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ABSTRACT
Artificial intelligence over images improves every aspect of modern
human life and has shown great success across numerous applica-
tions. However, it is costly to perform image AI. Image AI pipelines
need to move heavy image files over the network so that many
applications can concurrently process the images with varying re-
source budgets and performance requirements. As a result, data
movement dominates the end-to-end image AI cost.

This work presents Frequency-Store, the first column-store for
images. Our intuition is that images do not need to be consumed by
image AI onewhole image at a time. Instead, there are “components”
of data within each image that can be consumed separately and
thus also can be stored separately. This decomposition allows the
sharing of data movement across image AI processing pipelines
both for training and inference.

Frequency-Store breaks images into columns and stores batches
of images column by column rather than storing individual images
file by file. It utilizes the inherent blocks and frequencies-based
structure in image data and defines a novel column abstraction.
Column-wise storage allows applications with various characteris-
tics and resource demands to share data efficiently. Columns store
data items with similar characteristics, allowing tight data represen-
tations and efficient compression. We show that Frequency-Store
improves inference/training time by up to 11x and compression
ratio by up to 2.2x compared to state-of-the-art image AI storage.

1 EFFICIENT IMAGE AI BY COLUMNAR
STORAGE

Image AI Improves Every Aspect of Modern Human Life.
Image AI has shown great success in numerous areas, from medical
imaging to self-driving cars. Medical doctors now use image AI to
get help in their decision-making process in the early/late detection
of diseases. Companies deploy image AI tools to enhance worker
safety conditions, thereby increasing productivity. Farmers use
image AI to efficientlymonitor the conditions of their crops and take
preventive actions against any potential disease, further improving
their yield [9, 11, 19].
Problem: Image AI is Expensive. Every year, billions of dig-
ital cameras capture trillions of images. These images consume
thousands of petabytes of storage in the cloud. Numerous AI appli-
cations process these massive datasets for various purposes, such
as personalized content management, image reconstruction, and
visual captioning. Applications access data over remote storage
servers, and need to move and process data in compute nodes using
high-end processors. This incurs an immense dollar cost for the

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

cloud vendors and application developers, limiting the accessibility
of image AI [7].
Inference and Training are Equally Costly. The lifetime of an
AI model includes two stages: training and inference. Training is
where the model learns how to perform the task. Inference is where
the model is deployed and performs a learned task. Both training
and inference are important cost components. While some applica-
tions perform frequent re-trainings by auto-generated data, some
applications are deployed across billions of devices concurrently
and continuously performing inference, and some other applica-
tions perform both training and inference equally frequently.
Data Movement Dominates the Cost. Most images are captured
today by a network-attached device, such as a mobile phone, or
are stored in a remote storage server for later analysis. Therefore,
performing inference/training or analysis of the images requires
transferring data over the network. In Figure 1, we break down
the inference time of an AI model when applications move images
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Figure 1: Data movement dominates
image AI inference cost.

over the network.
Inference requires
(i) reading images
over the network,
(ii) CPU-decoding
them, (iii) moving
them over PCIe,
and (iv) finally pro-
cessing them on
GPU by the AI
model1. We per-
form the analy-
sis for two stor-
age formats: im-
age calculator (IC),
which is a recently
proposed self-de-
signing storage for-
mat for image AI
[16], and standard JPEG [4]. As the figure shows, over 95% of the
time goes to reading the data over the network. Analyzing training
costs leads to similar results. Therefore, data movement dominates
image AI cost.
Intuition 1: Applications Need Only A Part of the Data. Im-
ages today are stored file by file. Hence, once an application reads
an image, it reads it as a whole from the source to the node it runs.
Recent work has shown that applications can perform the same pro-
cessing by using only some part of the data, which allows reduced
inference and training times by sacrificing little or no loss in how
successful the AI task is performed [16, 18]. Applications decide on
what part of the data is necessary. Every application has unique
characteristics and budgets regarding how much data it needs.

1ImageNet data, ResNet50 model, A100 GPU, and average network bandwidth of
50Mbps. Please see Section 6.1 for further details.
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Intuition 2: ImageData isMultimodal. Furthermore, we observe
various data ranges and distributions in image data. Some parts
of the image have wide ranges with significant variance, whereas
others have narrow ranges at varying levels with variances. Storing
images file by file requires using a single data width for all images
wide enough to cover the entire range. This wastes many bits,
results in inefficient storage, and increases data movement costs.
Solution: Columnar Storage for Images. This work presents
Frequency-Store, the first image storage that uses columns for im-
ages. Frequency-Store breaks a batch of images into a set of columns
and stores each column as a separate compressed data file instead of
storing images file by file as traditionally done. Columnar storage
allows Frequency-Store to read data files that are only necessary
for the application, dramatically reducing data movement cost and,
hence, the inference and training time of image AI applications.
Furthermore, Frequency-Store defines columns based on data items
with similar characteristics, enabling tight data representations and
efficiently compressing the images.
Contributions. In summary, our contributions are as follows.

• We introduce the concept of shareable storage formats. Share-
able storage formats are a family of storage formats that
allow sharing data among each other and trading AI model
quality with various levels of resource budgets. Every share-
able storage format is either a subset or superset of another
storage format in the design space.

• We show that image data is multimodal. It contains multiple
data distributions, some of which have high magnitudes with
wide ranges and significant variances and some of which
have low magnitudes with varying levels of narrow ranges
and variances.

• We present a column abstraction for storing images. Our
column abstraction allows efficient data sharing across appli-
cations and efficient data encoding by grouping data items
with similar data characteristics.

• We designed and implemented the Frequency-Store, the first
column-store for images. We demonstrate that Frequency-
Store improves inference and training times of image AI
applications by up to 11x and compression ratio by up to
2.2x, compared to state-of-the-art storage formats.

2 MOTIVATION
Application-specific Storage. Applications have unique problem
characteristics with varying resource budgets and performance
requirements. As a result, the amount of data they need to perform
their task successfully depends on the task-specific features. For
example, some applications work on a simple problem where only a
little data is enough, whereas others might need all the data. Other
applications might need all the data but only have a small resource
budget and hence need to trade AI model quality for a lower data
movement cost.
Breaking the Trade-Off. Current storage formats force applica-
tions to choose between the following two: either (i) choose a fixed
storage, such as JPEG, and use it across all the applications shar-
ing the data, or (ii) choose an application-specific storage, such as
image calculator [16] and use a different data for each application.

The first option allows applications to share data but is a general-
purpose storage format with heavy image files. The second option
stores images much more efficiently thanks to specialized storage
but does not allow applications to share data. In this work, we ask
the following question:

Can we use application-specific storage and also share data
across different applications?

We show that the answer to this question is yes, and the solution
relies on two main concepts: shareable storage formats and colum-
nar storage. Shareable storage formats define a family of storage
formats, where storage formats can share data among each other
and each storage format offers a different trade-off between the data
cost and AI model quality. Columnar storage breaks image data into
pieces, so every storage format in the shareable storage formats can
be easily reconstructed without creating a new copy of the data.
Columnar storage further allows tight data representations and
efficient compressing of the data. The following sections present an
overview of Frequency-Store and introduce the concept of share-
able storage formats and how we implement it using columnar data
organization.
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Figure 2: Frequency-Store keeps images column by column
rather than file by file. As a result, it allows applications to
share data and read only the data they need.

3 OVERVIEW
Figure 2 presents an overview of Frequency-Store. Frequency-Store
keeps a single copy of the data, where images are stored column by
column instead of file by file. It breaks a batch of images into a set
of columns and keeps each column in a separate data file. An image
file in this representation is spread across different columns, i.e.,
data files, as shown by Figure 2. Columnar storage allows modular
access to image data such that only the columns that applications
need will be accessed, and applications will share columns that
moved to the same or closely-located machines. New applications
with different resource budgets can flexibly join the execution and
share data with applications colocated in the same machine. As a
result, Frequency-Store provides both application-specific storage,
which brings efficiency, and sharing data across applications, which
brings scalability.
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4 SHAREABLE STORAGE FORMATS
Shareable storage formats are a family of storage formats where
every storage format contains data that is either superset or subset
of another storage format. Most image storage formats lossily com-
press the data [4, 16]. Given an image, they perform operations,
such as pruning and quantization, to reduce data size and efficiently
store the images.

Each storage format in the set of shareable storage formats loss-
ily compresses the data at a different level. While some storage
formats highly compress the data and retain only a tiny amount
of information, some lightly compress the data and retain almost
all information. Having a wide range of storage formats with vary-
ing levels of data allows applications to choose the right storage
formats that fits their budget.

The critical feature of shareable storage formats is that they can
use the same underlying storage. Achieving this requires diving
deep into details of how images are stored. There are fourmain steps
that storage formats performwhen storing an image: (i) partitioning,
(ii) transformation, (iii) pruning, and (iv) quantization2.
Partitioning & Transformation. When an image, say of size
256x256, is stored, storage formats first partition them into a set of
blocks of a specific size, e.g., 8x8 or 16x16. Then, they transform
every block from its visually recognizable spatial domain into the
so-called frequency domain. They use the discrete cosine trans-
formation, a version of the Fourier transformation. Representing
images in the frequency domain introduces a structure to the image
data. Every value in the frequency domain is called a frequency coef-
ficient and is responsible for carrying the weight of a specific signal
with a particular frequency. As the signals’ frequency increases,
the coefficients’ magnitude decreases. Therefore, low-frequency
coefficients usually have a high value, whereas high-frequency
coefficients usually have a low value.
Pruning & Quantization. Image data is pruned based on the fre-
quencies. Recent work has shown that low-frequency coefficients
are more important for image AI than high-frequency coefficients
[16, 18]. Hence, image storage algorithms start pruning out co-
efficients with higher frequencies, as they are less valuable. The
number of coefficients to prune depends on the application. The
fourth step quantizes the remaining coefficients. Quantization refers
to dividing each data value with a specific constant and rounding
them to their nearest integer, which allows significantly reducing
magnitudes of the data values and hence encoding them with a low
number of bits.
Sharing Data. We observe that storage formats with the same
block size, the same transformation, the same quantization policy,
and different pruning strategies can share data. To illustrate, con-
sider two storage formats. The first uses a 4x4 block size, keeping
data values in the frequency domain using discrete cosine transfor-
mation, quantizing every value by a fixed quantization factor of 50,
and pruning the 10 highest frequency coefficients. The second one
uses the same block size, transformation, and quantization factor
but pruning the 13 highest frequency coefficients. Since there is a
strict ordering between frequencies of the pruned coefficients, the

2Sampling is another common operation. We exclude sampling, as a recent work has
shown that it is the least effective operation for image storage [16].
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Figure 3: Storage formats with same block size, transforma-
tion, quantization policy, and different pruning strategies
can share data. First storage format prunes 10 highest fre-
quency coefficients, whereas, second storage format prunes
13 highest frequency coefficients. As first storage format con-
tains all the coefficients that second storage format needs,
they can share data.

first storage format contains all data needed by the second storage
format. Figure 3 illustrates this scenario for images of 8x8 size.

Based on this observation, we create a set of shareable storage
formats. We choose a fixed block size, transformation, and quanti-
zation factor. We then vary the pruning strategy and create a set of
formats that prune data at different levels. As pruning only happens
from highest to lowest frequency, storage formats in this set can
share their data. The following sections describe how we choose a
fixed block size, transformation, and quantization factor.

4.1 Choosing A Block Size & Transformation
Empirical Analysis. We use discrete cosine transformation, as
other image storage formats do [4, 16, 18]. To choose the block size,
we perform an empirical analysis across different block sizes: 8x8,
16x16, ..., 256x256. Each block size represents images differently in
the frequency domain and provides a different model quality. We
aim to find the block size that provides the highest model quality.
Block Size of 32 and 64 are Closest to the Pareto. We prune
increasing number of coefficients for every block size and measure
AI model quality for three quantization factors: 20, 50, and 100,
as also used by [16]. We examine average accuracy loss for each
block size across different number of coefficients and quantization
factors. We compute the loss compared to Pareto-optimal accuracy
over all block sizes and quantization factors. Figure 4 presents the
results for three datasets, a 5-class subset of ImageNet, Weather,
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Figure 4:We chose 32 as the common block size for our share-
able storage formats, as it has the lowest accuracy loss com-
pared to the Pareto-optimal curve with about 2% difference
and provides a more efficient columnar storage than block
size of 64 with smaller number of diagonal columns (see Sec-
tion 5.2.3 for details).

and Intel-Scenery datasets3. As the figure shows, block size of 32
and 64 has the lowest accuracy loss, less than 2% on average. We
chose block size of 32 among the two block sizes, as it allows a
more efficient columnar storage with smaller number of diagonal
columns (see Section 5.2.3 for details).

4.2 Choosing A Quantization Factor
We performed a similar experiment to choose the quantization fac-
tor. Quantization factors reduce data size while also losing some
model quality. We aim to choose a value that loses a small model
quality but significantly reduces data size. We tested three quan-
tization factors, as also done by [16]: 20, 50, and 100. We fix the
block size to 32 and report average accuracy loss across different
number of frequency coefficients. Figure 5 presents the results. As
the figure shows, quantization factor of 50 provides the minimum
average accuracy loss. We found out that it also provides a substan-
tial reduction in data size (>50%). Hence, we chose quantization
factor of 50 as the common quantization factor for our shareable
storage formats.

5 COLUMNAR STORAGE
Every storage format in the shareable storage formats contains data
that is either superset or subset of another storage format in the set.
State-of-the-art storage formats store images file by file [4, 16, 18].
Therefore, even though shareable storage formats can share data,
data is packed within image files and inaccessible to others.
Sharing Data Across Columns. We implement shareable storage
formats by using columnar data organization. We break a batch of
images into columns, where each storage format can read its data by
only reading the necessary columns. This way, storage formats can
share their data and read only what they need, bringing scalability
and efficiency. The columnar organization further allows for storing
similar valued data items together and, hence, efficient encoding.

3Using ResNet50 AI model. Please see Section 6.1 for more details.
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Figure 5: We chose 50 as the common quantization factor for
our shareable storage formats, as it provides a good balance
is accuracy loss (<2%) and reduced data size (>50%).

Figure 6: Image data contains values with different distribu-
tions and ranges.

5.1 Image Data Analysis
Images today are stored as integers. However, integers can have
varying widths, ranging from 8 to 64 bits. Storing images file by
file requires having a data width that is wide enough to cover all
integers in the dataset. In Figure 6, we take a block of frequency co-
efficients (by using a block size of 32x32) across a thousand images
of 256x256 size and examine the distribution of each coefficient4.
Image Data is Multimodal.We observe that while some coeffi-
cients have a large mean and variance, others have a small mean
with an increasingly smaller variance. Hence, using one data width
for all images wastes a large number of bits. Storage formats can
store coefficients using varying data widths based on their needs.

5.2 A Column Abstraction for Images
Structurewithin the ImageData.Relational data defines columns
based on attributes of tables, which have a clear two-dimensional
structure. We seek a similar structure in the image data. We observe

4We use a 5-class subset of ImageNet data.
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Figure 7: We analyzed three different column abstraction methods to efficiently reconstruct images by reading only data that is
needed and efficiently encoding them. Figures show an example block of 4x4 in frequency domain. Columns with diagonals of
coefficients proved to be best choice.

that blocks constitute the first level of structure in images. Each
image is partitioned into a set of blocks when stored. An image
of 256x256, for example, is partitioned into 64 32x32 blocks. Each
block is transformed into the frequency domain separately and
hence contains an independent unit of information. The second
level of structure is frequency. Within each block, each value is
a coefficient for a different frequency. Lower frequencies contain
large values with high variance, whereas higher frequencies contain
small values with low variance.

We use block and frequency-based structures in image data to
define a column abstraction for images. Our goal is to have an
abstraction that allows (i) efficiently sharing columns across ap-
plications and (ii) bringing similar-valued data items together to
efficiently encode them. We examine three different column ab-
stractions shown in Figure 7.

5.2.1 One Column per Coefficient. We first examined keeping one
column for each coefficient, as shown by the left-hand side of Figure
7. For a block size of 32x32, this would mean 1024 columns. Each
column contains data items from all blocks of all images in the batch.
If there are 1000 images in the batch, the block size is 32x32, and the
image size is 256x256, meaning each column includes 1000x64=64K
data items, as there are 64 blocks in a single image.
Efficient Sharing and Encoding, but TooMany Data Files. This
method allows efficient sharing across storage formats, as storage
formats can independently access any coefficient they need. Fur-
thermore, as shown in Section 5.1, coefficients have distinct ranges,
allowing tight data representations. However, this method suffers
from one major problem: a large number of data files. Data files
create a fragmentation on the disk. Hence, having a large number
of data files results in poor storage and data access efficiency.

5.2.2 One Column per Data Width. The next strategy combines
different frequency coefficients into a single column to reduce the
number of data files, as shown by the middle of Figure 7. We com-
bine coefficients that we can encode with the same number of bits.
This method impedes reading only the coefficients that a storage
format needs, as now different coefficients will be bundled together.

Our intuition is that if we encode coefficients so tightly with the
minimal number of bits, the overhead of reading unnecessary co-
efficients could be paid off by efficient encoding. We create one
column for all coefficients that we can encode with 2 bits, one for 3
bits, etc. We then bitpack each column into unsigned 8-bit integers.
Small Number of Data Files, but Inefficient Sharing and En-
coding. We observe that this method encodes data worse than the
previous method. We save arrays using Python’s internal encoding
method savez_compressed, which exploits repetitions in the data.
Original image data contains highly repeated values, as shown in
Figure 6. Bitpacking values into 8-bit unsigned integers damage this
repetition, providing a worse compression ratio than using one col-
umn per coefficient. Hence, while reducing the number of data files,
this strategy resulted in reading many unnecessary coefficients and
high data movement costs.

5.2.3 One Column per Diagonal of Coefficients. Lastly, we exam-
ined keeping the diagonal of coefficients as one column, as shown
by the right-hand side of Figure 7. Frequencies increase diagonally,
from the upper-left corner to the lower-right corner, in a block of
coefficients. The frequencies of [1,0]th and [0,1]st coefficients are
the same. The frequencies of [2,0]th, [1,1]st, and [0,2]nd coefficients
are also the same. We follow this structure and create one column
per diagonal of coefficients.
Small Number of Data Files, Efficient Sharing and Encoding.
One column per diagonal significantly reduces the number of data
files, as it keeps one data file per diagonal of coefficients. It follows
directly how storage formats reconstruct images. Storage formats
prune a diagonal of coefficients when pruning. A storage format
that keeps the ten lowest frequency coefficients keeps ten diago-
nals of coefficients from the upper-left to the lower-right corner
of each block. Therefore, this column abstraction allows reading
only coefficients that each storage format needs. Lastly, coefficients
exhibit similar ranges and distributions along the diagonal. We can
store each diagonal with 8- or 16-bit integers, allowing an efficient
encoding with column-specific data widths. Hence, we define our
column abstraction based on diagonals of coefficients.
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Figure 8: Frequency-Store (FS) improves the compression
ratio by up to 2.2x thanks to storing similar-valued items
together.

6 EXPERIMENTS
We now move to evaluation. Our evaluation shows the following.

• We show that Frequency-Store compresses the data by up to
2.2x higher than state-of-the-art image storage formats.

• We show that Frequency-Store does not introduce any im-
age reconstruction overhead compared to file-by-file image
reconstruction.

• We show that Frequency-Store improves end-to-end infer-
ence and training time by up to 11x when the bottleneck is
the network and up to 4.75x when the bottleneck is storage.

6.1 Setup
Datasets.We use four image classification datasets: a 5-class sub-
set of ImageNet data [10], blood-cell identification dataset [15],
weather prediction dataset [2], and Intel scenery dataset [3].
AIModels. For Figure 1, 4, and 5, we use the popular convolutional
neural network ResNet50 [12]. For all other experiments, we use
the popular convolutional neural network MobileNet-V3 [14].
Training.Weuse PyTorch v2.0.0+cu117with torchvision v0.15.1+cu-
117. The optimizer is stochastic gradient descent (SGD), which has
a learning rate of 0.001 and a momentum of 0.9.
Hardware.We use a GPU server with 4 Nvidia A100 GPUs, each
with 80GB of memory, an Intel Xeon CPU with 64 cores, and 512GB
of main memory. The server has a network-attached storage with
a 100Gbps InfiniBand connection.
Baselines. We use image calculator (IC), a recently proposed self-
designing storage format for image AI applications [16] and JPEG
[4] as the baselines.
Methodology.When reading the data from the disk, we drop the
OS caches. We measure end-to-end inference/training time for the
whole dataset for five minutes with multiple iterations and take the
average over the number of images processed. We use a batch size
of 256 when storing images as columns.

6.2 Results
6.2.1 Compression & Reconstruction Cost. As Frequency-Store
combines similar-valued data items and uses column-specific data
widths, it can efficiently compress the data. Figure 8 compares
Frequency-Store (FS) with IC, JPEG, and batched version of IC (IC-
b.) for the ImageNet dataset we use. IC-b saves a batch of image files
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Figure 9: Frequency-Store (FS) improves the compression
ratio by up to ∼2x for blood-cell images and weather datasets,
similar to the ImageNet dataset.

as a single file, using the same batch size FS uses (256). We use it
to isolate any improvement that would trivially come from merely
batching the images5. We evaluate the same 12 storage formats
for IC, IC-b, and FS with varying levels of prunings and report the
average. This is possible as IC’s space of storage formats subsumes
that of FS. X-axis lists the twelve storage formats from Sf0 to Sf11,
as well as average of the twelve results at the end. Y-axis presents
the compression ratio.
FS Improves Compression Ratio by up to 2.2x. As the figure
shows, FS has, on average, ∼1.8x higher compression ratio than IC
and IC-b, ranging from 1.74x to 1.87x. FS stores the same amount
of data as IC and IC-b and uses the same underlying encoding

0

50

100

150

200

250

300

IC IC-b. JPEG FS

C
om

pr
es

si
on

 ra
tio

0

0.5

1

IC IC-b. FS

R
ec

on
s. 

tim
e 

(n
or

m
al

iz
ed

)

0

0.5

1

IC IC-b. FS

Re
co

ns
. t

im
e 

(n
or

m
al

iz
ed

)

Figure 10: Despite a deeper
compression level, FS does
not introduce any reconstruc-
tion cost, as decompression
works better over batches
of files than over individual
files.

algorithm (Python’s savez_c-
ompressed). Hence, improve-
ment is purely due to stor-
ing data column by column
rather than file by file. IC
and IC-b are similar, which
shows that just batching
a set of files does not im-
prove the compression ra-
tio. JPEG’s compression ra-
tio, shown by the red col-
umn at the right-end of the
figure, is dramatically low,
17x lower than FS since it is
a fixed storage format with-
out any specialization to the
AI problem.

Figure 9 performs a sim-
ilar analysis using five stor-
age formats with varying
levels of prunings for the
two other datasets we use:
blood-cell images and weather dataset. We observe similar results.
FS compresses data on average by ∼2x better than IC/IC-b, ranging
from 1.9x to 2.2x savings. Once again, JPEG’s compression ratio is
dramatically lower than FS, by 6-6.5x, due to being a fixed storage
format for all AI problems.

5JPEG follows a block-based encoding algorithm. Hence, batching JPEG files does not
bring any benefit in terms of compression ratio
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FS does not Introduce Any Reconstruction Cost. A higher com-
pression ratio raises the question of whether a deeper compression
level causes any decompression, i.e., reconstruction cost. Figure 10
presents normalized image-reconstruc- tion times for IC, IC-b, and
FS for the ImageNet dataset we use, averaged across five storage
formats with varying pruning levels. As the figure shows, IC-b and
FS are about ∼40% faster than IC. Image reconstruction requires
a costly CPU-decoding process, which is more efficient when the
data is in batches than file by file.

6.2.2 End-to-end Inference/Training Time Reduction. Frequency-
Store allows applications to share data. We consider 12 applications
with different resource budgets sharing the same dataset (i) when
applications access data remotely over the network and (ii) when
data is on a fast network-attached storage with 100Gbps InfiniBand.
We use the same 12 storage formats used in previous section, Section
6.2.1. We use the ImageNet-5class dataset.
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Figure 11: Frequency-Store scales much better than other
storage formats and reduces inference time by up to 11x,
thanks to reading only columns that applications need, shar-
ing data across the applications, and compressing data better.

FS Improves Inference/Training Time by up to 11x when the
Network is Bottleneck. Figure 11 shows average inference time
per image when applications access data remotely over a network.
X-axis presents number of applications sharing the data. We assume
an average bandwidth of 50Mbps [13]. Wemeasure GPU server time
by profiling inference when data is in the main memory (/dev/shm).
We add profiled server time to the estimated network time based on
the assumed bandwidth to obtain the final inference time. Network
time overwhelmingly dominates the inference time by consuming
more than 95% of it. We assume perfect data sharing for JPEG and
FS. They bring data once for the storage format with most data and
share it with all the others.

As can be seen, FS’s inference time scales much better than other
storage formats with up to 11x reduced inference time, thanks to
reading only columns that applications need, sharing data across the
applications, and compressing data better. IC-b does not improve
the compression ratio or provide any sharing, so its time is similar
to IC. Despite its low compression ratio, JPEG is better than IC and
IC-b for nine or more applications. This is because JPEG allows
applications share the data and hence its high data movement cost
pays off for large number of applications. For small number of

applications, however, its inference time is significantly worse than
all other storage formats.

We repeated a similar experiment for training time. Figure 12
(left) presents average training time per image when twelve appli-
cations sharing the data. As the figure shows FS improves training
time by up to 9x, thanks to data sharing and efficiently compressing
columns. Compared to inference, training has a higher GPU time,
which is a small portion of the end-to-end inference time. Therefore,
data-movement savings still contribute significantly to the overall
results and bring up to 9x improvement. JPEG achieves a lower
training time than IC and IC-b, thanks sharing data across all the
twelve applications. Yet, JPEG’s training time is 5x higher than FS,
showing FS’s efficient sharing and encoding mechanisms.
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Figure 12: Frequency-Store reduces training time by up to 9x
when the network is the bottleneck (left) and inference time
by up to 4.75x when storage is the bottleneck (right), thanks
to sharing data across the applications and compressing data
better.

FS Improves Inference Time by up to 4.75x when Storage is
Bottleneck. Figure 12 (right) presents average inference time per
image when storage is the main bottleneck for twelve applications
sharing the data. We observe that the batched storage format, IC-b
is significantly more successful than its unbatched version, IC. The
reason is that storing hundreds of thousands of image files one by
one causes high disk fragmentation, resulting in a very inefficient
disk access time. Frequency-Store improves all the baselines thanks
to sharing data across applications and compressing data better. It
is 4.75x faster than IC and 1.9x faster than IC-b. As storage access is
faster than network access, Frequency-Store’s savings are reduced
compared towhen the network is the bottleneck. JPEG is worse than
IC since its other time components, such as GPU time, overshadow
the savings due to sharing.

7 RELATEDWORK
Application-Specific Storage for Image AI. Application-specific
storage formats tailor storage format to the AI problem at hand.
These studies range from self-designing storage formats [16] to
learning a JPEG-like encoding [18]. The goal is to store as little
data as possible to perform the AI task successfully enough. Our
work builds on these studies, proposing a novel storage layout for
efficiently sharing data across applications and better compression.
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Learned Compression. Another line of work trains a neural net-
work jointly optimizing the AI task and compression-ratio [8, 17].
These studies learn a data representation in main memory whose
storage on disk is low. Our work could also extend these studies
for more efficient storage access.
Column-Stores. Column-stores are one of the fundamental build-
ing blocks of modern database systems [1, 5, 6]. They inspired our
work. We show that their motivations for relational data, such as
reading only what you need and using tight data representations,
also apply to image data.

8 CONCLUSION
This work presents Frequency-Store, the first column-store for
images. Frequency-Store relies on the structure in image data and
defines a novel column abstraction for storing images. It breaks a
batch of image files into a set of columns and stores data column
by column rather than file by file. Columns allow applications to
share data efficiently and efficiently storing data by using tight data
representations. We show that Frequency-Store improves image
AI’s inference/training time by up to 11x and compression ratio by
up to 2.2x, compared to state-of-the-art image AI storage formats.
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