype system called OSDB that embodies
the incremental approach and discuss key aspects of the design,
including the data model and concurrency control mechanisms. We
present four example use cases: a network usage monitor, a load
balancer, file system checker, and network debugging session, as
well as experiments that demonstrate the low overhead for our
approach.

CCS CONCEPTS
• Software and its engineering → Operating systems; • In-
formation systems → Entity relationship models; Data access
methods.

KEYWORDS
Operating Systems, Databases, Structured Query Language (SQL)

1 INTRODUCTION
Operating systems (OS) are conventionally defined as the software
that manages hardware. Unfortunately, this definition is incomplete,
as it ignores the fact that modern OSs are open systems with people
attached to them. To say that an OS is software that virtualizes
and abstracts hardware in order to present it to users would be
more accurate, but this definition remains somewhat idealized. In
practice, OSs do have a “bottom layer” dedicated to management
of hardware, namely compute, memory, and peripherals. They also
have an “upper layer” providing a collection of mechanisms that
allow users—be they administrators, application developers, or end
users—to observe and manage system state. Users engage with this
top layer in myriad ways; to diagnose system-wide problems, debug
individual programs, identify performance bottlenecks, and ulti-
mately define system policies for concerns as diverse as scheduling,
resource allocation, cache management, and storage.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

Viewed in this way, the upper layer of an OS closely resembles
a data management system! But it is a very ad-hoc DBMS with a
query mechanism that leaves much to be desired. If the “query” is
performed from within kernel space, then the operating system
may provide some APIs, but, more often than not, developers will
need to write code to traverse global data structures to find the
desired information. This requires that a developer understand the
relevant data structures and the locking discipline to access the data
correctly. On the other hand, performed from user space, a modern
OS provides a number of mechanisms for observing kernel state
(e.g., system calls and command-line utilities, etc.) and a handful
of mechanism for managing them (e.g., ioctl, /etc/password).
However, using these mechanisms can be awkward. Command
line utilities provide a non-uniform query language in which the
command names and meaning of the flags have to be learned on
a case-by-case basis. Moreover, UNIX/Linux’s file abstraction, in
which everything is an unstructured stream of bytes, means that
every application has to enforce an implicit schema that is lost
when the structured kernel data is mapped to a stream of bytes.

OS data model and query mechanisms have evolved organically
over time, spurred by developer needs and attempts at standardiza-
tion (e.g., POSIX). In contrast, the database community has taken
a much more intentional approach in developing the relational
model. Based formally on first-order predicate logic, the relational
model organizes data into a uniform and simple data structure (i.e.,
relations) and offers both an algebra for specifying queries and
a method to express integrity constraints. This approach offers a
number of benefits; not least of which is that it allows users to ma-
nipulate the data in high-level declarative languages that naturally
allow for the composition of analytical operations.

Much ink has been spilled [1, 2, 7, 9, 13, 14] demonstrating how
database ideas, creatively applied, can significantly simplify systems
concerns from networking to cluster management to single-host
operating systems. Existing tools such as osquery [12] mirror im-
portant OS state in a user-space database, providing coarse-grained,
periodic mechanisms for observing and changing the state. Over-
laying a DB on the OS in this way is non-invasive and can be
adopted incrementally, but offers only weak semantics including
stale reads and non-atomic updates to kernel state. At the other
end of the design spectrum are “boil the ocean” approaches such
as DBOS [13], which propose to entirely replace the OS with a
query processor. While the capabilities of such an approach are
theoretically limitless, the path to adoption is less clear.

We advocate for an incremental infiltration of the OS that we call
the “Ship of Theseus” approach. We ported an existing database,
SQLite, to run inside the FreeBSD and Linux kernels. Once this

CIDR 2025, Amsterdam, The Netherlands,
Soulé et al.

effort was complete, we then leveraged the database’s support for
foreign data sources, implementing an interface that allows the
database engine to traverse existing kernel data structures as if
they were tables. This permitted us to write SQL queries directly
over kernel data structures, providing the benefits of a relational
interface and rich query language in a pay-as-you-go fashion.

In this paper, we present progress on our prototype system,
which we call OSDB. We describe how we mapped OS data struc-
tures to relations and used kernel memory addresses as join keys.
We detail the concurrency control mechanisms we implemented
to ensure consistent reads and atomic modifications of those struc-
tures, while prioritizing noninterference with other kernel opera-
tions over query performance. We also report on our experiences
using OSDB through four case studies: monitoring system state;
enforcing system policies (e.g., for load balancing among cores);
identifying and fixing correctness issues in the file system; and
diagnosing a performance issue in NFS. Common among these
disparate use cases is the ease of use of a query language, and
most importantly the use of JOIN rather than pipes as the basis for
combining information.

2 EXAMPLE AND MOTIVATION
To make the problems of kernel state management in Section 1
concrete, we start with a small example that is likely familiar to
anyone who has done network programming. Imagine a user would
like to discover which process is currently listening on a particular
network port, perhaps to kill the process and free the port. On a
UNIX/Linux system, the user would probably run the ps command
to see the list of processes, and the netstat command to see the
status of various ports, and with that information, try to sleuth
out the offending process. This example is small, but it helps illus-
trate several important challenges faced by users when trying to
gather and take action on information in current operating sys-
tems. We enumerate these challenges beginning with the trivial
and progressing to the fundamental:

(1) Non-standard interfaces. How does the user know which com-
mands to run? If the user is not an experienced UNIX user, how
would they know that the program to list running programs
is called ps, which is short for “process status”? After all, the
equivalent program on Windows is called tasklist. Even if
you are an experienced UNIX user, finding the appropriate com-
mands can be confusing. Should you use who or w to see who is
logged into a server? Which command tells you the status of
the print queue? Man pages can tell you how to use a command
if you already know the command, but if you don’t, a user can
guess at command names or consult Stack Overflow. Contrast
this experience with that of the physical world. For example,
someone who knows how to drive can drive any car without
instruction, regardless if it is a Ferrari or a Kia. The car’s user
interface is standardized.

(2) Platform-specific implementations. Even for the same command,
it can have different usage patterns for different tasks, different
implementations, or versions of the operating system. To see
a list of print jobs, a user can use lpstat, but if the jobs are
on a shared printer, they must use lpstat -p. For our simple
example, on a system using standard syntax, we would invoke

the process status (ps) command with the -e flag to see all
processes. But, if they were on a system using BSD syntax, they
would need to invoke the command with the -a flag to see all
the processes.

(3) Loss of structure. Let’s expand our example a bit, and imagine
that the user runs ps, but gets too many results, so they want
to filter is in some way, e.g., to get only recent processes. Em-
bracing the “everything is just a stream of bytes” philosophy of
UNIX, the user might use a pipe and awk, to write something
like ps -a | awk ’$3 > "0:00.10"’. At the risk of starting
a flame war with awk devotees, we argue that the syntax for
this command is not obvious. But, the more serious problem
is that the structured output of the ps command is turned into
an unstructured byte stream, which then must be parsed back
into a structured representation that allows for filtering on the
desired predicate.

(4) No join. Finally, and most importantly, there is no way to natu-
rally compose the queries. In our example, there is no way to
correlate the information from ps with the information from
netstat. Even if there were some key that related the two data
sets, we are forced to use tools like cut, head, tail, and awk
to manipulate the byte streams. Converting to unstructured
streams and composing with pipes always loses the implicit
structure and type information of the kernel state.

All of these challenges can be addressed by representing the operat-
ing system kernel state relationally. SQL is a standardized language
based on firm formal foundations. To learn what tables exist and
their schemas, one can use the SHOW TABLES or equivalent com-
mands. If everything is a relation (instead of everything is an un-
structured byte stream) then we preserve the inherent structure of
the data across composition. And, most importantly, we can use the
power of “joins” to compose the data naturally. We acknowledge
that a relational representation is not a panacea. SQL is not without
its critics [3] and there are some variations in syntax across vendor
offerings. However, our experiences with the reported case studies
have been that the relational interface simplifies state monitoring
and management.

To see the list of running processes and the associated TCP
five-tuple using OSDB, a user can use the following query:

SELECT p.pid , p.name ,

t.faddr , t.fport , t.laddr , t.lport , t.t_state

FROM procs AS p, files AS f, tcps AS t

WHERE f.f_addr = t.inp_addr AND f.pid = p.pid

Intuitively, the query joins a table that exposes process information
with a table that contains the open files and a table that includes
the socket information for those files that are of a socket type. Note
that we didn’t need to add any code to the kernel to achieve this:
we are combining data between already existing data structures.

There are a few notable features of this query that merit further
discussion. In particular: how do we model the OS state as tables?
Given a set of tables, what constraints (e.g., primary and foreign
keys) are appropriate to define? How do we ensure consistency
when querying existing data structures? We discuss these details,
and more, in the next section.

OSDB: Exposing the Operating System’s Inner Database
CIDR 2025, Amsterdam, The Netherlands,

3 DESIGN
There are several approaches that can be taken to make operat-
ing system state more visible and manageable. Two contemporary
systems share similar motivations to OSDB, but occupy different
points in the design space. osquery [12] extracts unstructured data
from the kernel and imports it into a user-space database. While
this results in a richer user interface, it only supports read opera-
tions and fails to address issues of data consistency, or the ability
to react to changing conditions within the kernel in real time. and
cannot present a transactionally-consistent view of kernel state.
DBOS [13] aims to build a brand new operating system around a
query processor. This green field approach could be impractical
because the effort to build such an operating system from scratch
requires a significant development effort as well as a long lead time
before benefits can be shown.

3.1 The OSDB Incremental Approach
With OSDB, we explore an alternative approach. We ported an
existing database, SQLite, to run within the FreeBSD and Linux
kernels. We then leveraged the database’s support for foreign data
sources, implementing an interface that allows the database engine
to traverse existing kernel data structures as if theywere tables. This
permits us to write SQL queries directly over kernel data structures.

This is an incremental, “Ship of Theseus” approach to moving
the operating system state into a relational representation: to pro-
vide, entity-by-entity, a relational interface to existing operating
system structures without having to re-write the entire operating
system. Although we currently only traverse existing structures,
one could imagine a more ambitious step of replacing the struc-
tures we currently abstract with a table instance directly. As part
of future research we will convert C structures to tables where that
conversion improves safety and/or multi-processing performance,
which is where such conversions would show the clearest benefits.

3.2 Data Model
In presenting a relational interface to operating system state, we
face a very large data modeling task: identifying every logical entity
in the operating system as well as the relationships between them.
We are aided in these efforts both by our incremental approach—
which means that we don’t need to model the entire operating
system in order to start seeing the benefits of OSDB—and a couple of
key observations about the operating system code. First, operating
system developers have already naturally modularized their code
into the relevant entities, i.e., as C structures. Second, the majority
of the data structures in an operating system kernel are lists of C
structures. In FreeBSD nearly every complex data structure depends
onmacros from a single header file (queue.h) which provides singly
and doubly linked lists, and tail queues.

Lists of structures map well onto the relational model, as every
list can be a table, every element (struct) in the list is a tuple (row),
and every data member of a structure is a field (column). Figure 1
shows the relationships among four of the tables that are exposed
from OSDB. An entry in the procs table has pointers which act
as foreign keys. For brevity, in this diagram we only show the
relationship between the proc structure and its associated files
and threads as well as the back pointer from a thread to its process.

procs

int p_pid PK Process ID

int p_uid User ID

struct_filedesc p_fd FK Points to file descriptor table

int p_state Process state

struct_thread p_threads FK Points to list of threads

files

struct_filedesc fd PK File descriptor table

array fd_ofiles FK Open file array

threads

int td_tid PK Thread ID

int td_pid FK References p_pid

int td_state Thread State

tcps

ip_addr local_addr Local IP address

int local_port Local Port

ip_addr remote_addr Remote IP address

int remote_port Remote Port

int state TCP state

p_fd points to
p_threads points to

fd_ofiles points to

td_pid references

Figure 1: An entity relationship diagram for four of the
OSDB tables, modeling processes, threads, file descriptors,
and sockets, as well as their constraints. Note that p_fd and
p_threads are pointers to a list of structs in the kernel. In
the case of the relationship between processes and threads,
these pointers are redundant (because the thread struct has
a natural foreign key back to processes via td_pid) and used
for fast traversals. This is not the case for the relationship
between processes and their list of open files: no natural
foreign key exists, so we infer the relationship via the p_fd
pointer.

Sockets for TCP connections are also in the file descriptor table and
we see this relationship at the very bottom of the diagram. Note
that the TCP connection does not have a relationship back to its
process, but through the power of joins we are still able to relate
these two entities in our system.

Foreign Key Constraints. Unfortunately, with the data modeling
approach described above, there is usually not a natural data item
that serves the role of the foreign key. For example, each process
structure in kernel has a pid that can serve as a primary key, but
each thread structure does not include the process that owns the
thread. Rather, relationships between these in-memory structures
are established through pointers, e.g., an instance of a process
structure would include a list of pointers to thread structures. That
is to say, the arrows go the wrong way [10].

Therefore, to establish foreign key relationships, we include
pointers as a field in many table representations of OS structures.
We note that the pointers in an operating system kernel are unique
because the kernel program executes in a single address space,
making them a suitable choice for foreign keys. Once a kernel
data structure is allocated, it is never moved and its address never
changes.

CIDR 2025, Amsterdam, The Netherlands,
Soulé et al.

We see the use of a pointer address used as a key in the example
in Section 2, where (f.f_addr = t.inp_addr). Here, the query
says that the address of the file must be the same as the address in
the IPv4 structure (inp_addr).

3.3 Query Semantics
OSDB users provide SQL queries to observe and optionally modify
kernel state. For usability, we wish to provide familiar semantics for
query writers; for performance and correctness, we wish to utilize
the synchronization mechanisms already available in the OS kernel
whenever possible. We discuss observation (i.e., read-only queries)
first, then proceed to queries that modify state.

Read-only queries.Whenever a query executes, OSDB acquires
the required kernel locks in a two-phase fashion, and makes a copy
of all kernel data structures in one go. We refer to the copy of
the data as a snapshot. After copying, the locks are released and
the query executes on the snapshot. Each snapshot is assigned
a timestamp when it is created. As we will discuss below, OSDB
maintains a history of snapshots, allowing for historical analytics.

This approach is feasible because kernel structures tend not to
be overly large, and copying does not impose undue strain on the
system as a whole. This approach also means that the system does
not have to hold the locks during query execution, which can be
arbitrarily long. Our experiments in Section 7 demonstrate that this
approach is stable, i.e., free of kernel panics, and performant.

Each snapshot is a transactionally-consistent view of the kernel
state; the sequence of snapshots defines a straightforward time se-
ries over that state. Snapshots are made visible using transactions,
hence any read-only query over a snapshot (or across snapshots)
is serializable. Existing tools that query the operating system state
from user-space cannot ensure the same strong consistency guar-
antees as OSDB. A pipeline of cooperating processes on a UNIX
system does not operate in parallel, but in series, meaning that the
data that arrives at the last program in pipeline may be out of data
by the time it arrives. It is precisely because we interact directly
with the existing kernel data structures using a two-phase locking
protocol that we can make atomic observation of kernel state. In
contrast, existing tools, such as a pipeline of user space processes,
can not ensure the same consistency guarantee.

Snapshot Creation.OSDB currently works in either of twomodes.
A snapshot can be created every time a query is submitted to the
database, or at periodic intervals according to a user-supplied pa-
rameter. The latter approach effectively implements sampling of
the kernel state. Sampling allows users to see how system state
evolves over time, for example, to correlate file operations, network
operations and CPU utilization.

Historical Analytics and Memory Management. Each time a
snapshot is created, OSDB inserts the snapshot into a circular queue
of a configurable size, depending on the amount of available mem-
ory in the system and the needs of the user. If the queue is full when
a new snapshot is created, the oldest snapshot not currently in use
is garbage collected. By “not in use”, we mean that no query is
currently running against that snapshot, which OSDB tracks using
a basic reference counting scheme. This design ensures that the
amount of memory used by OSDB is bounded.

In addition to the historical data, we have defined views that
show the data from only the most recent snapshot. Querying the
view of the process table, for example, gives a super set of the
information returned by the ps(1) command. Querying the history
allows for time series analytics. For example, one can query to see
how the RTT estimate for TCP connections changes over time.

Read/Write Operations. Up until this point, our discussion has
mainly focused on read operations. However, a powerful aspect
of our design is being able to perform insert, update, and delete
operations as well.

Here, too, we are taking an incremental approach. All relations
are initially defined as read-only; hooks to implement insert, update,
and delete operations are created on a table-by-table basis as we
model the kernel structures and their constraints. For example,
OSDB currently supports delete on the process table, since this can
be mapped in a straightforward way to existing kernel APIs that
perform the appropriate cleanup (i.e., to delete a process is to kill it),
as well as update on certain columns (e.g., lastcpu, which can be
used to migrate a process between cores), but it has not yet defined
insert for processes.

The other key challenge in implementing a write path for OSDB
is concurrency control. The snapshotting system described earlier
makes read-only observations of system state simple and unob-
trusive, but it does not automatically lend itself to a read/write
synchronization strategy, since kernel-native locks are released
before any query processing begins.

We opted again for a simple design that reuses existing mecha-
nisms and prefers optimism (even at the cost of aborts) over inter-
ference with critical kernel functions. By default, a read/write query
is always executed over a fresh snapshot, which it generates in its
first phase just as a read-only query does. Alongside the snapshot,
OSDB generates a digest via a hash function. In the second phase—
again, just as in read-only execution–the query executes within
SQLite. This time, however, the query produces a set of effects to
be carried out atomically if the transaction should commit.

In phase 3, OSDB again queries the kernel state to obtain a
digest—this time, it does not immediately release its locks. If the
digest matches the digest taken at snapshot time, the query is
allowed to commit, and its updates are applied by invoking the
relevant kernel APIs. Otherwise the query is re-executed; either
way the locks are released.

Some kernel state (e.g., counters that track the resource usage
of threads or the number of transmitted packets associated with a
network socket) are volatile enough that they are likely to always
change between the first and third phase of transaction execution
described above. One way to address this issue would be to omit
all volatile state from snapshots. Unfortunately, this would also
prevent read-only queries from referencing this state, limiting the
system’s observability. Instead, we chose to handle volatile kernel
state as a special case. As part of our data modeling, certain fields
of kernel structures are flagged as volatile. These fields are included
in the snapshots, but their values are not hashed, and read/write
queries are forbidden from referencing them. This default seman-
tics provides an intuitive query-the-present model with serializable
executions. Moreover, it also readily supports transactionally read-
ing from an old snapshot; similarly, the effects will be installed

OSDB: Exposing the Operating System’s Inner Database
CIDR 2025, Amsterdam, The Netherlands,

only if the digest has not changed, but these queries will become
increasingly unlikely to succeed. We are also exploring a snapshot
isolated semantics in which we compute digests of sub-snapshots,
performing commit-time write checks only on the intersection of
sub-snapshots.

4 APPLICATION PROGRAMMING
INTERFACE

For user-space programs to interact with OSDB, we extended the
FreeBSD system call interface with one object and 14 system calls.
The main interface to OSDB is as follows:

• osdb_statement: an object that represents a prepared statement
that is ready to be evaluated.

• osdb_prepare(): compile SQL text into a format that will exe-
cute the query. This method returns an osdb_statement.

• osdb_step(): advance a statement to the next row.
• osdb_column_int(), osdb_column_text(), etc.: Return column
values in the current row in the specified type. For brevity, we
do not enumerated all of the type-specific column commands.

• osdb_finalize(): destructor for an osdb_statement.

Note that the user must pass the osdb_statement object instance
to each invocation of step, column, and finalize, similar to how
a file descriptor object is used in the open, read, write and close
system call API that is familiar to every UNIX developer, and a
cursor interface familiar to database users.

We have provided both command-line and library-based APIs.
The command line tool, osdb_query, takes SQL commands and
passes them into the OSDB kernel module. Alternatively, users may
write their own code using the system calls we provide.

On Linux, we took a different approach. The Linux kernel module
exposes a new device and user space programs access the in-kernel
version of SQLite via an ioctl() call.

5 IMPLEMENTATION
Wehave implementedOSDB twice, first embedding into the FreeBSD
kernel and later into Linux. In the section, we describe the required
steps for such an implementation. The four key steps include: mak-
ing modest changes to the OS kernel; porting SQLite to the target
kernel; creating a loadable kernel-module; and following a process
for incrementally exposing kernel state as tables for observation
and management.

5.1 OS Kernel Changes
The operating system must be augmented with an interface to ac-
cess OSDB. On FreeBSD, we added several system calls that provide
the API to user space programs. These were described in detail
in Section 4. Note that we only need to declare the stubs of the
system calls in the kernel. The implementation of those methods
are provided in the kernel module, described below. This adds 45
lines of code to the FreeBSD kernel in a single file. The Linux port
followed a different implementation, exposing an ioctl to user
space code that interacts with the OSDB module. Like FreeBSD, the
Linux port makes minimal changes in the main line of the operating
system and provides nearly all of its real code via a kernel module.

5.2 Porting SQLite to the Kernel
SQLite is an embedded database designed with portability in mind.
Many extensibility-supporting features are already provided via
C macro-based configuration options. Porting the database to run
outside user space we had to deal with three issues. First, we needed
to provide SQLite with a mechanism for allocating memory that
“played nice” with the OS kernel. Second, we needed to provide
support for floating point operations, which are typically disabled
in the kernel. Third, we needed to translate the logical lock requests
that occur as part of SQLite’s concurrency control into methods
that operate over kernel latches, following the synchronization
discipline already in place in the OS.
Allocation. In the operating system, kernel code can choose to
block or not block waiting for memory, which is not an option in
user space libraries. We took the conservative approach of making
SQLite wait for memory from the kernel before it could proceed. As
SQLite is not a time critical component of the overall system it was
acceptable to wait for memory if it was not immediately available.
Floating Point Support. One significant challenge in porting
SQLite into the kernel is the latter’s use of floating point operations.
Operating systems traditionally do not allow floating point oper-
ations as this would require the saving of extra registers on each
context switch, increasing overhead and reducing performance.
Both FreeBSD, and our second target, Linux, have the ability to al-
low floating point operations in particular sections of the code that
need them. Bracketing routines are used to tell the kernel that on
a context switch it must preserve the floating point registers. Our
FreeBSD implementation provides new system calls for access to
the SQLite library, and these system calls provide a natural location
for the floating point save and restore routines. On Linux we have
wrapped the specific uses of double with the floating point bracket
routines.
Locking. Translating row-level read/write locks into appropriate
latching protocols for kernel data structures seems like a daunting
task. Luckily, the extensibility features of SQLite significantly sim-
plified the ports to both FreeBSD and Linux. Although this effort
will differ for every OS target, it can be completely factored into
macro configuration and implementing wrapper functions.

The FreeBSD and Linux ports were quite similar. Although
there were differences between the kernel services (e.g., malloc
vs kmalloc), the internal APIs of the two operating systems were
often nearly identical. This is unsurprising, as they both aim to
provide similar functionality, namely, a POSIX-like programming
environment.

5.3 OSDB Module
OSDB is provided as a loadable kernel module on both FreeBSD
and Linux. The kernel module is responsible for: instantiating the
OSDB database; registering the virtual tables that expose kernel data
structures (described in more detail below); orchestrating the two-
phase locking protocol (i.e., acquiring/releasing locks and invoking
snapshot methods to copy data), and exposing the OSDB API.

Although there are platform-specific differences between the
FreeBSD and Linux versions (e.g., the kernel module APIs are dif-
ferent, and the OSDB API is provided via system call or ioctl,

CIDR 2025, Amsterdam, The Netherlands,
Soulé et al.

respectively), much of the code is re-usable across operating sys-
tems.

Our modification required very few lines of code. On FreeBSD
the entire kernel module has only 3670 lines of non-comment code,
of which 2318 lines are used to implement our ten virtual tables.

5.4 Exposing Kernel Data Structures
SQLite includes support for reading from or writing to data sources
other than the database files via a mechanism called virtual ta-
bles [19]. This mechanism allows the SQLite query engine to treat
in-memory data structures as if they were standard tables or views.
To create a virtual table, a developer must implement an API that
includes set of methods used to open/close the database, open/close
an iterator to scan, advance the iterator, and access values stored
in a particular columns. A user may optionally provide an update
method to modify the data.

OSDB includes code that provides a generic table data structure
(i.e., a list of union types) and implementations of the SQLite virtual
table API targeting that data structure. The table implementation
includes functionality to store metadata (i.e., column names and
types) as well as the actual data.

To expose a kernel data structure to OSDB, a developer must
implement three methods. First, they must implement a snapshot
method that that walks kernel data structure in place and copies it
into the generic table representation. Then, they must implement
lock and unlock routines that acquire and release the locks asso-
ciated with the kernel data structure during the two-phase locking
protocol.

As mentioned above, a developer may additionally provide an
update method to insert, update or delete data. The update method
can invoke arbitrary C code. Our current prototype only supports
update operations that map to existing kernel APIs, e.g., deleting
from the process table corresponds to calling the method that kills
a process. This ensures that the kernel is not left in an unstable
state.

6 CASE STUDIES
We now present four diverse use-cases for OSDB. The first use-case,
drawn from our experience deploying and operating production
systems in high performance computing environments, overrides
the kernel process scheduler to reduce resource contention. The
second use-case recreates a result from academic literature. The
third adds new functionality to the kernel which replaces work
that is currently done by hand in user-space. The fourth is a case
of debugging an NFS performance problem.

Load Balancer. Figure 2 shows a plot of jitter for two competing
network receivers over time. Jitter [4] is the continuous variance
between best and worst network latency over a set of packets,
and is a good predictor of other network performance problems
such as high tail latencies and decreased overall bandwidth. Jitter
often is a result of improper resource sharing. In this study, we
used the iperf3 program with UDP data to generate traffic, with
client-server pairs assigned to different cores.

At the start of the experiment both receivers are placed on the
same CPU core, and therefore compete for resources. We can see

Figure 2: Jitter ImprovementwithTwoCompetingReceivers

how the jitter doubles, from 1 to 2 milliseconds as the second re-
ceiver begins to receive data. At the 10 second mark we used the
following OSDB query to move one of the instance of iperf3 to
an idle core, with the effect that the jitter measurements decrease
and become stable through the end of the experimental run:
UPDATE all_threads SET lastcpu =(SELECT lastcpu FROM

(SELECT min(num), lastcpu FROM
(SELECT COUNT(DISTINCT pid) AS num , lastcpu FROM

threads WHERE lastcpu !=-1 GROUP BY lastcpu)))

WHERE pid=(SELECT pid FROM procs WHERE name="iperf3"

LIMIT 1)

The SQL statement picks the first instance of the iperf3 program it
finds in the process table and moves it to the core that currently has
the least number of threads running on it. For the purposes of this
demonstration, the process that we are moving is iperf3, allowing
us to generate the time series in Figure 2. However, we could easily
update this query to use more general selection criteria, e.g., the
process consuming the most network bandwidth, CPU time, etc.

FSCK. SQCK [6] demonstrated that a file system checker like
e2fsck could be written decralatively in SQL. We recreated one of
their checks to demonstrate the same ability. Specifically, we check
for a file system corruption in which a directory 𝑋 claims to have
a child directory 𝑌 , but 𝑌 claims another directory 𝑍 as its parent,
where 𝑍 ≠ 𝑋 , and 𝑍 does not claim 𝑌 as its child directory. The
following query tests for this corruption condition, and, if detected,
fixes the file system by setting the parent of 𝑌 to be 𝑋 .
WITH bad_entries AS

(SELECT c.dot_inode AS child , p.dot_inode AS
correct_parent

FROM dirents AS p, dirents AS c

WHERE p.entry_inode = c.dot_inode

AND p.name != '.' AND p.name != '..'

AND c.name = '..' AND c.entry_inode != p.dot_inode)

UPDATE all_dirents SET entry_inode =

(SELECT correct_parent FROM bad_entries

WHERE bad_entries.child = all_dirents.dot_inode)

WHERE name='..' AND dot_inode

IN (SELECT child FROM bad_entries)

Our system differs from SQCK in an important respect. SQCK, like
fsck, runs offline in user-space. The OSDB version runs online in
kernel space, by which we mean that it runs on the in-memory
representation of the file system and writes the modifications to
disk. Because we don’t have a full implementation of all the repairs
that SQCK and fsck, we have not bench-marked the performance.

OSDB: Exposing the Operating System’s Inner Database
CIDR 2025, Amsterdam, The Netherlands,

(a) UnixBench context1, context switching (b) UnixBench shell16, script executions (c) ps(1) vs OSDB

Figure 3: Evaluating OSDB overhead and compared to existing tools.

Out of Network. While all operating system kernels have some
form of “out of memory killer” (OOM) which protects the system
from running out of RAM by killing off processes that consume too
much memory, the same does not exist for programs that consume
too much of the network. High performance network systems often
run very close to the edge of total capacity. When applications
overuse the network they can get into a state where a group of such
applications must be terminated and restarted [18]. With OSDB,
we implemented this “out of network” killer:
DELETE FROM all_procs WHERE pid=

(SELECT t.pid FROM threads AS t

WHERE t.pid > 1000 AND t.msgsend >10000

AND t.timestamp > unixepoch('now') -1)

The query terminates any user process (pid > 1000) which has sent
more than 10,000 messages in the last second.

Diagnosing a Performance Issue in NFS. Debugging network
problems is a complex and tedious task in part because it involves
more than one computer, but also because the sources of data to be
analyzed are poorly correlated. A typical debugging session includes
statistics collection on all of the hosts involved, as well as gathering
a trace of all of the network packets that were transmitted and
received during the operation. Multiple executions of a test are used
to gather sufficient statistics and then these are visually inspected,
as is the packet trace, to look for clues as to the source of the problem.
While the statistics are cleared between each test execution, current
tooling does not support showing how the statistics change over
time.

To ease development of kernel code, we use a virtual machine
with a shared, NFS, mount. Source code resides on the host laptop,
but builds take place within the VM. As we started developing our
kernel module, we noticed that the start of each module build would
have a noticeable, 1 to 2 second pause. To track down the source
of this delay we added an NFS client statistics table to OSDB and
extracted the relevant data with the following query:
SELECT latest.count - previous.count as count_difference ,

latest.category , latest.operation , latest.type

FROM all_nfsclients latest

JOIN all_nfsclients previous

ON latest.category = previous.category

AND latest.operation = previous.operation

AND latest.type = previous.type

WHERE latest.timestamp =

(SELECT MAX(timestamp) FROM all_nfsclients)

AND previous.timestamp =

(SELECT max(timestamp) FROM all_nfsclients WHERE
timestamp <

(SELECT MAX(timestamp) FROM all_nfsclients))

The query compares statistics from the most recent snapshot to
the one previous, and the snapshots are taken both before and after
the build command is issued. A pair of lines immediately stand out:
22010, rpc, getattr, count
22010, cache, getattr, miss

The number of remote procedure calls for getting a file’s at-
tributes (getattr) and the number of cache misses were both large,
and identical on each run, indicating that some part of the build
was trying to look up a large number of files on the server that did
not exist. Using OSDB we were able to diagnose the problem, which
we then confirmed through discussions with the kernel developers.
The FreeBSD build expects that there is a generated file correspond-
ing to each source file of the kernel code. The build tools do a search
for these files at the start of every build. On NFS, the failed search
requests correspond to the cache misses, which results in the delay
we experienced. In other environments, such as on fast NVME or
SSD, this part of the build is not noticeable, because those types of
media are much faster than NFS access.

7 EVALUATION
To evaluate OSDB, we carried out two sets of experiments. The
first set quantifies the overhead that OSDB adds to OS runtime
behavior. The second establishes a baseline comparison against
an existing command line tool for querying kernel state, ps(1).
The experiments demonstrate that OSDB is stable and adds an
acceptable amount of overhead. Moreover, they show, perhaps
surprisingly, that querying OS state via a database can be faster
than existing command line utilities.

Test Environment. Our test environment is a Dell PowerEdge
R740 server with 2 Intel Xeon Gold 6240 CPUs clocked at 2.60GHz
and each comprising 18 dual hyper-thread cores for a total of 72
cores. The system contains 786G of RAM and 512G of striped sec-
ondary storage provided by ZFS. The system is running FreeBSD
CURRENT (15.0) with a NODEBUG kernel. Our code is contained
in a single, loadable kernel module which is loaded at run time and

CIDR 2025, Amsterdam, The Netherlands,
Soulé et al.

provides the new system calls as well as the embedded SQLite data-
base. In all experiments, our module includes five tables: processes,
threads, files, TCP connections, and UDP connections.

Overhead. To quantify the overhead that OSDB adds to OS run-
time behavior, we ran UnixBench [17] while increasing the OSDB
sampling rate from 1Hz to 100Hz. UnixBench includes 10 different
benchmarks, each designed to test a different aspect of the oper-
ating system. Each benchmark reports a score. The score does not
directly map to a key performance indicator, such as throughput
or operations per second. Rather, it is a composite value that in-
corporates various aspects of the system’s performance. A higher
score indicates better performance. For brevity, we report only
two results: context switching and shell script invocation. Context
switching is a common measurement of operating system overhead
and we found that the shell script invocation test was the one that
showed the clearest amount of OSDB overhead. The results appear
in Figures 3a and 3b, respectively. UnixBench runs each bench-
mark on a single core (blue), and on all of the available cores (red),
to measure uni-processor and multi-processor performance. For
context1, we see that the context switching overhead is unchanged
as we increase the sampling rate, even though the performance is
different between the uni-processor and multi-processor cases. For
the shell16 benchmark, we see that the single core performance
is affected by our test query as the rate increases, but that for the
multi-processor benchmark performance overall is not affected by
our single query. In all of the benchmarks that we have run we have
not seen any indication that OSDB overhead presents a barrier to
adoption.

Comparison to Existing Tools. To compare the performance of
OSDB against an existing command line tool for querying kernel
state, we measured the run time of the ps(1) command to an OSDB
query for an increasing number of background processes. Both
commands returned the same data: pid, uid, name, group id, tty, state
and parent pid, in the same order (i.e., sorted by pid). Each command
was executed in a loop 10,000 times with the output redirected to
/dev/null. We report the total time for all 10,000 invocations. We
note that the background processes were all suspended, so although
they increase the number of processes reported by the commands,
they do not add additional load on the system.

Figure 3c shows the results, which we found surprising. As we
discussed in Section 4, the OSDB API imposes a significant number
of user/kernel boundary crossings, so we expected that OSDBwould
be slower than ps(1). However, as we increased the number of
processes, the running time of OSDB grows at a much slower rate
than ps(1). Profiling ps(1) reveals that most of the time in the
program is spent in the use of qsort(3). In hindsight, perhaps we
should not have been surprised—if you have a lot of data that you
want to sort, it turns out that databases are pretty good!

8 RELATEDWORK
Operating systems and databases have a complex relationship. Early
on, databases offered an alternative to general-purpose operating
systems for resource and data management [5]. Today, databases
are often thought of as applications that make use of the operat-
ing system’s facilities for managing hardware resources. However,

databases and operating systems are often at odds, e.g., with respect
to cache replacement, scheduling, and file management [16].

ROSI [14] is the first work that we are aware of to propose a more
extreme position: treat an operating system as if it were a database
to improve usability. osquery [12] mirrors important OS state in
a user-space database, but offers only weak semantics including
stale reads and non-atomic updates to kernel state. At the other
end of the design spectrum, DBOS [13] advocates for a “clean slate”
approach that entirely replaces the OS with a query processor.

Numerous systems [1, 2, 7, 9, 13, 14] have applied ideas from
databases to simplify systems concerns from networking to cluster
management to single-host operating systems. There also has been
significant prior work on database-based file systems [8, 11, 15].
All of these prior projects propose greenfield designs, while OSDB
allows incremental adoption of database techniques to a production-
ready operating system.

9 CONCLUSION
We have begun our exploration of ideas in exposing and managing
operating system state in a principled way using the relational
model. Our initial experiences have been overwhelmingly positive,
providing a novel system with low overhead and high levels of
functionality. Our approach provides strong consistency, powerful
join operations that provide new ways to understand and act upon
system state in real time, and at the cost of a less than a hundred
lines of code per kernel data structure. Our incremental, “Ship of
Theseus” approach to extending the operating system provides bet-
ter results to potential consumers of a production operating system,
while avoiding challenges inherent in green field approaches.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation
award #2212235. We would like to thank Pasquale Polverino for his
work on porting OSDB to Linux.

REFERENCES
[1] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Heller-

stein, and Russell Sears. 2010. Boom Analytics: Exploring Data-Centric, Declara-
tive Programming for the Cloud. In Proc. 5th European Conference on Computer
Systems. 223–236.

[2] Nalini Belaramani, Jiandan Zheng, Amol Nayate, Robert Soulé, Mike Dahlin,
and Robert Grimm. 2009. PADS: A Policy Architecture for Distributed Storage
Systems. In Proc. 6th ACM/USENIX Symposium on Networked Systems Design and
Implementation. 59–73.

[3] C. J. Date. 1984. A Critique of the SQL Database Language. SIGMOD Record 14, 3
(nov 1984), 8–54.

[4] Ron Frederick, Stephen L. Casner, Van Jacobson, and Henning Schulzrinne. 1996.
RTP: A Transport Protocol for Real-Time Applications. RFC 1889.

[5] Jim Gray. 1978. Notes on Data Base Operating Systems. Springer-Verlag, 393–481.
[6] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. 2008. SQCK: A Declarative File System Checker. In
Proc. 8th USENIX Symposium on Operating Systems Design and Implementation.

[7] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan
Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Computa-
tion in Datacenters. In Proc. 9th USENIX Symposium on Operating Systems Design
and Implementation. 75–88.

[8] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Cheng, Vijay Chi-
dambaram, and Emmett Witchel. 2018. TxFS: Leveraging File-System Crash
Consistency to Provide ACID Transactions. In Proc. 2018 USENIX Annual Techni-
cal Conference. 879–891.

[9] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph M Heller-
stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica.
2006. Declarative Networking: Language, Execution and Optimization. In Proc.
2006 ACM SIGMOD International Conference on Management of Data. 97–108.

OSDB: Exposing the Operating System’s Inner Database
CIDR 2025, Amsterdam, The Netherlands,

[10] Erik Meijer and Gavin Bierman. 2011. A Co-Relational Model of Data for Large
Shared Data Banks. Commun. ACM (2011).

[11] Michael A. Olson. 1993. The Design and Implementation of the Inversion File
System. In Proc. 1993 Winter USENIX Conference.

[12] osquery [n.d.]. osquery. Online. https://osquery.io[Accessed July 2024].
[13] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong, Shana

Mathew, David Bestor, Michael Cafarella, Vijay Gadepally, Goetz Graefe, Jeremy
Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith Suresh, and
Matei Zaharia. 2021. DBOS: A DBMS-Oriented Operating System. Proceedings of
the VLDB Endowment 15, 1 (sep 2021), 21–30.

[14] Robert Soulé, Peter Alvaro, Henry F. Korth, and Abraham Silberschatz. 2024.
Research Pearl: The ROSI Operating System Interface. arXiv:2409.14241 [cs.DB]

https://arxiv.org/abs/2409.14241
[15] R. P. Spillane, S. Gaikwad, E. Zadok, C. P. Wright, and M. Chinni. 2009. Enabling

Transactional File Access via Lightweight Kernel Extensions. In Proc. 7th USENIX
Conference on File and Storage Technologies. 29–42.

[16] Michael Stonebraker. 1994. Operating System Support for Database Management.
[17] UnixBench [n.d.]. byte-unixbench. Online. https://github.com/kdlucas/byte-

unixbench[Accessed July 2024].
[18] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. 2015. Large-Scale Cluster Management at Google with
Borg. In Proc. 10th European Conference on Computer Systems.

[19] vtab [n.d.]. The Virtual Table Mechanism Of SQLite. Online. https://www.sqlite.
org/vtab.html[Accessed November 2024].

https://osquery.io
https://arxiv.org/abs/2409.14241
https://arxiv.org/abs/2409.14241
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://www.sqlite.org/vtab.html
https://www.sqlite.org/vtab.html

	Abstract
	1 Introduction
	2 Example and Motivation
	3 Design
	3.1 The OSDB Incremental Approach
	3.2 Data Model
	3.3 Query Semantics

	4 Application Programming Interface
	5 Implementation
	5.1 OS Kernel Changes
	5.2 Porting SQLite to the Kernel
	5.3 OSDB Module
	5.4 Exposing Kernel Data Structures

	6 Case Studies
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

