
Bullion: A Column Store for Machine Learning
Gang Liao∗

gangliao@umd.edu
University of Maryland
Collge Park, MD, USA

Ye Liu
ye.liu@bytedance.com

ByteDance Infra System Lab
San Jose, CA, USA

Jianjun Chen
jianjun.chen@bytedance.com
ByteDance Infra System Lab

San Jose, CA, USA

Daniel J. Abadi
abadi@cs.umd.edu

University of Maryland
Collge Park, MD, USA

Abstract
The past two decades have witnessed significant success in
applying columnar storage to data warehousing and analyt-
ics. However, the rapid growth of machine learning poses
new challenges. This paper presents Bullion, a columnar stor-
age system tailored for machine learning workloads. Bullion
addresses the complexities of data compliance, optimizes
the encoding of long sequence sparse features, efficiently
manages wide-table projections, introduces feature quan-
tization in storage, enables quality-aware sequential reads
for multimodal training data, and provides a comprehensive
cascading encoding framework that unifies diverse encod-
ing schemes through modular, composable interfaces. By
aligning with the evolving requirements of ML applications,
Bullion facilitates the application of columnar storage and
processing to modern application scenarios such as those
within advertising, recommendation systems, and Genera-
tive AI.
Preliminary experimental results and theoretical analy-

sis demonstrate Bullion’s improved ability to deliver strong
performance in the face of the unique demands of machine
learning workloads compared to existing columnar storage
solutions. Bullion significantly reduces I/O costs for dele-
tion compliance, achieves substantial storage savings with
its optimized encoding scheme for sparse features, and im-
proves metadata parsing speed for wide-table projections.
These advancements enable Bullion to become an important
component in the future of machine learning infrastructure,
enabling organizations to efficiently manage and process the
massive volumes of data required for training and inference
in modern AI applications.

Keywords: Machine Learning, Columnar Format, Data Com-
pliance, Compression
∗This work was inspired in Gang’s last quarter at ByteDance.

This paper is published under the Creative Commons Attribution 4.0 Inter-
national (CC-BY 4.0) license. Authors reserve their rights to disseminate
the work on their personal and corporate Web sites with the appropriate
attribution, provided that you attribute the original work to the authors and
CIDR 2025. 15th Annual Conference on Innovative Data Systems Research
(CIDR ’25). January 19-22, Amsterdam, The Netherlands

1 Introduction
Columnar storage, with its organization of data into individ-
ual columns, has reshaped data warehousing and big data
analytics over the past two decades, offering many benefits,
including optimized attribute skipping, effective data com-
pression, and vectorized query processing [15–19, 21]. In
the early 2010s, open-source column-oriented file formats
started to emerge, following the success of column-stores in
academia and industry [59, 67, 74, 84]. These open-source
columnar formats [45, 46, 55, 56] have become the de facto
standards for data warehouses, data lakes and lakehouses
stored in the Hadoop and Spark ecosystems. Apache Par-
quet [46] and Apache ORC [45] have become popular stor-
age choices for data stored in Hadoop HDFS [33, 62] and
Amazon S3 [8]. Their adoption extends to major data ana-
lytics frameworks, including Hive [44, 75, 76], Impala [31],
Presto/Trino [47, 73, 77], Dremio [2], Flink [34], Spark [48]
and Arrow DataFusion [51, 61, 63]. Furthermore, even data-
base products with proprietary storage formats, such as Red-
shift [1, 25, 53, 69], Snowflake [3, 40], ClickHouse [39], and
Google BigQuery [52]), have extended their support to Par-
quet and ORC via external tables. The recent lakehouse [24]
trend has further expanded the scope of these formats, em-
phasizing better metadata management (e.g., ACID transac-
tions). Specifically, Delta Lake [23], Apache Iceberg [50], and
Apache Hudi [49] are widely used metadata management
tools in this space that retain the columnar file structures of
Parquet and ORC.
Machine learning workloads, often involving complex

last-mile data transformations [27, 66] and feature engineer-
ing [22, 28], derive substantial benefits from the efficiency
of column stores in data retrieval and query execution. This
read efficiency is important for optimizing data pipelines,
mitigating the limitations of training accelerators (e.g., GPUs
and TPUs) operating under fixed power budgets in data
centers, and thereby accelerating model training and ex-
perimentation [29]. Furthermore, the capability of column
stores to selectively process data significantly facilitates fea-
ture selection and extraction, empowering practitioners to
efficiently distill relevant features from extensive training



CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Gang Liao et al.

datasets, even those with over 20,000 columns [83]. Addition-
ally, the improved support for schema evolution [30, 72] in
column stores is important for machine learning workflows,
accommodating the dynamic nature of data sources and fa-
cilitating the management of multiple versions of training
datasets. However, despite the advantages of columnar stor-
age in applied machine learning, these formats, developed
over a decade ago and rooted in early 2000s DBMS method-
ologies [15], have limitations that are becoming increasingly
evident [81].

Deletion Compliance: In major internet companies, per-
sonalization and recommendation systems rely heavily on
gathering and processing vast amounts of user data to create
detailed user profiles. This data is transformed into training
datasets for ML models, which are currently deployed for a
variety of tasks including ad click-through rate (CTR) pre-
diction and rankings. However, the tech industry faces the
challenge of adhering to stringent AI privacy and diverse
data compliance regulations worldwide. Laws such as the
EU’s GDPR [4], California’s CCPA [5], and CPRA [6], and
Virginia’s VCDPA [7], mandate the physical deletion of user
data within specified timeframes. This includes information
from users who have canceled their accounts, opted out, or
are underage. These deletions can be slow in columnar stor-
age for two reasons. First, since each column in the deleted
row is stored separately, a single request to delete a row re-
sults in many separate modifications: one for each column in
that row. Furthermore, block-based compression is typically
used, complicating direct modifications of individual rows.

Sparse Features and Wide Tables: The diversity of fea-
tures stored in columnar files and utilized by training jobs
is substantial, as evidenced by an example Parquet file from
ByteDance’s ads table (see Table 1). This table contains over
16,256 columns of the list<int64> type alone, in addition
to many other columns of other types. These sparse fea-
tures exhibit unique sliding window patterns, presenting
opportunities for optimized encoding schemes beyond those
available today in open-source column-store file formats.
This table is a good example of production datasets at

ByteDance, which are characterized by frequent introduc-
tion and deprecation of features, with several hundred modi-
fications occurring monthly. They contain a broad spectrum
of features, including those in beta, experimental, active, and
deprecated stages, leading to a typical feature count that ap-
proaches approximately 20,000 columns. Machine learning
training often requires reading only a small portion (about
10%) of these columns [83], motivating the use of columnar
storage. However, this scenario introduces significant chal-
lenges, particularly in terms of metadata overhead and read
efficiency, potentially causing performance bottlenecks in
data retrieval and processing for machine learning work-
loads.

Column Type # Columns
list<int64> 16,256
list<float> 812
list<list<int64>> 277
struct<list<int64>, list<float>> 143
struct<list<int64>> 120
struct<list<binary>> 46
struct<list<float>> 29
struct<list<binary>, list<binary>> 18
struct<list<double>> 10
list<binary> 8
struct<list<list<int64>>> 5
struct<list<binary>, list<float>> 5
string 3
int64 1

Table 1. Statistical breakdown of column types in an Ad
Parquet file.

LLM Storage: The proliferation of floating-point and em-
bedding features in machine learning applications, particu-
larly in large language models (LLMs), introduces significant
challenges for data management systems. We now describe
two important use cases that substantially impact columnar
storage and batch processing requirements.

1) LLM training: Pre-training involves the ingestion and
curation of massive datasets from web crawls (e.g., Com-
mon Crawl [10]), encompassing diverse data types includ-
ing text, image, audio, and video. Beyond traditional SQL
operations (e.g., filters and joins), modern data pipelines
require extensive preprocessing workflows [65] incorpo-
rating offline batch inference across multiple ML models.
This preprocessing encompasses data normalization, resiz-
ing, integrity and privacy filtering, quality scoring, content
extraction (e.g., OCR for video frames), and caption auto-
generation with subsequent scoring. The resultant feature
backfilling process generates numerous derived columns–
including embeddings–which significantly amplifies both
the cardinality and dimensionality of the underlying data
tables.

Multimodal training data poses unique storage challenges
due to its unstructured nature and heterogeneous sources. To
efficiently manage such diverse data types, we adopt a hybrid
storage architecture: leveraging columnar storage for struc-
tured metadata and embeddings, while utilizing Avro [43]–a
row-oriented binary format with schema support–for chun-
ked storage of large media objects (e.g., video and audio
content). However, this hybrid architecture introduces non-
trivial I/O challenges during training. While metadata and
quality scores are maintained in columnar storage (meta ta-
bles) and the corresponding media content in binary format
(media tables), the access of high-quality samples via filter-
ing criteria (e.g., quality scores) selected for training require



Bullion: A Column Store for Machine Learning CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

bouncing back and forth across both meta and media tables.
This scattered data layout leads to random I/O patterns, po-
tentially decreasing training throughput. Furthermore, the
contextual relationships between text, audio, image, and
video data, combined with privacy encryption requirements,
present additional technical challenges in effective columnar
storage design.
2) LLM serving: with the emergence of LLM-powered

AI search engines [68, 71], retrieval-augmented generation
(RAG) has become a critical paradigm for managing diverse
unstructured data–ranging from images and audio to text–
through vector embeddings. These embeddings, retrieved
via vector similarity search during inference, enrich prompts
by incorporating contextual information, historical data, and
relevant knowledge. These systems must crawl and analyze
over 10 billion web pages daily, performing large-scale offline
batch inference to generate trillions of embeddings over time.
While these embeddings enable efficient retrieval and LLM-
based summarization of relevant content for user queries,
they also demand near-real-time data ingestion and pro-
cessing capabilities, particularly for time-sensitive domain-
specific sources (e.g., sports, news, weather) at hourly or
minute-level granularity. The challenges manifest in two
dimensions: managing columnar storage at this scale, and
maintaining low-latency embedding generation and retrieval
to support real-time inference.

The exponential growth in industrial AI systems, particu-
larly recommendation models and LLMs, is fundamentally
constrained by computational and storage resource limita-
tions that affect production deployment costs and scalabil-
ity. The storage constraints are especially pronounced in
large-scale advertising infrastructures - individual tables in
ByteDance’s CN region can approach 100PB in size, as shown
in Figure 1. Other major technology companies including
Meta Platforms [29][83][36] have reported similar scalability
issues in their production environments. As model archi-
tectures continue to expand in both parameter count and
feature dimensionality, their resource requirements grow
commensurately. These observations demonstrate the need
for innovative approaches to data management systems that
can efficiently handle the increasing scale and complexity of
modern ML workloads.

In this paper, we present Bullion, a next generation colum-
nar storage system that addresses the limitations of legacy
formats and accelerates modern advanced analytics and ma-
chine learning workloads. Its key contributions include: 1) a
hybrid approach for deletion-compliant data removal, 2) a
tailored delta encoding scheme for long sequence sparse fea-
tures, 3) a compact, binary metadata layout for efficient wide-
table projection and 4) the adaptation of model quantization
techniques to feature quantization in storage, 5) a quality-
aware data organization strategy for efficient multimodal
training data access, and 6) a comprehensive cascading en-
coding framework with modular, composable interfaces for

A
B
C
D
E

F
G
H
I
J

To
p 

10
 A

d 
Ta

bl
es

J
I
G
H
F
E
D
C
B
A

Ad Table Data Size (PB)
0 20 40 60 80 100

Figure 1. Top 10 Ad tables in CN region.

optimal compression. These advancements enable Bullion to
meet the complex demands of modern data compliance, long
sequence feature encoding, storage quantization, and wide
table management, multimodal data handling, and adaptive
compression, ultimately enhancing the efficiency and per-
formance of large-scale training and inference processes in
AI and machine learning contexts.

2 New Challenges and Opportunities
This section discusses the emerging challenges and potential
opportunities facing columnar storage in AI contexts, and
describes how Bullion is designed to address these challenges
and take advantage of these opportunities. We explore six
key areas: deletion-compliant data management in response
to evolving privacy regulations, efficient encoding of sparse
features with long sequences, optimized wide table manage-
ment for feature-rich datasets, storage quantization for em-
bedding data, quality-aware multimodal data organization
for efficient LLM training, and a unified cascading encoding
framework for optimal compression. These advancements
aim to meet regulatory demands, reduce storage costs, and
significantly enhance the efficiency of large-scale training
and inference processes in machine learning workloads.

2.1 Deletion-Compliance
Without optimizations, deleting a single row in columnar
storagemay require rewriting the entire file, leading to signif-
icant I/O and resource consumption. Therefore, out-of-place
paradigms are often used. For example, Databricks, via their
Delta Lake solution, utilizes deletion vectors [41] that em-
ploys bitmaps to mark rows for deletion. ByteHTAP [38]
adopts a similar strategy to enhance garbage collection and
merge-on-read processes. These methods enable marking
changes without rewriting entire files, with subsequent reads
merging these markers into the data being read. However,
this approach, which marks data as invalid, often does not
align with data compliance regulations requiring timely dele-
tion [26]. The delay in permanent data removal, where data
remains in existence in storage despite being invisible via



CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Gang Liao et al.

H(RG1P2)

C
he

ck
su

m

Fo
ot

er
R

ow
 G

ro
up

 3

Column 0

Column 1

Column 2

Column 3

H(C0PG0)

H(C1PG0)

H(C2PG0)

H(C3PG0)

H(RG0P2)

H(RG3P2)

H(RG1P1)

H(RG0P1)

H(RG3P1)

H(RG1P0)

H(RG0P0)

H(RG3P0)

H(C0PG1)

H(C1PG1)

H(C2PG1)

H(C3PG1)

H(RG1)

H(RG2)

H(RG0)

H(RG3)

H(C0PG2)

H(C1PG2)

H(C2PG2)

H(C3PG2)

H
(R

G
3P2)

H(RG3)

H(RG2P0) H(RG2P1) H(RG2P2)

Row Group 0

Row Group 1

Row Group 2R
ow

 G
ro

up
s

M
erkle Tree

Cx
PGy

: Page y
 for C

olum
n x

 

R
Gx

Py
: Page y

 for R
ow

 G
roup x

 
U

pdate
Figure 2. Merkle tree update for checksum maintenance.

user requests, conflicts with the stringent timelines man-
dated by privacy laws. Therefore, in practice, many organi-
zations avoid using these methods, and instead immediately
delete data despite the cost. This has led to delete requests
causing rewriting of hundreds of petabytes per month at
TikTok, despite the fact that only 5% of each file contains
non-compliant data.
Solution. Bullion introduces a hybrid approach to tackle the
challenge of compliant and timely data erasure. It performs
in-place updates to physically remove data, yet also uses
deletion vectors to efficiently indicate which rows have had
this update performed to them, so that they can be skipped
during query execution. This approach ensures regulatory-
compliant data removal without requiring full file reads
/rewrites. Bullion uses metadata in the file footer to indi-
cate which rows are marked for deletion, along with their
row group and page offsets. This allows for direct, in-place
updating of the associated pages in storage. This process
must adhere to a key criterion: the post-update page di-
mensions do not exceed their initial size, which is vital to
upholding data integrity.
To achieve this, Bullion selectively deletes or masks data

at its source, without interfering with how it is encoded.
Bullion supports a range of encoding methods, including:
fixed-length bit-packing, dictionary encoding (Dict), variable-
length integer (Varint), run-length encoding (RLE), and frame-
of-reference (FOR-delta). Updates are made to encoded data
while guaranteeing the size of the updated pages remain
within their original limits, adhering to the requirement of
size consistency.

Bit-Packed Encoding stores data elements using a minimal,
fixed number of bits. Since the encoded values have a fixed
size, it is straightforward to map bits in a bitmap to the
encoded data elements, in order to mask deleted data.
Varint Encoding represents unsigned integers using the
widely adopted LEB128 algorithm [64, 80], encoding integers
into byte sequences using less space for smaller values and a
scaling mechanism for larger ones, where each byte holds 7
bits of the integer plus a continuation bit. When locating the
encoded integer to be deleted, it suffices to retain the MSB
(continuation bit) of each byte unchanged, while masking
out the remaining 7 bits.
RLE Encoding condenses sequences by representing con-
secutive identical elements with a single value and its occur-
rence count. In RLE, directly masking deleted elements is
insufficient as it may lead to enlarged data post-re-encoding.
Consider the sequence 222666663 with ’3’ occurrences of
’2’, ’5’ of ’6’, and ’1’ of ’3’, initially encoded as 236531. Delet-
ing the third ’6’ and masking it as ’0’ results in 222660663,
re-encoded as 23620162311 which is larger than the original
encoding. Instead, a deletion vector can be used, which de-
tails the valid values and their offsets in a page. This keeps the
data compact and aligned, as misaligned values are restored
using the deletion vector. For example, the same original
data (222666663) becomes 22266663 after deletion, which
is encoded to 236431 and a deletion vector 000001000. This
vector in the file footer allows 236431 to be decoded into
22266X663.
Dictionary Encoding constructs a dictionary to replace
long, variable-length values of a specific domain to shorter
(fixed-length) integer codes. This dictionary is stored in the
file footer, which remains unmodified during the deletion
process. Bullion introduces a default mask value entry within
the dictionary, enabling efficient deletion by simply updat-
ing the integer code in the data pages to reference this mask
entry. This approach effectively masks out the deleted val-
ues while maintaining the integrity of the residual data. It
also allows the integer codes in the data pages to be further
compressed using encoding techniques such as RLE, using
the approach described above.
FOR-delta Encoding declares a base value for each block
or references the preceding value in a sequence, encoding
data as deltas relative to these values. It supports random
access to any element, and is often coupled with bit-packing.
Bullion’s deletion technique remains effective even with
nested encoding schemes such as BtrBlocks [58].
For all of these encoding schemes, deletes occur by only

rewriting the page in which the deleted row resides instead
of the entire file. When deleting 2% of rows within a file,
data rewrite I/O costs can decrease by up to a factor of 50.

1For simplicity, the same method is used for both the re-encoding and initial
encoding processes.



Bullion: A Column Store for Machine Learning CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Furthermore, storage costs are nearly halved when full file
rewrites are eliminated.

In addition to updating the encoded data, the checksums
also must be updated in order to maintain data integrity and
accuracy. Bullion assigns distinctive hash values to each page
within the columnar file, as shown in Figure 2. These granu-
lar hash values form the foundation for the computation of
higher-level checksums at the row group tier. Subsequently,
these checksums coalesce to formulate the overall file check-
sum, akin to a Merkle tree. This Merkle tree structure es-
chews the traditional, monolithic approach (typically used
by the open columnar formats used today) of recalculating
checksums for the entire file, favoring instead page-level
updates. Updates necessitate the propagation of the mod-
ified node’s new hash value through the tree’s hierarchy,
culminating at the root, as depicted by the red arrows in
the figure. This incremental update mechanism ensures that
only file segments affected by the change are read, boosting
the efficiency of the checksum maintenance process.
Bullion’s deletion-compliance mechanism is backwards

compatible with existing columnar formats such as Par-
quet and ORC, offering a flexible, privacy-aware approach
through configurable compliance levels. At Level 0, the sys-
tem operates as standard Parquet or ORC, maintaining com-
plete backward compatibility but without upgraded deletion
support. Level 1 implements deletion vectors, enabling query-
time filtering of deleted rows while preserving the original
data structure, suitable for scenarios with moderate privacy
requirements. Level 2 combines deletion vectors with in-
place updates, providing the highest degree of privacy com-
pliance by physically removing sensitive data while main-
taining optimal query performance. This tiered approach
allows organizations to balance privacy requirements, per-
formance considerations, and regulatory compliance based
on data sensitivity and operational needs. Systems can dy-
namically adjust these levels on a per-table or per-column
basis, facilitating fine-grained privacy control while ensuring
seamless integration with existing data processing pipelines.

2.2 Sparse Features Encoding
Within recommendation systems, ranking is a key function,
often powered by deep learning recommendation models.
These models take a variety of inputs, including item fea-
tures such as keywords, image embeddings, related entity
IDs, and historical click counts; user profiles including age,
gender, interests, and recent interactions; as well as con-
textual features like city and phone type to yield a score
in the output that ultimately decides the placement of an
item, thus enabling efficient sorting and prioritization of con-
tent for display on websites and mobile applications. These
ranking models primarily rely on sparse features, reflecting
the reality that most users have not interacted with or rated
the majority of items within the system. These sparse fea-
tures (e.g., sets of IDs corresponding to information such as

user interests) are transformed into float vectors suitable for
neural network models.
In columnar storage, it’s common to store tens of thou-

sands of sparse features (columns) for dynamic A/B testing
in machine learning models. For example, clk_seq_cids is a
feature represented as a vector of 256 int64 elements (stored
as list<int64> in Parquet) where each element signifies an
ad ID. This feature is essential for tracking user interactions
with advertising campaigns over time, revealing patterns
and trends in user engagement. Typically, such data is cate-
gorized and sorted by user ID and timestamp before being
written into columnar storage. As shown in Figure 3, given
the evolving nature of user interests over time, this sorting
leads to the emergence of sliding window patterns be-
tween vectors within the same feature column for individual
users. These repetitive patterns present encoding optimiza-
tion opportunities within the context of machine learning
scenarios.

Optimization. Delta encoding is a good choice to encode
datetime columns where data exhibits repetitive patterns
in adjacent positions over time since it needs to store only
the differences between successive values within the col-
umn. However, current implementations of delta encoding
in most columnar storage formats—whether open-source,
such as Parquet and ORC, or proprietary formats used in
cloud data warehouses—support only standard primitive
types: INT, BIGINT, DATE, TIMESTAMP, and DECIMAL. Bullion
extends delta encoding to long sequence vectors charac-
teristic of sparse features in machine learning. As shown
in Figure 4, which illustrates the encoding process for the
example provided in Figure 3, the first vector of the col-
umn, [92,82,66,18,67,...,85,59,30,47,55], serves as
the base vector, using a delta flag set to 0 to denote the start
of delta encoding. Subsequent feature encodings adopt the
format: <delta bit> <delta range> <len(head),data>
<len(tail),data>. For instance, the second feature differs
from the base vector in the [0-14] range, with a new 76 at
the head, and no new data at the tail. Conversely, the third
feature is identical to the second, which is notated via the
overlapping interval [0-15], with both head and tail sizes
set to 0, indicating no new data and an unchanged sliding
window. Figure 4 shows the final data representation on disk:
feature metadata and indexes are placed at the beginning,
encoded via bitpacking or varint due to their smaller value.
The bulk data follows, which can be compressed via zstd
compression as machine learning training predominantly
involves mini-batch reads with infrequent filtering.
Challenge. Traditional recommendation systems utilize

labeled impressions as training data, where each record rep-
resents an atomic user-ad interaction. These training ex-
amples, derived from request logs, contain binary conver-
sion labels indicating successful user actions. The volume
of training data exhibits linear scaling with user engage-
ment - a user with n ad impressions generates n distinct



CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Gang Liao et al.

92, 82, 66, 18, 67, 13, 96, 63, 33, 49, 80, 85, 59, 30, 47,Uid: 2, Time: 12

76, Uid: 2, Time: 13

Uid: 2, Time: 15

clk_seq_cids feature column: list<element:int64>

Uid: 2, Time: 16

55

55

55

76, 92, 82, 66, 18, 67, 13, 96, 63, 33, 49, 80, 85, 59, 30, 47

92, 82, 66, 18, 67, 13, 96, 63, 33, 49, 80, 85, 59, 30, 47, 55

Bullion Embedding Table

0 0.6, 0.9, 0.1, 0.4, -0.7, -0.3,0.5

1 0.5, 0.8, -0.1, 0.2, -0.6, 0.5,0.4

… … …

13 -0.8, -0.4, 0.5, 0.1, 0.9, 0.3,0.7

14 0.2, 0.4, -0.4, -0.3, 0.2, 0.6,0.1

… … …

N 0.7, -0.1, 0.4, 0.3, -0.4, 0.3,0.6

Columnar Storage Large Scale Ranking Model

H
idden Layer

H
idden Layer

P(C
lick)

92, 82, 66, 18, 67, 13, 96, 63, 33, 49, 80, 85, 59, 30, 47

Figure 3. Illustration of sliding window patterns in the simplified clk_seq_cids sparse feature column, represented as
list<element:int64> data type, demonstrating temporal user engagement trends.

92, 82, 66, 18, 67, 13, 96, 63, 33, 49, 80, 85, 59, 30, 47, 55
Uid: 2

Time: 12

Uid: 2
Time: 13 0

Uid: 2
Time: 15

Uid: 2
Time: 16

Delta

1 76

00 15 0

1 15 0

0

1

1

1 1 55

Base Vector

Index Offsets

Head Size

Tail Size

0 1 1 1 16Final 
Data 
Rep.

5 400 14 1 500 15 0 1 15 0 1

92, 82, 66, 18, 67, 13, 96, 63, 33, 49, 80, 85, 59, 30, 47, 55 76 55

0 14

Feature Size

Figure 4. Delta encoding for long sequence sparse features.

training records. However, recent advances in Generative
Recommendation [37, 82] mandate a paradigm shift from
impression-centric to user-centric data modeling. This tran-
sition replaces discrete binary labels with temporal event se-
quences, where each user record encapsulates a comprehen-
sive interaction history spanning both organic activities and
advertising events (requests, impressions, and conversions).
The evolution from simple binary supervision to complex
temporal sequences poses significant challenges to existing
infrastructure.
The current feature storage, training pipelines, and serv-

ing architectures, optimized for impression-based models,
exhibit substantial limitations when handling these event se-
quences during both inference and training. This shift to user-
centric data modeling necessitates a fundamental redesign
of the storage stack. Users of existing columnar storage sys-
tems typically rely on suboptimal user-based bucketing and
sorting mechanisms for data access, resulting in significant
performance overhead when retrieving user event sequences.

The storage system must evolve to support efficient repre-
sentation and retrieval of long user event histories. Such
evolution demands either substantial schema-level modifi-
cations or the development of novel storage formats that
encapsulate rich temporal sequences of organic user events
and advertising engagement events as a single training ex-
ample per user.

2.3 Wide Table Projection
As described in Section 1, the dynamic nature of production
datasets is characterized by the frequent introduction and
deprecation of features, with several hundred modifications
occurring monthly [83]. Columnar files may encompass a
broad spectrum of features, including those in beta, exper-
imental, active, and deprecated stages, leading to a feature
count in the scale of tens of thousands of columns. Despite
such extensive feature sets, individual training jobs necessi-
tate the retrieval of only a specific subset of features, defined
through a feature projection. This projection delineates the
precise list of desired features for reading. In practice, each
training job may require access to less than 10% of the stored
features [83].
For ML training datasets with over 10,000 columns, the

overhead of readingmetadata is nearly equivalent to the time
needed to read 10% of all columns. Thus, the time to read
the metadata may double the read costs (see for example
Figure 11 of Zeng et al.’s study on wide-table projection
efficiency [81]).
Solution. Bullion adopts a compact metadata layout that
enables direct metadata access from the footer, allowing for
immediate buffer value readswithout deserialization. This
binary format is reminiscent of Cap’n Proto [79] and Flat-
Buffers [78]. To access columns in Bullion files, the process
begins with a pread() of the footer, followed by a binary
map scan to find column indices. Byte ranges for each col-
umn are identified via an offsets array, followed by a targeted
pread() for data retrieval.



Bullion: A Column Store for Machine Learning CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Parquet Metadata Parsing
Bullion Metadata Parsing

Ti
m

e 
(m

s)

0

50

100

# Features in Columnar Files
1000 5000 10000 20000

Figure 5.Metadata parsing overhead in feature projection.

table BullionFooter {
num_rows: uint64; page_compression_types: [uint8];
rows_per_page: [uint32]; page_offsets: [uint64];
pages_per_group:[uint32]; group_offsets: [uint64];
column_sizes: [uint32]; column_offsets: [uint32];
deletion_vec: [uint64]; checksums: [uint64];
schema: [Column];

}

Figure 5 shows the time it takes Parquet and Bullion to ex-
tract a single column from a dataset consisting of a variable
number of features. The figure shows that while Parquet’s
performance is significantly dependent on the number of
feature columns, with retrieval time increasing linearly with
the number of features, Bullion’s performance is not (staying
flat at less than 2 ms). When there are 10,000 feature columns,
Parquet required 52 ms for metadata parsing, whereas Bul-
lion required 1.2 ms.
This efficiency comes at the cost of flexibility, since the

encoding format is fixed and lacks some customization op-
tions. This lack of flexibility is less problematic for machine
learning tasks. since they often exhibit a simple data access
pattern, reading all training data within a specific time pe-
riod in a batch-oriented manner, without requiring complex
indexing or filtering. Thus, the benefits of improved effi-
ciency and faster data access outweigh the limitations in
customization and extensibility.

2.4 Storage Quantization
Feature and data representation are important determinants
of model performance in both recommender systems and
LLMs. In recommender systems, the dimensionality of the
feature space directly correlates with the size of embedding
tables, which in turn determines the model’s total memory
footprint. However, production deployment scenarios fre-
quently impose strict storage constraints that inhibit the
incorporation of additional features and expanded embed-
ding capabilities. As a consequence, numerous promising
architectural improvements remain unrealized in production

environments. This is particularly problematic for adver-
tising platforms and AI search engines, where rich feature
representations and embedding directly influence business
outcomes.
Model quantization [42, 54, 57] aims to address model

size, inference speed, and memory efficiency challenges. It
typically reduces model weights from high-precision 32-bit
floating-point (FP32) representations to more compact nu-
merical formats, including lower-precision floating-point
(FP16, FP8) or integer representations (see Figure 6). The
proven effectiveness of model quantization in training and
serving stages motivates its application for features and em-
beddings in storage, adaptingmodel quantization to stor-
age quantization. Different features and embeddings ex-
hibit varying degrees of precision sensitivity, which implies
that a mixed-precision quantization strategy should be used
that can be dynamically tuned at the granularity of individual
features. The resulting storage savings can be strategically
reinvested to enhance model capabilities through expanded
sequence lengths and increased embedding dimensionality,
ultimately achieving both infrastructure cost reduction and
improved model performance in production environments.
Recommender Systems operate on three distinct feature

types, each with specific data representations: 1) Dense fea-
tures are characterized by continuous FLOAT or DOUBLE nu-
merical values, include both direct measurements (e.g., de-
mographic attributes, engagement metrics) and derived fea-
tures generated through upstream offline model inference. 2)
Sparse features represent high-cardinality categorical vari-
ables, predominantly implemented through efficient lookup
mechanisms such as INT or BIGINT foreign key references,
where the feature space exhibits significant sparsity (e.g.,
user interaction histories, entity identifiers). 3) Embedding
features are learned dense vector representations, typically
encoded as FLOAT32 or FLOAT64 arrays, transformed from
either dense or sparse inputs through parameterized embed-
ding layers during model training.
Many existing technology companies face constraints

from third-party search APIs (e.g., from Google or Bing)
that motivate them to build their own proprietary search
infrastructure for result aggregation and LLM-based sum-
marization. These constraints include limitations on query
volumes, restrictions on logging search results for model
training, and stringent latency requirements. Consequently,
they implement sophisticated crawling systems that oper-
ate at varying frequencies (minute/hour/day) based on do-
main priorities, while managing substantial computational
resources for preprocessing and generating embeddings us-
ing offlineMLmodels for similarity-based retrieval. Since the
crawled data may include hundreds of trillions of pages, the
storage of embeddings and associated metadata (such as en-
tity attributes) poses significant capacity challenges, thereby
increasing the motivation for vector embedding quantization
techniques.



CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Gang Liao et al.

Traditional HPC

Sign Bit Exponent Bit Fraction Bit

111IEEE FP64 52

81IEEE FP32 23

81NVIDIA TF32 10

51IEEE FP16 10

81Google BF16 7

51NVIDIA FP8 2

41NVIDIA FP8 3

Neural Networks

Transformers/LLM

Figure 6. Basics of floating–point quantization.

For integer features, quantization provides lossless com-
pression by rehashing the input space to a smaller range (e.g.,
INT8, INT16, INT32). For low cardinality columns, column
stores can further leverage bit-packed encoding and RLE to
achieve higher compression ratios. Native support for low-
precision data types not only saves storage space, but also
reduces network bandwidth and preprocessing computation
overhead. Given that sparse features (integers) often con-
stitute a significant portion of the total storage footprint in
recommender systems, new columnar formats should incor-
porate nested light-weight adaptive encoding schemes [12,
35, 58] to improve compression while minimizing decoding
overhead. For float-point features and embeddings, the preci-
sion offered by 4-byte floats is often unnecessary for effective
results. Feature quantization therefore stores values in FP16,
BF16, or FP8 formats, usable directly in training and serving.
This reduction to 1 or 2 bytes per float can halve or quarter
storage costs, disk I/O, network bandwidth, decompression
efforts, and compute cost during training and inference.

Opportunities. There are three potential areas that could
improve the performance of the approach discussed above.
First, native support for the reduced-precision formats (FP16,
BF16 and BF8) in data processing frameworks (e.g., Apache
Spark, Arrow, Velox) would enhance computational and
memory efficiency during feature preprocessing (current im-
plementations require interim solutions where data ingestion
pipelines must implement automatic padding mechanisms to
convert BF16 to FP32 format). Second, given that embedding
vectors are typically normalized to (-1, 1), there exists a need
for more storage-efficient encoding schemes specifically op-
timized for BF16’s numerical characteristics. Third, some
FP32 features are crucial for business-critical models. To mit-
igate potential accuracy degradation from FP16 quantization
while maintaining computational efficiency, it is possible to
use a dual-column storage strategy: decomposing FP32 fea-
tures into two FP16 representations. This approach enables
business-critical models to reconstruct original FP32 pre-
cision through 1:1 join operations during feature retrieval,
while allowing other models to utilize FP16 features. Al-
though this strategy does not reduce storage footprint, it

decreases network bandwidth utilization and computational
overhead in upstream processing stages.

2.5 Multimodal Storage
As stated in Section 1, LLM pre-training increasingly de-
mands multi-modal data integration, encompassing text, im-
ages, audio, and video content. These data types typically
appear in contextually related forms, such as within web
pages, serving as collective inputs for model pre-training.
Meanwhile, conventional column stores face challenges in
supporting multi-modal data, especially for high-resolution
video content.

Challenge. As described in Section 1, it is possible to
use a dual-table architecture where meta tables leverage
columnar format for efficient metadata management (includ-
ing text, image and even audio), while media tables adopt
row-oriented storage for multi-modal content. However, this
approach introduces a performance bottleneck during train-
ing. The separation of data across different storage formats
(columnar for metadata and row-oriented for media) and
locations results in fragmented I/O operations, significantly
impacting training I/O throughput and overall system per-
formance.
Solution. While specialized diffusion transformers like

Sora [14] require high-resolution, full-size videos for generat-
ing complex scenes with multiple characters, specific motion
patterns, and accurate subject-background details, the pre-
training of general-purpose LLMs does not require this same
level of resolution. Instead, it can effectively operate on a
strategic subset of video frames at reduced resolution, with
these critical frames directly integrated into the columnar
format, as shown in Figure 7. This optimization enables the
training system to access text, audio, and video modalities
through the columnar storage alone, satisfying the majority
of training scenarios. By having all the required data stored
together, this approach eliminates the latency overhead as-
sociated with external, fragmented I/O operations. When
full-size video access is required, the system still maintains
the capability to perform external lookups through video
indices stored in the meta table.
The meta table faces an additional challenge of random

I/O patterns during training, as only high-quality data sam-
ples are selected for the training process. The quality-based
filtering mechanism, primarily driven by quality scores, typ-
ically excludes a significant portion of the data, resulting in
non-sequential access patterns within the columnar storage.
To alleviate this I/O inefficiency, the storage system imple-
ments a quality-aware data organization strategy: incoming
row data is presorted by quality score in descending order
prior to insertion into the storage. This presorting approach
improves contiguous access to high-quality video frames
during training.

The quality-based reordering strategy for LLM training is
a row reordering approach, where entire rows are sorted



Bullion: A Column Store for Machine Learning CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

0

Meta Table (Bullion)

Video Table (Avro)

1 2 3 4 5 6 100…

fram
e 

highlights 

fram
e index 

[0, 3, 6]

video 
lookup

Text Hash  
Tags

C
aptions

Audio

only rare cases

Multimodal Data Layout

Figure 7. Multimodal data layout.

based on their quality scores, ensuring that high-quality
video frames and their associated features are stored con-
tiguously within pages of each row group. This contrasts
with the column-oriented reordering requirements in recom-
mendation systems, where typically only 10% of the thou-
sands of available features are accessed during training. In
recommendation scenarios, the system prioritizes frequently
accessed, important features through column reordering,
ensuring these features (columns) are stored contiguously
within row groups. Both approaches achieve their respec-
tive performance gains by minimizing random I/O through
strategic data organization, though they operate on different
dimensional axes of the storage structure.

2.6 Cascading Encoding
Given that machine learning workloads predominantly con-
sist of integer and floating-point data types, adaptively se-
lecting nested encoding schemes for each column at run-
time can be highly effective. Recent work, including Btr-
Blocks [58] and Nimble [12], have adopted cascading encod-
ing approaches; however, existing formats implement only
a subset of available encoding schemes (listed in Table 2),
with no single implementation providing comprehensive
coverage. Furthermore, Parquet and ORC currently tightly
couple various encoding methods (such as RLE, varint, and
fixed-width encoding) without providing unified interfaces,
making it impossible to utilize these encoding schemes in-
dependently. This coupling presents a significant barrier to
implementing cascading encoding, which requires modular
encoding selection. What is needed is an independent encod-
ing module that provides cascading encoding capabilities.
Such a modular approach would enable all columnar storage
formats to leverage diverse encoding methods effectively.
The composable and recursive nature of encodings en-

ables combinatorial patterns that can achieve superior data
compression compared to static, single-encoding approaches.

However, the search space for optimal encoding combina-
tions grows significantly as the catalog expands, requir-
ing systems like Procella [35] and BtrBlocks [58] to em-
ploy sampling-based distribution analysis and heuristic ap-
proaches for encoding selection. The unbounded recursive
potential raises an important question regarding the opti-
mal depth of recursion. Current implementations, such as
BtrBlocks, pragmatically limit recursion to one or two lev-
els, but determining the ideal recursion depth still requires
investigation.
While prior work [81] suggests that "formats should not

apply general-purpose block compression by default", general-
purpose compression methods (such as Chunked encoding
in Table 2) continue to demonstrate practical value in spe-
cific scenarios. This is particularly evident in time-series data
where many columns are rarely accessed, and in recommen-
dation systems where only approximately 10% of thousands
of features are frequently queried—scenarios where block
compression proves highly effective for storage optimization.

3 Related Work
Zeng et al. [81] conducted an in-depth analysis of widely-
used open formats for analytical DBMSs, such as Apache
Parquet and Apache ORC. Their work highlights perfor-
mance bottlenecks and overhead, particularly in the context
of wide-table projection. These findings resonate with the
challenges tackled by Bullion, underscoring the necessity for
more efficient metadata management and feature projection
mechanisms.
Meta has unveiled Alpha [36, 83], a novel columnar for-

mat aimed at boosting wide-table projection efficiency, espe-
cially for ML use cases, addressing significant weaknesses
in previous formats. It includes: 1) feature flattening, which
stores each feature as a separate stream on disk—effectively
treating n features as n columns instead of a single map. 2)
feature reordering, which arranges commonly accessed fea-
tures in adjacent disk positions to minimize over-reads from
storage. 3) coalesced reads, which bundle selected feature
streams into single I/O operations of up to 1.25 MiB, thereby
amortizing disk seeks and improving throughput. Despite
these advancements, Alpha does not explicitly address the
metadata overhead challenge, data compliance, sparse fea-
ture encoding, and feature quantization, which are primary
focuses of Bullion.

Recent advances in columnar storage have emerged from
both academia and industry, including BtrBlocks [58] and
Nimble [12], which draw inspiration from Google’s Pro-
cella [35]. These new formats revisit the concept of cas-
cading/nested encodings at runtime, albeit with different
optimization objectives. BtrBlocks primarily focuses on op-
timizing decoding efficiency through its nested encoding
scheme, while Nimble introduces a more comprehensive



CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Gang Liao et al.

Table 2. Catalog of column encoding schemes found in existing storage systems and formats including Parquet, ORC, Kudu,
BtrBlocks [58], Nimble [12], and Protocol Buffers.

Encoding Description
Trival A basic encoding scheme that stores data directly in its original format.
BitShuffle [9] A bit-level transformation that rearranges data by transposing a matrix

of elements-by-bits, grouping bits of the same significance level together
to improve compression efficiency.

RLE Run-Length Encoding that compresses repeated values by storing dis-
tinct values and their consecutive occurrence counts in separate sub-
columns.

Dictionary Compresses data by maintaining a dictionary of unique values and
storing data as indices referencing this dictionary.

FixedBitWidth Compresses integer data using a uniform bit width for all values, opti-
mized for cases with known value ranges.

Huffman An entropy-based encoding optimized for integer values in the small
range, assigning shorter codes to more frequent values.

Nullable Handles null values using a two-subcolumn structure: one for null
indicators and another for non-null values.

SparseBool An optimized bitmap encoding for boolean values, typically used as a
subcolumn in Nullable encoding for efficient null tracking.

Varint Variable-length integer encoding that uses fewer bytes for smaller val-
ues, optimizing storage for integer distributions.

ZigZag Encodes signed integers into unsigned values using zigzag pattern,
efficiently handling both positive and negative numbers.

Delta Stores differences between consecutive values using three subcolumns:
base values, deltas, and delta indicators. Effective for monotonic or
slowly-changing sequences.

SIMDFastPFOR [11] SIMD-optimized implementation of PFOR (Patched Frame-of-Reference)
compression, leveraging parallel processing for improved performance.

SIMDFastBP128 [11] SIMD-optimized binary packing compression that processes 128-bit
segments in parallel for enhanced compression speed.

Constant Optimizes storage for columns containing a single repeated value by
storing only the constant value.

MainlyConstant Optimizes columns dominated by a single value, storing the constant
value, positions of exceptions, and their corresponding values. Also
known as Frequency Encoding.

Sentinel Represents null values by designating an unused value as a sentinel
marker, encoding the data in a single subcolumn.

Chunked Applies zstd compression to fixed-size chunks (256KB) of raw data,
particularly effective for ML datasets with local patterns.

FSST [32] Fast Static Symbol Table compression that identifies and compresses
both full string repetitions and common substrings, optimized for struc-
tured string data like URLs and emails.

Gorilla [70]/Chimp [60] An optimization of the Gorilla algorithm for floating-point compression,
exploiting patterns in XOR’d values’ leading and trailing zeros.

Pseudodecimal [58] Specialized encoding for floating-point values using decimal represen-
tation, optimizing for human-readable numeric patterns.

ALP [20] An adaptive scheme that uses a strongly enhanced version of Pseudo-
Decimals [58] to losslessly encode doubles as integers if they originated
as decimals, and otherwise uses vectorized compression of the doubles’
front bits.

Roaring Bitmaps [13] Advanced bitmap encoding that dynamically switches between different
container types based on data density.



Bullion: A Column Store for Machine Learning CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

and granular approach to encoding selection. Nimble incor-
porates a user-configurable linear objective function that
independently weights read time, write time, and storage
size that enables users to tailor encoding strategies to their
specific workload requirements. These research efforts focus
on improving data encoding, but do not comprehensively ad-
dress the storage-level challenges and opportunities unique
to machine learning workloads which is the focus of Bullion.

4 Conclusion
Bullion represents a step forward in the evolution of colum-
nar storage systems, specifically designed to address the
unique challenges and opportunities presented by the rapid
growth of machine learning workloads. By introducing novel
techniques such as hybrid deletion-compliance, optimized
encoding for long sequence sparse features, feature quan-
tization, efficient wide-table projection, quality-aware mul-
timodal data organization, and a comprehensive cascading
encoding framework, Bullion demonstrates the potential for
columnar storage to adapt and excel in the era of AI and ML.
As the demand for efficient and scalable data management
solutions continues to grow, Bullion serves as a foundation
for future research and development in this critical area.

Acknowledgments
We would like to express our gratitude to Yixin Wu, Kai
Xie, Han Qian, and other members of the ByteDance Mag-
nus data lake team for providing us with insights into the
pain points and challenges encountered in storing machine
learning training data. We also thank Hui Zhang, Yonghua
Ding and Le Cai for their valuable participation in the early
discussions.

References
[1] 2015. Amazon Redshift. Retrieved Jan 9, 2024 from https://aws.amazon.

com/cn/redshift/
[2] 2015. Dremio: The Easy and Open Data Lakehouse. Retrieved Jan 9,

2024 from https://www.dremio.com/
[3] 2015. Snowflake: Everything is Easier in the Data Cloud. Retrieved Jan

9, 2024 from https://www.snowflake.com/en/
[4] 2016. Regulation (EU) 2016/679 of the European Parliament and of

the council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC. In Official Journal of
the European Union (Legislative Acts). L119/1–L119/88.

[5] 2018. California Consumer Privacy Act. Assembly Bill No. 375, Chapter
55.

[6] 2020. The California Privacy Rights Act of 2020. https://thecpra.org/
[7] 2021. Virginia Consumer Data Protection Act. https:

//www.sullcrom.com/files/upload/SC-Publication-Virginia-
SecondState-Enact-Privacy-Legislation.pdf

[8] 2024. Amazon S3. Retrieved Jan 11, 2024 from https://aws.amazon.
com/s3/

[9] 2024. Bitshuffle. https://github.com/kiyo-masui/bitshuffle
[10] 2024. Common Crawl. Retrieved Jul 28, 2024 from https://

commoncrawl.org/
[11] 2024. FastPFor. https://github.com/lemire/FastPFor

[12] 2024. The Nimble File Format. https://github.com/facebookincubator/
nimble

[13] 2024. Roaring Bitmaps for Booleans. https://arxiv.org/pdf/1603.06549
[14] 2024. Sora: Creating video from text. https://openai.com/index/sora/
[15] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos,

Samuel Madden, et al. 2013. The design and implementation of mod-
ern column-oriented database systems. Foundations and Trends® in
Databases 5, 3 (2013), 197–280.

[16] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrat-
ing compression and execution in column-oriented database systems.
In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data. 671–682.

[17] Daniel J Abadi. 2007. Column Stores for Wide and Sparse Data.. In
CIDR, Vol. 2007. 292–297.

[18] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. 2009.
Column-oriented database systems. Proceedings of the VLDB Endow-
ment 2, 2 (2009), 1664–1665.

[19] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. 2008. Column-
stores vs. row-stores: how different are they really?. In Proceedings
of the 2008 ACM SIGMOD international conference on Management of
data. 967–980.

[20] Azim Afroozeh, Leonardo X Kuffo, and Peter Boncz. 2023. ALP: Adap-
tive Lossless floating-Point Compression. Proceedings of the ACM on
Management of Data 1, 4 (2023), 1–26.

[21] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and Marios Sk-
ounakis. 2001. Weaving Relations for Cache Performance.. In VLDB,
Vol. 1. 169–180.

[22] Michael R Anderson and Michael Cafarella. 2016. Input selection for
fast feature engineering. In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). IEEE, 577–588.

[23] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shix-
iong Zhu, Mukul Murthy, Joseph Torres, Herman van Hovell, Adrian
Ionescu, Alicja Łuszczak, et al. 2020. Delta lake: high-performance
ACID table storage over cloud object stores. Proceedings of the VLDB
Endowment 13, 12 (2020), 3411–3424.

[24] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021.
Lakehouse: a new generation of open platforms that unify data ware-
housing and advanced analytics. In Proceedings of CIDR, Vol. 8.

[25] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai,
Naresh Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J
Green, Monish Gupta, Sebastian Hillig, et al. 2022. Amazon Redshift
re-invented. In Proceedings of the 2022 International Conference on
Management of Data. 2205–2217.

[26] Manos Athanassoulis, Subhadeep Sarkar, Zichen Zhu, and Dimitris
Staratzis. 2022. Building deletion-compliant data systems. https://cs-
people.bu.edu/dstara/pdfs/delCompl.pdf

[27] Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiří Šimša,
and Chandramohan A Thekkath. 2023. tf. data service: A Case for
Disaggregating ML Input Data Processing. In Proceedings of the 2023
ACM Symposium on Cloud Computing. 358–375.

[28] Amazon AWS. 2024. What is Feature Engineering? Retrieved Jan 10,
2024 from https://aws.amazon.com/what-is/feature-engineering

[29] Aarti Basant. 2022. Scaling data ingestion for machine
learning training at Meta. Retrieved Jan 9, 2024 from
https://engineering.fb.com/2022/09/19/ml-applications/data-
ingestion-machine-learning-training-meta/

[30] Souvik Bhattacherjee, Gang Liao, Michael Hicks, and Daniel J Abadi.
2021. Bullfrog: Online schema evolution via lazy evaluation. In Pro-
ceedings of the 2021 International Conference on Management of Data.
194–206.

[31] MKABV Bittorf, Taras Bobrovytsky, CCACJ Erickson, Martin
Grund Daniel Hecht, MJIJL Kuff, Dileep Kumar Alex Leblang,
NLIPH Robinson, David Rorke Silvius Rus, JRDTS Wanderman, and
MilneMichael Yoder. 2015. Impala: Amodern, open-source SQL engine

https://aws.amazon.com/cn/redshift/
https://aws.amazon.com/cn/redshift/
https://www.dremio.com/
https://www.snowflake.com/en/
https://thecpra.org/
https://www.sullcrom.com/files/upload/SC-Publication-Virginia-SecondState-Enact-Privacy-Legislation.pdf
https://www.sullcrom.com/files/upload/SC-Publication-Virginia-SecondState-Enact-Privacy-Legislation.pdf
https://www.sullcrom.com/files/upload/SC-Publication-Virginia-SecondState-Enact-Privacy-Legislation.pdf
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://github.com/kiyo-masui/bitshuffle
https://commoncrawl.org/
https://commoncrawl.org/
https://github.com/lemire/FastPFor
https://github.com/facebookincubator/nimble
https://github.com/facebookincubator/nimble
https://arxiv.org/pdf/1603.06549
https://openai.com/index/sora/
https://cs-people.bu.edu/dstara/pdfs/delCompl.pdf
https://cs-people.bu.edu/dstara/pdfs/delCompl.pdf
https://aws.amazon.com/what-is/feature-engineering
https://engineering.fb.com/2022/09/19/ml-applications/data-ingestion-machine-learning-training-meta/
https://engineering.fb.com/2022/09/19/ml-applications/data-ingestion-machine-learning-training-meta/


CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Gang Liao et al.

for Hadoop. In Proceedings of the 7th biennial conference on innovative
data systems research. 1–10.

[32] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast
random access string compression. Proceedings of the VLDB Endowment
13, 12 (2020), 2649–2661.

[33] Dhruba Borthakur. 2008. HDFS architecture guide. Hadoop apache
project, 1–13.

[34] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache flink: Stream and batch
processing in a single engine. The Bulletin of the Technical Committee
on Data Engineering 38, 4 (2015).

[35] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, An-
drew Mccormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez,
David Lomax, Sagar Mittal, et al. 2019. Procella: Unifying serving and
analytical data at YouTube. Proceedings of the VLDB Endowment 12, 12
(2019), 2022–2034.

[36] Biswapesh Chattopadhyay, Pedro Eugenio Rocha Pedreira, Sameer
Agarwal, Suketu Vakharia, Peng Li, Weiran Liu, and Sundaram
Narayanan. 2023. Shared Foundations: Modernizing Meta’s Data Lake-
house. In Proceedings of CIDR.

[37] Junyi Chen, Lu Chi, Bingyue Peng, and Zehuan Yuan. 2024. HLLM:
Enhancing Sequential Recommendations via Hierarchical Large
Language Models for Item and User Modeling. arXiv preprint
arXiv:2409.12740 (2024).

[38] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi
Zhang, Kui Wei, Lixun Cao, Dan Zou, Yang Liu, et al. 2022. ByteHTAP:
bytedance’s HTAP system with high data freshness and strong data
consistency. Proceedings of the VLDB Endowment 15, 12 (2022), 3411–
3424.

[39] Inc. ClickHouse. 2016. ClickHouse: Fast Open-Source OLAP DBMS.
Retrieved Jan 9, 2024 from https://clickhouse.com/

[40] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov,
Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Mar-
tin Hentschel, Jiansheng Huang, et al. 2016. The snowflake elastic
data warehouse. In Proceedings of the 2016 International Conference on
Management of Data. 215–226.

[41] databricks. 2023. What are deletion vectors? Retrieved Jan 12, 2024
from https://docs.databricks.com/en/delta/deletion-vectors.html

[42] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. 2020. Model
compression and hardware acceleration for neural networks: A com-
prehensive survey. Proc. IEEE 108, 4 (2020), 485–532.

[43] Apache Software Foundation. 2009. Apache Avro: a data serialization
system. Retrieved Jan 9, 2024 from https://avro.apache.org/

[44] Apache Software Foundation. 2010. Apache Hive. Retrieved Jan 9,
2024 from https://hive.apache.org/

[45] Apache Software Foundation. 2013. Apache ORC. Retrieved Jan 9,
2024 from https://orc.apache.org/

[46] Apache Software Foundation. 2013. Apache Parquet. Retrieved Jan 9,
2024 from https://parquet.apache.org/

[47] Apache Software Foundation. 2013. Apache Presto. Retrieved Jan 9,
2024 from https://prestodb.io/

[48] Apache Software Foundation. 2014. Apache Spark. Retrieved Jan 9,
2024 from https://spark.apache.org/

[49] Apache Software Foundation. 2017. Apache Hudi. Retrieved Jan 9,
2024 from https://avro.apache.org/

[50] Apache Software Foundation. 2017. Apache Iceberg. Retrieved Jan 9,
2024 from https://iceberg.apache.org/

[51] Apache Software Foundation. 2021. Apache Arrow DataFusion SQL
Query Engine. Retrieved Jan 9, 2024 from https://github.com/apache/
arrow-datafusion

[52] Google. 2016. BigQuery: Cloud data warehouse to power your data-
driven innovation. Retrieved Jan 9, 2024 from https://cloud.google.
com/bigquery

[53] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul
Pathak, Stefano Stefani, and Vidhya Srinivasan. 2015. Amazon redshift
and the case for simpler data warehouses. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1917–
1923.

[54] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[55] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong
Zhang, and Zhiwei Xu. 2011. RCFile: A fast and space-efficient data
placement structure in MapReduce-based warehouse systems. In 2011
IEEE 27th International Conference on Data Engineering. IEEE, 1199–
1208.

[56] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N
Hanson, Owen O’Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee, and
Xiaodong Zhang. 2014. Major technical advancements in apache hive.
In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 1235–1246.

[57] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
2018. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2704–2713.

[58] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Vik-
tor Leis. 2023. BtrBlocks: Efficient Columnar Compression for Data
Lakes. Proceedings of the ACM on Management of Data 1, 2 (2023),
1–26.

[59] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandiver, Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic
Database: C-Store 7 Years Later. Proc. VLDB Endow. 5, 12 (aug 2012),
1790–1801.

[60] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis.
2022. Chimp: efficient lossless floating point compression for time
series databases. Proceedings of the VLDB Endowment 15, 11 (2022),
3058–3070.

[61] Gang Liao. 2022. The Evolution of Cloud Data Architectures: Storage,
Compute, and Migration. https://drum.lib.umd.edu/items/e591f36a-
a240-42db-8252-196ed4facee9.

[62] Gang Liao and Daniel J. Abadi. 2023. FileScale: Fast and Elastic Meta-
data Management for Distributed File Systems. In Proceedings of the
2023 ACM Symposium on Cloud Computing (SoCC ’23). 459–474.

[63] Gang Liao, Amol Deshpande, and Daniel J. Abadi. 2024. Flock:
A Low-Cost Streaming Query Engine on FaaS Platforms.
arXiv:2312.16735 [cs.DB]

[64] Gang Liao, Ye Liu, Yonghua Ding, Le Cai, and Jianjun Chen. 2024.
SFVInt: Simple, Fast and Generic Variable-Length Integer Decoding
using Bit Manipulation Instructions. In Proceedings of the 20th Interna-
tional Workshop on Data Management on New Hardware. 1–9.

[65] AI @ Meta Llama Team. 2024. The Llama 3 Herd of Models. Retrieved
Jul 28, 2024 from https://ai.meta.com/research/publications/the-llama-
3-herd-of-models/

[66] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. 2021.
Tf.Data: A Machine Learning Data Processing Framework. Proc. VLDB
Endow. 14, 12 (jul 2021), 2945–2958.

[67] Stratos Idreos Fabian Groffen Niels Nes and Stefan Manegold Sjoerd
Mullender Martin Kersten. 2012. MonetDB: Two decades of research in
column-oriented database architectures. Data Engineering 40 (2012).

[68] OpenAI. 2024. SearchGPT Prototype. Retrieved Jul 28, 2024 from
https://openai.com/index/searchgpt-prototype/

[69] Ippokratis Pandis. 2021. The evolution of Amazon redshift. Proceedings
of the VLDB Endowment 14, 12 (2021), 3162–3174.

[70] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi
Huang, Justin Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast,
scalable, in-memory time series database. Proceedings of the VLDB

https://clickhouse.com/
https://docs.databricks.com/en/delta/deletion-vectors.html
https://avro.apache.org/
https://hive.apache.org/
https://orc.apache.org/
https://parquet.apache.org/
https://prestodb.io/
https://spark.apache.org/
https://avro.apache.org/
https://iceberg.apache.org/
https://github.com/apache/arrow-datafusion
https://github.com/apache/arrow-datafusion
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://drum.lib.umd.edu/items/e591f36a-a240-42db-8252-196ed4facee9
https://drum.lib.umd.edu/items/e591f36a-a240-42db-8252-196ed4facee9
https://arxiv.org/abs/2312.16735
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://openai.com/index/searchgpt-prototype/


Bullion: A Column Store for Machine Learning CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Endowment 8, 12 (2015), 1816–1827.
[71] perplexity.ai. 2024. Perplexity. Retrieved Jul 28, 2024 from https:

//www.perplexity.ai/
[72] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek.

2013. Online, asynchronous schema change in F1. Proceedings of the
VLDB Endowment 6, 11 (2013), 1045–1056.

[73] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips,Wenlei
Xie, Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema
Shingte, et al. 2019. Presto: SQL on everything. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 1802–1813.

[74] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik.
2005. C-Store: A Column-Oriented DBMS. In Proceedings of the 31st In-
ternational Conference on Very Large Data Bases (Trondheim, Norway)
(VLDB ’05). VLDB Endowment, 553–564.

[75] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. 2009. Hive: a warehousing solution over a map-reduce frame-
work. Proceedings of the VLDB Endowment 2, 2 (2009), 1626–1629.

[76] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Ning Zhang, Suresh Antony, Hao Liu, and RaghothamMurthy.
2010. Hive-a petabyte scale data warehouse using hadoop. In 2010 IEEE
26th international conference on data engineering (ICDE 2010). IEEE,
996–1005.

[77] Martin Traverso, Dain Sundstrom, David Phillips, and Eric Hwang.
2020. Trino: Distributed SQL Query Engine for Big Data. Retrieved Jan
9, 2024 from https://trino.io/

[78] Wouter van Oortmerssen. 2014. FlatBuffers: Memory Efficient Serial-
ization Library. Retrieved Apr 11, 2024 from https://capnproto.org/

[79] Kenton Varda. 2013. Cap’n Proto. Retrieved Apr 11, 2024 from https:
//capnproto.org/

[80] Wikipedia. 2023. LEB128 (Little Endian Base 128). Retrieved Jan 6,
2023 from https://en.wikipedia.org/wiki/LEB128

[81] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney,
and Huanchen Zhang. 2023. An Empirical Evaluation of Columnar
Storage Formats. Proc. VLDB Endow. 17, 2 (oct 2023), 148–161.

[82] Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao,
Leon Gao, Zhaojie Gong, Fangda Gu, Michael He, et al. 2024. Actions
speak louder than words: Trillion-parameter sequential transducers for
generative recommendations. arXiv preprint arXiv:2402.17152 (2024).

[83] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan,
Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei
Lu, et al. 2022. Understanding data storage and ingestion for large-
scale deep recommendation model training: Industrial product. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture. 1042–1057.

[84] Marcin Zukowski, Mark Van de Wiel, and Peter Boncz. 2012. Vector-
wise: A vectorized analytical DBMS. In 2012 IEEE 28th International
Conference on Data Engineering. IEEE, 1349–1350.

https://www.perplexity.ai/
https://www.perplexity.ai/
https://trino.io/
https://capnproto.org/
https://capnproto.org/
https://capnproto.org/
https://en.wikipedia.org/wiki/LEB128

	Abstract
	1 Introduction
	2 New Challenges and Opportunities
	2.1 Deletion-Compliance
	2.2 Sparse Features Encoding
	2.3 Wide Table Projection
	2.4 Storage Quantization
	2.5 Multimodal Storage
	2.6 Cascading Encoding

	3 Related Work
	4 Conclusion
	Acknowledgments
	References

