
Generic Version Control: Configurable Versioning for
Application-Specific Requirements

[Vision Paper]

Gunce Su Yilmaz

Saarland University

Saarland Informatics Campus

Germany

Jens Dittrich

Saarland University

Saarland Informatics Campus

Germany

ABSTRACT
Even though Multi-Version Concurrency Control (MVCC) and Git

look very different from a user point of view, both systems concep-

tually do very similar things. In this paper, we thoroughly compare

both systems w.r.t. their logical and physical differences and com-

monalities. We argue that both systems converge to a common

one-size-fits-all system. One key to that system is the observation

that nested transactions and the Git commit-graph are conceptually

the same thing. Another crucial insight is the need for database

researchers to rethink conflict resolution and reconciliation. This

shift can reduce abort rates, address concurrency issues within

the database layer, and eliminate unnecessary round-trips to the

application layer. Based on our observations, we propose a unified

system, Generic Version Control (GenericVC), combining the best

of both worlds. In fact, by combining features from both Git and

MVCC, we obtain more than the sum of its parts: the ability to

support new hybrid use cases.

1 INTRODUCTION
Alice interacts with an information system. She inspects some data

and changes them, keeping all her changes in ‘draft mode’, thereby

creating her own private version of the data. Then she inspects

some more data and changes them as well, adding more data to

her draft. Eventually, she decides to submit her changes. Now, her

changes become part of the ‘official’ version of the data in that

information system.

This first paragraph was a bit imprecise as we did not specify

what we actually mean by the term “information system”. Let’s

assume that the information system Alice is working with is a Git

repository. Dear reader, please read the first paragraph again.

Done? Now let’s assume that by the term “information system”

wemean a DBMS usingMVCC for concurrency control. Dear reader,

please read the first paragraph again.

The paragraph worked in both cases? But why? We are talking

about two very different systems! In the case of Git, Alice creates a

feature branch, adds commits to that feature branch, and eventu-

ally merges (or rebases) her feature branch onto the main branch.

In the case of a DBMS, Alice starts a transaction and performs

changes through SQL statements that are part of that transaction,

implicitly creating her own version of the data through MVCC.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2025. 15th Annual Conference on

Innovative Data Systems Research (CIDR ’25). January 19-22, 2025, Amsterdam, The

Netherlands.

Eventually, she commits her transaction which lets her changes

to become the official version of the database. In both cases, Alice

does something that is conceptually the same thing. At the same

time, in both cases, Alice uses totally different systems, algorithms,

and implementations for the same concepts. Why is that?

We argue that the historical division between versioning systems

(like Git) and versioned database stores (like in MVCC implemen-

tations) can be bridged, given the similarities between these two

approaches. To explore this hypothesis, we present GenericVC,

a unified system that can serve both Git-style and MVCC-style

workloads. While we recognize the value of having specialized

systems, our research suggests that a generalized approach may

offer benefits such as reduced maintenance overhead, simplified

branch management for databases with branching capabilities, and

an improved conflict resolution mechanism. In contrast to prior

work on branched databases [8, 12, 17, 18], we identify Git-style

branching and database transactions as different implementations

of a single concept. In fact, GenericVC can handle database trans-

actions and Git-style branches in a single transaction layer using

nested transactions. Our approach also has implications for exist-

ing MVCC-only systems. GenericVC rethinks conflict resolution in

MVCC by incorporating concepts from Git, such as configurable

conflict detection and reconciliation, which enables new hybrid

use cases that are not possible to handle with existing Git-only or

MVCC-only systems.

In summary, this paper makes the following contributions:

(1) We provide a thorough and structured logical and physical

comparison of MVCC and Git, offering insights into their ver-

sioning, storage, transaction processing, and garbage collec-

tion mechanisms, along with background and related work

(Sections 2 & 3).

(2) We propose a generalized and configurable system (Gener-

icVC) that simultaneously accommodates Git-style version

control and MVCC-style concurrency control, unifying fea-

tures of both worlds into a common system (Section 5).

(3) We propose two key functions (detect_conflicts and

reconcile) to be invoked in the commit validation phase of a

transaction, which MVCC systems can expose to developers

to support configurable conflict detection and reconciliation

for application-specific use cases (Section 5).

(4) We identify hybrid use cases enabled by GenericVC, show-

casing its versatility over systems with rigid rules and archi-

tectures. Our system supports a wide range of applications

within a single system and is not merely another relational

database with branching capabilities (Section 6).

2 LOGICAL COMPARISON OF MVCC AND GIT
MVCC and Git [7] share significant conceptual and functional sim-

ilarities. We have analyzed the similarities and differences between

the two systems and organized our findings under two categories:

logical comparison (this section), which focuses on the high-level

concepts and functionalities, and physical comparison, which delves

into how the data store is organized and accessed (Section 3).

Terminology.We first need to clarify what we mean by the term

‘version.’ MVCC tracks changes to a tuple by creating a new physical

copy of that tuple for every update. That tuple also contains (hidden)

metadata fields like begin and end timestamps. Hence, a version

in the MVCC context is a timestamped physical copy of the same

logical tuple in different states. In contrast, Git tracks changes to a

document by creating a new physical copy for every update. The

document is stored in a file whose relative path to Git’s object store

is the hash of the document’s content. Therefore, a version in the

Git context is a hash-addressable physical copy of the same logical

document in different states. Notice that we deliberately use the

term ‘document’ instead of ‘file’ to prevent confusion between the

file as the fundamental unit of storage in a file system and the

content of a file, i.e. the byte-stream, that is versioned in Git.

Transactions. A transaction in a relational DBMS is an indivis-

ible unit of work consisting of one or more database operations,

conforming to the ACID properties. In MVCC, each transaction

creates versions only visible to itself until the transaction commits,

ensuring that intermediate states are hidden from concurrent trans-

actions (assuming isolation level of read committed or above). In

Git, creating a feature branch, editing documents, and merging the

branch into the main branch is similar to a database transaction. A

branch in Git is a pointer to a commit object, which represents a

snapshot of the repository at a specific point in time (commit objects

explained in more detail in Section 3). When a branch is created, it

initially points to a commit object. As changes are committed, the

branch pointer moves to new commits, forming a linear commit

history akin to multiple database operations within a transaction.

This linear chain of commits is also referred to as a branch. To

differentiate between the branch as a pointer and the logical branch

representing the history of commits, we will refer to the latter as a

feature branch. Commits in a feature branch are like a transaction’s

private space, where modified document versions are invisible to

the main branch until merged. However, transactions in Git do not

fully conform to the ACID properties, as discussed next.

Atomicity. When a transaction is committed in MVCC, new tu-

ple versions become publicly visible, and older versions become

invisible to subsequent transactions. Similarly, in Git, the merge
command makes changes on the feature branch visible to the main

branch. A successful merge (usually the 3-way merge that merges

two branched versions using a third reference base version) creates

a new commit object and updates the main branch pointer to point

to this commit. If a transaction aborts in MVCC, its versions remain

invisible and are later garbage collected. When a merge operation

fails in Git, Git does not create a commit object and leaves a dirty

version of the conflicted files with rows from both versions being

merged for manual handling. Since the commit object is not created,

none of the changes are visible to main branch or any subsequent

branches. By employing this all-or-nothing behavior, Git ensures

atomicity.

Consistency. MVCC systems provide strong consistency by en-

forcing integrity constraints for all writers, ensuring that a transac-

tion moves the database from one valid state to another. Git offers

weaker consistency guarantees. Git has a mechanism called hooks
to enforce constraints, such as successful compilation, to which

all merges must adhere, but defining these constraints is the re-

sponsibility of the developer. Git also provides some consistency

through its conflict resolution strategy. When two feature branches

concurrently update a document, Git detects conflicts if changes

affect not only the same line but also the adjacent lines. The idea

behind this strategy is that concurrent changes to adjacent lines

likely cause syntactical or semantic issues and require manual han-

dling. Git enforces this strategy in its 3-way merge algorithm by

requiring context lines (unchanged lines) around modified lines for

a successful merge.

Isolation and the Commit Validation Phase. MVCC systems

offer isolation levels by implementing access rules and conflict

resolution mechanisms. Most MVCC implementations use meta-

data fields, like begin and end timestamps, to set access rules to

avoid dirty reads, non-repeatable reads, and phantom reads. They

also prevent the lost update anomaly by using a first-writer-wins

rule [10, 14, 15], ensuring isolation levels up to repeatable read and

snapshot. To achieve serializable isolation, read-write conflicts are

resolved during commit validation, using methods like dependency

graphs [2, 19], read and scan sets [5, 10], or predicate logging [14].

Git offers guarantees similar to snapshot isolation. A feature

branch views the repository’s snapshot taken at the time of its

creation, avoiding dirty reads, non-repeatable reads, and phantoms,

unless the developer deliberately merges changes from other fea-

ture branches. However, not all lost update problems are avoided

due to Git’s unique write-write conflict resolution policy. For in-

stance, if two developers branch from the same commit and edit

the same line of a document with exactly the same text, Git will not

detect a conflict during the merge. In MVCC, if two transactions

concurrently add 1 to an integer field with an initial value of 5, a

Git-like merge would result in field being set to 6 and not 7. This be-

havior is acceptable in Git but unsuitable for most MVCC use cases

that deal with numeric attributes. Git also does not offer serializ-

able isolation due to its less strict commit validation phase (merge).

Whereas MVCC checks for read-write conflicts during commit vali-

dation, Git only checks for write-write conflicts, making it prone

to write-skew anomalies.

Durability. DBMSs ensure durability in the event of a crash by

writing changes to a write-ahead log before writing to the database.

Git does not ensure such durability but provides some data integrity

in the event of a crash. Merging a feature branch into the main

branch involves finding a merge base, merging histories into a tree

object, creating a commit object, and updating the main branch

pointer. If a crash occurs during this process, Git does not keep logs

to repeat the process. However, the crash is unlikely to corrupt the

repository, as changes are not visible to the main branch until the

last step, where the main branch pointer is updated.

2

3 PHYSICAL COMPARISON OF MVCC AND GIT
Physical Storage Layout. In a row-based database layout, versions
of multiple tuples are packed together within a page, assuming the

maximum tuple size is smaller than the page size. Conversely, Git

stores each document version as a blob (binary large object), which

may span multiple pages. Besides blobs, Git stores tree and commit

objects. Tree objects, structured as directories, point to blobs created

since the last commit. A commit object points to the top-level tree

object and to parent commit objects, representing a snapshot of the

entire repository at a specific point in time.

Version Storage Schemes and Version Manipulation. Wu et

al. categorize version storage schemes in MVCC implementations

into three types: append-only, time-travel, and delta storage [20]. In

append-only storage, each update to a tuple creates a new version

in the same table. In time-travel storage, the latest versions of tuples

are stored in a main table, with older versions in a separate table.

Delta storage updates a tuple in place and stores a delta, containing

the prior values of modified attributes, in a separate storage. Git

has two version storage schemes: loose and packed objects. When

a document is modified, Git saves the entire document as a new

blob, not just the modified parts, called a loose object. Loose object

format is similar to append-only and time-travel schemes. When

the number of loose objects grows large or when the user runs Git’s

garbage collection command, Git packs objects into a single binary

file. In this packed format, Git retains the most recent versions

of the documents in their entirety and stores reverse deltas for

previous versions, similar to delta storage in MVCC.

Version Chains. In MVCC, versions of a tuple are linked together

via pointers, forming a version chain. The index entry points to one

of these versions, either the oldest or the newest depending on the

ordering [20], and the DBMS traverses the chain to find the desired

version. Git stores versions in a commit-graph, a content-addressed

directed acyclic graph that maintains all the changes in a repository.

A commit object in the graph points to a parent commit or commits.

The commit object also points to a tree object, which itself points

to other tree and blob objects, representing the new versions of the

updated documents in this commit. Hence, in Git, the document

versions (blobs) do not directly point to each other, and Git needs

to traverse the commit-graph by following the parent pointers of

the commit objects to find an older version of a document.

Version Access. To access a tuple version, MVCC performs tuple

visibility checks usingmetadata fields like begin and end timestamps.

A transaction can view a version of a tuple if its begin timestamp

falls within the version’s timestamps, allowing the transaction to

query a consistent snapshot of the data. A DBMS can also support

time-travel functionality by retaining old tuple versions in the store

or leveraging the (unpruned) log file to reconstruct old versions.

This allows transactions to access older versions using the ‘AS

OF’ sub-clause. To access the current version of a document, Git

traverses the commit-graph, following parent pointers of commit

objects to find the commit, where the document was last modified.

Git then fetches the blob object that represents the document in this

commit. To access the older versions of a document, the developer

can use the content hash of the document or check out the commit

object that points to the older version, prompting Git to further

traverse the commit-graph to find the corresponding commit object.

Garbage Collection. Long version chains in MVCC can cause

performance and storage overhead, so a critical function of the

garbage collection protocol is to detect and remove expired (as

well as aborted) versions. Garbage collection in a DBMS usually

involves detecting versions no longer visible to any active transac-

tions, removing references to these versions from version chains

(unlinking), and reclaiming the memory space [14]. Garbage col-

lection command in Git also aims to reduce storage overhead but

retains all versions. Instead of removing old versions, Git packs

loose objects into the packed file format, keeping the most recent

version and reverse deltas for previous versions. This transforms

Git’s append-only storage into delta storage. In contrast to MVCC,

Git does not garbage collect versions created by a failed merge op-

eration, leaving them in the working directory for manual conflict

resolution.

4 OTHER RELATEDWORK
This section describes prior work on bringing Git-style versioning

to the database world. Multiple studies implement branching logic

on top of existing relational data storage systems. Decibel [12] and

TardisDB [18] use bitmap-based storage techniques to do so, where

each bit in the bitmap represents an active tuple in the correspond-

ing branch. OrpheusDB [8] and MusaeusDB [17] extend data tables

with a metadata field called record identifier (rid) and maintain ver-

sioning tables to map branches to rids. While these studies provide

valuable insights into the design of database systems that support

branching, they primarily focus on extending the capabilities of

existing database systems with an extra branching layer. In contrast,

our goal is to identify branching and database transactions as two

different implementations of a single concept. This insight enables

GenericVC: we handle transactions and branches through the same

techniques and allow for application-specific conflict detection and

reconciliation strategies. Finally, MindPalace [16] is a versioned

data system that introduces the concept of “auto-mergeability” and

implements a strategy for reconciling conflicts by merging two

modification histories into a single, combined history that contains

all modifications from both histories. GenericVC provides a conflict

reconciliation function that can be customized to meet application-

specific requirements. This approach allows for semantic reconcili-

ation as well, which was deliberately left out of “auto-mergeability”

definition in MindPalace.

5 GENERICVC: CONFIGURABLE VERSIONING
Our comparative analysis of MVCC and Git highlighted that both

systems have overlapping concepts and mechanisms with subtle

differences to support their respective use cases. In the following,

we propose three logical dimensions to describe these overlaps

and generalize them into our unified common system GenericVC:

(1.) Git Commit Graph as Nested Transactions, (2.) Isolation Levels,

and (3.) Conflict Prevention, Detection, and Reconciliation.

5.1 Git Commit Graph as Nested Transactions
As discussed in Section 2, a feature branch in Git is very similar to a

database transaction. Both a feature branch in Git and a transaction

in MVCC operate in their private spaces, ensuring that intermediate

states of the data remain hidden from other concurrent transactions.

3

Table 1: Branching in Git vs MVCC with nested transactions. Work on different branches is color coded. Circles in the commit
graph represent commit objects (tree and blob objects are omitted for simplicity). Arrows represent parent-child relationships
among commit objects.

Git Explanation MVCC
Version Graph Comments

1 git init Initialize main branch. MVCC main;

2 git branch foo Create a feature branch named foo. foo = main.begin_transaction();

3 git branch bar Create another feature branch named bar. bar = main.begin_transaction();

4 git switch foo Switch back to branch foo.

echo 'a=42' » doc.txt Create new document version V1.

git commit -am 'fixes bug 12' Make change visible on branch foo and any

future branch forking from foo.

foo.update('doc.txt', '. . . a=42\n ');

P.S. V1 is not visible to main and bar yet.

5 git switch bar Switch back to branch bar.

echo 'a=43' » doc.txt Create new document version V2.

git commit -am 'fixes bug 12' Make change visible on branch bar and any

future branch forking from bar.

bar.update('doc.txt', '. . . a=43\n ');

P.S. V2 is not visible to main and foo yet.

6 git switch foo; git switch -c baz Create a feature branch named baz from foo. baz = foo.begin_transaction();

echo 'a=44' » doc.txt Create new document version V3.

git commit -am 'fixes bug 15' Make change visible on branch baz and any

future branch forking from baz.

baz.update('doc.txt', '. . . a=44\n ');

Post: V3 is not visible to main, foo, and bar.

7 git switch foo; git merge baz V3 becomes visible to foo, but not to main and

bar.

baz.commit();

8 git switch main; git merge foo V1 and V3 become visible to main, but not to

bar.

foo.commit();

9 git merge bar May not work: bar needs to check for conflict

with foo.

bar.commit();

C1 main

C1 main , foo

C1 main , foo , bar

C1 main , bar

C2 foo

C1 main

C2 foo

C3 bar

C1 main

C2 foo

C3 bar

C4 baz

C1 main

C2

C3 bar

C4

C5 foo

C1

C2

C3 bar

C4

C5

C6 main

C1

C2

C3

C4

C5

C6 C? main

However, Git’s commit graph, the mechanism that enables branch-

ing, offers greater flexibility than database transactions by provid-

ing fine-grained control over the snapshot from which a branch

can be forked. The developer can fork the repository from any

active branch, not just the main branch. To provide this flexibility,

GenericVC needs to support Git-like branching where transactions

(branches) can be started not only from the public snapshot (main

branch) of the data but also from active transactions. We use the

concept of nested transactions to support this feature. In doing so,

we also utilize the transaction processing mechanisms of a database

to manage Git-style (long-running and durable) branches instead of

introducing a separate branching layer on top of the database. The

nested transaction model [9, 13] was first proposed by J. E. Moss to

generalize the flat transaction model and allow for creating nested

transactions within a parent transaction. A branch in Git can be

represented as a transaction in GenericVC that can be nested if

necessary as shown in Table 1. The example uses the following

simple schema for a database that stores documents:

[𝑅] = {[document_name: char, document_content: text]} (1)

In Table 1, lines 2 and 3, two feature branches foo and bar are

created (forked) from the main branch. In line 6, a nested trans-

action baz is created from foo , making foo a parent transaction.

Given that the example operates on the snapshot isolation level

similar to Git (as discussed in Section 2), versions created by baz

will be visible to foo when baz commits in line 8. However, these

versions will not be visible to main until foo commits in line 9.

There are two major differences between the nested transactions

described by Moss and the nested transactions in GenericVC that

must support Git-like branching. The first one is the durability of

nested transactions, which is not supported in Moss’s nested trans-

action model. The commit operation in Git creates commit objects

that are persisted to the disk immediately even if the branch is not

yet merged. To provide Git-style durability, GenericVC exposes a

configuration parameter that the user can set (similar to setting an

isolation level) for the system to persist the local workspace of a

transaction even if it does not commit immediately.

The second difference is the hierarchical commit rules for nested

transactions. In Moss’s model, for a transaction to commit, all its

descendants must be resolved (committed or aborted) and all its

ancestors must commit. Similarly, if an ancestor transaction aborts,

4

all its descendants must abort. In contrast, a feature branch in Git

can be forked from another feature branch and be merged back

to the main branch even if its parent branch is never merged. In

Table 1, this would mean that baz can directly commit to main

without foo committing. To support this behavior, GenericVC can

find a common ancestor (merge base in Git) between any two

transactions, identify the versions created by both histories since

the ancestor, and apply the difference to the target transaction.

Finding a common ancestor can be achieved by keeping a pointer

from each transaction’s local workspace to its parent transaction’s

local workspace. We leave the implementation details of these two

differences to future work because it is beyond the scope of this

vision paper.

5.2 Isolation Levels
In this section, we explain how isolation levels work in GenericVC

in the context of nested transactions to support both Git and MVCC

use cases. We use the following notation in our execution examples:

𝑤 𝑓 𝑜𝑜 [𝑥] and 𝑟 𝑓 𝑜𝑜 [𝑥] to represent write and read operations to a

tuple 𝑥 in transaction foo , and 𝑏 𝑓 𝑜𝑜 [𝑏𝑎𝑧] to represent the creation

of a branch baz from foo .

We start with snapshot isolation, the default level for Git, and
used in the example in Table 1. At this level, a transaction can only

read the versions committed before the transaction started. In a

nested transactional model, this means that a child transaction can

only read the versions that were visible to its parent at the beginning

of the child transaction. In line 6 in Table 1, nested transaction baz

is created from foo , and it can read the versions visible to foo until

that point but not the versions created by or that become visible to

foo after that point. To give a more concrete example, if we have

the following schedule “𝑤 𝑓 𝑜𝑜 [𝑥] 𝑏 𝑓 𝑜𝑜 [𝑏𝑎𝑧] 𝑤 𝑓 𝑜𝑜 [𝑦]”, baz can read
the new version of 𝑥 but not the new version of 𝑦 since the version

was created after baz started. Note that the new version of 𝑥 is

visible to baz even if foo has not committed, because foo is the

parent of baz . If instead 𝑥 was updated by a sibling of baz , the

sibling would need to commit (make its versions visible to foo)

before baz could read the new version of 𝑥 .

In repeatable read, the transaction can read a version that was

committed after the transaction started, but once a specific version

has been read, the same version should be read throughout the

transaction. In the nested model, this means that a child can read

the latest version of a tuple that was visible to its parent until the

child transaction reads that tuple for the first time. In the execution

“𝑏 𝑓 𝑜𝑜 [𝑏𝑎𝑧] 𝑤 𝑓 𝑜𝑜 [𝑦] 𝑟𝑏𝑎𝑧 [𝑦] 𝑤 𝑓 𝑜𝑜 [𝑦]”, baz can read the version of

𝑦 created by the first write operation but not the second.

For the least strict levels of read uncommitted and read com-
mitted, a child transaction can read any version of a tuple that is

visible to its parent. The only difference between these two levels

is that the meaning of visibility to the parent transaction changes.

In read committed, a visible version is a committed version (com-

mitted by other children), whereas in read uncommitted, a visible

version can be any version, even if it is not committed.

For serializable isolation, in addition to setting the isolation

level to snapshot isolation (or repeatable read in some DBMSs), we

also need to tackle write-write and read-write conflicts which we

discuss next.

5.3 Conflict Resolution: Prevention, Detection,
and Reconciliation

Conflict resolution is a crucial part of transaction processing in

both Git and MVCC and it consists of three main steps: conflict

prevention, conflict detection, and conflict reconciliation. Conflict

prevention ensures that two transactions are not allowed to write

to the same tuple concurrently in the first place. Git does not have a

conflict prevention mechanism and handles all conflicts during the

merge operation (commit validation phase in databases). MVCC

systems often divide conflicts into two categories, write-write and

read-write, and prevent write-write conflicts before the commit

validation phase via write locks [10, 14, 20]. To accommodate both

Git and MVCC use cases, GenericVC exposes a boolean parameter

prevent_ww_conflicts that can be configured. When set to 𝑓 𝑎𝑙𝑠𝑒 ,

this parameter would allow two concurrent transactions to write

to the same logical tuple (creating two physical versions) without

aborting the second writer, supporting Git-style conflict resolution.

When set to 𝑡𝑟𝑢𝑒 , the system would prevent write-write conflicts,

via first-writer-wins policy, before the commit validation phase,

supporting MVCC-style conflict resolution. We leave the implemen-

tation details of this parameter to future work, as it is beyond the

scope of this vision paper.

During the commit validation phase, both MVCC and Git de-

tect conflicts between the transaction to be committed and the

transactions that have been committed since the start of the trans-

action. In addition to detecting conflicts, Git also tries to reconcile

the conflicting changes automatically. We address both these re-

quirements in GenericVC during the commit validation phase. A

high-level implementation of the commit validation function is

given in Algorithm 1.

Algorithm 1 Implementation of commit validation phase.

1: function commit_validation(T, validation_strategy)

2: // Get the tuple versions committed to T’s parent after T started.

3: parent_write_set = T.parent.get_versions_committed_after(T.begin_ts)

4: // Check for conflicts between T’s read and write sets and parent_write_set.

5: // Read set is only considered in serializable isolation level.

6: conflicting_versions = validation_strategy.detect_conflicts(

T.write_set + T.read_set, parent_write_set)

7: // Reconcile until no more conflicting versions produced.

8: while conflicting_versions ≠ [] do
9: // Reconciliation requires further modifications to the data store,

10: // hence it is regarded as a nested transaction of T.

11: T_rec = T.start_transaction()

12: failed_reconciliations = validation_strategy.reconcile(

T, T.parent, conflicting_versions, T_rec)

13: if T_rec.commit() == FAILURE ∨ failed_reconciliations ≠ [] then
14: return FAILURE // Abort T.

15: else // Rerun conflict detection for new (reconciled) versions.

16: conflicting_versions = validation_strategy.detect_conflicts(

T_rec.write_set + T_rec.read_set, parent_write_set)

17: return SUCCESS // Write T’s write set to the log and the data store.

This commit validation mechanism detects conflicts, reconciles

them, and then recursively detects conflicts again on the versions

created during the reconciliation process until no more conflicts

are detected. The commit validation function takes two arguments:

the transaction to be committed (T) and a validation strategy that

defines how conflicts are detected and reconciled. For each use

case (Git, MVCC, or hybrid), the developer can define a differ-

ent validation strategy that implements the detect_conflicts

5

and reconcile functions. In line 6, detect_conflicts function is

called to detect conflicts between the versions read and written by

T and the versions committed to T’s parent transaction (T_parent)

since T’s start. Reconciliation process can produce new tuple ver-

sions, thus it is regarded as a nested transaction of T. In line 12, any

new version produced by reconcile is committed to this nested

transaction. If reconcile returns any versions that requires man-

ual handling or if the nested transaction fails to commit for any

reason, the transaction T is aborted (lines 13, 14). In line 16, upon

successful reconciliation, detect_conflicts is executed again on

the new versions to ensure that reconciliation does not introduce

new conflicts. If any new conflicts are detected, the process is re-

peated until no more conflicts are detected.

Algorithm 2 Example implementation for DETECT_CONFLICTS.

1: function detect_conflicts(

T_read_write_set, T_parent_write_set)

2: conflicting_versions← [] // Versions requiring reconciliation.
3: // tid is assumed to be a composite key of table_id and row_id.

4: for tid ∈ T_read_write_set ∩ T_parent_write_set do
5: v_T = T_read_write_set[tid] // T’s version of the tuple.

6: v_T_parent = T_parent_write_set[tid] // T_parent’s version.

7: append (v_T, v_T_parent) to conflicting_versions

8: return conflicting_versions

Both functions (detect_conflicts and reconcile) can be de-

fined as per relation, transaction, or database, depending on the

granularity of the conflict detection and reconciliation required by

the application. An example implementation of detect_conflicts
is given in Algorithm 2. In line 4, the implementation detects con-

flicts at the tuple level by tracking the identifiers (tid) of tuples

that were concurrently modified by the committing transaction

(T) and the siblings previously committed to T’s parent. If a tuple

is concurrently modified, the algorithm marks both versions in T

and T_parent as “conflicting” (line 7) and returns these versions

(line 8) for reconcile to handle. For other use cases, the function

can be customized to detect conflicts at the attribute level or even

finer granularity. We provide an example use case for attribute-level

conflict detection in Section 6.

The goal of reconcile is to commit new (reconciled) versions to

the transaction T and invalidate the versions conflicting with what

is previously committed to T’s parent. We provide two example

implementations of reconcile for Git and a hybrid use case in

Algorithm 3. The implementation of the reconciliation function for

a hybrid use case (reconcile_inventory_table) will be discussed
in Section 6. The reconciliation function for Git (reconcile_git)
identifies concurrent delete-delete and insert-update operations

made by a committed T_sibling and T as non-conflicts and accepts

T’s versions (line 4). If there is an update-update conflict, the algo-

rithm tries to reconcile conflicts on the same attribute (document
_content) using Git-style merge (merge) and creates a new rec-

onciled version of the tuple if Git-style merge is successful (lines

6–11). Any other type of conflict is marked as failed reconciliation

as Git does not support automatic reconciliation for these cases

(line 13).

Incorporating the Git-style conflict reconciliation into Gener-

icVC enables the handling of new hybrid use cases, especially in

the context of MVCC workloads. Some of these hybrid use cases

Algorithm 3 Example implementations for RECONCILE for Git

and hybrid use cases.

1: function reconcile_git(T, T_parent, conflicting_versions, T_rec)

2: failed_reconciliations← [] // Versions requiring manual handling.

3: for v_T, v_T_parent ∈ conflicting_versions do
4: if (v_T.del ∧ v_T_parent.del) ∨ (v_T_parent.ins ∧ v_T.upd) then
5: continue // Not considered conflicts for Git.

6: else if v_T.upd ∧ v_T_parent.upd then
7: // Get a version before T started, to use as reference for reconciliation.

8: v_Base = T_parent.get_version_as_of(T.begin_ts, v_T.tid)

9: // Run Git’s 3-way merge.

10: result, new_version = merge(v_T.document_content,

v_T_parent.document_content, v_Base.document_content)

11: if result == SUCCESS then T_rec.insert(new_version) continue
12: // Git resolves other cases manually.

13: failed_reconciliations.append((v_T, v_T_parent))

14: return failed_reconciliations

15:

16: function reconcile_inventory_table(T, T_parent, conflicting_versions, T_rec)

17: // Example strategy for use case in Table 2.

18: failed_reconciliations← []
19: for v_T, v_T_parent ∈ conflicting_versions do
20: v_Base = T_parent.get_version_as_of(T.begin_ts, v_T.tid)

21: // v_T: <Elden Ring, 0>; v_Base: <Elden Ring, 1>

22: // v_T_parent: <Elden Ring, 0> -> public version after Bob’s commit.

23: final_inventory_count = v_T_parent.count - (v_Base.count - v_T.count)

24: if final_inventory_count < 0 then // Reconcile based on stock.

25: version_SC = T_rec.select(. . . get tuple from Shopping Cart Table . . .)

26: T_rec.delete(version_SC) // Remove from Shopping Cart.

27: T_rec.insert(. . . new version in Wishlist Table . . .)

28: T_rec.delete(v_T) // Delete, as not valid after reconciliation.

29: else
30: // Developer can handle more conflict types here if needed.

31: continue
32: return failed_reconciliations

are identified by prior work [3, 4, 17], where instead of blindly

aborting a transaction in the event of a conflict, the application

layer tries to reconcile conflicting changes. These studies aim to

resolve these conflicts at the application layer, however, we argue

that conflict resolution should be handled at the database layer to

maintain the separation of concerns principle. Our goal is to handle

most of these conflicts as part of the commit validation phase of a

transaction. In the best case, reconcile can be defined per relation

and release the application layer from the burden of conflict reso-

lution. In the worst case, reconcile should sometimes be defined

per transaction for more specific use cases in the application layer.

This would require more fine-grained customization for conflict

resolution, but the database layer would still do most of the heavy

lifting (reconciliation) instead of the application sending multiple

queries to the database back and forth for reconciliation.

We provide an example implementation (reconcile_inventory
_table) for a per-relation use case and elaborate on the example

in the upcoming Section 6. Per-transaction reconciliation requires

developers to define reconciliation logic alongside the transaction

body. While this concept resembles database triggers, the existing

trigger implementations cannot support reconciliation within the

commit validation phase. Some DBMSs such as PostgreSQL and

Oracle support deferred triggers, however, the trigger function is

still executed at the end of the transaction before the validation

phase starts. If reconciliation logic was executed via a deferred

trigger, another concurrent transaction could execute validation and

commit earlier, invalidating the reconciliation phase of the current

transaction. Thus, the reconciliation logic should be executedwithin

6

the commit validation phase to ensure that no other concurrent

transaction can commit while the reconciliation is in progress.

6 BEYOND A RELATIONAL DATABASE WITH
BRANCHING CAPABILITIES

In this section, we present two hybrid use cases that require features

from both Git and MVCC.

Use-Case 1: Imagine an online store that sells computer games. In

a busy day, Bob and Alice want to buy the same game and they both

see a warning that only one copy is left in stock. They add the game

to their respective shopping carts. Alice additionally adds another

game. The current state of the online store is shown in Table 2 in

black text. Now, Bob and Alice both click the purchase button. Both

transactions, T
Bob

and T
Alice

start back-to-back, and they both read

the same state of the Game Inventory Table. T
Bob

commits first, so

now the game Elden Ring is out of stock, and T
Alice

needs to be dealt

with. A traditional database would abort T
Alice

due to a write-write

conflict, retry the transaction, abort again due to out-of-stock check

constraint, and finally give up, leaving the items in Alice’s cart.

To provide a better user experience, most online stores implement

application layer logic such that when T
Alice

aborts due to the

out-of-stock game, another request to database is sent to move the

out-of-stock game to a wish list for future purchase, process the rest

of the items in the cart, and notify Alice that the particular game is

out of stock. This approach results in two transaction aborts and

an extra round trip to the application layer for reconciliation.

GenericVC can do all of this with no aborts and no extra round
trip to the application layer by implementing a custom reconciliation
strategy for the Game Inventory Table as shown in the example

implementation in Algorithm 3 (reconcile_inventory_table).
This reconciliation strategy assumes that prevent_ww_conflicts
is set to 𝑓 𝑎𝑙𝑠𝑒 in GenericVC configuration, thus two concurrent

transactions can simultaneously update the same tuple and any

conflicts will be resolved during commit validation phase. In line

23, the tuple in the Game Inventory Table of Elden Ring has three

versions: 𝑣_𝑇 belongs to T
Alice

, 𝑣_𝑇_𝑃𝑎𝑟𝑒𝑛𝑡 belongs to T
Bob

, and

𝑣_𝐵𝑎𝑠𝑒 is the version that existed before both transactions started.

In line 24, the strategy checks if the stock count of the game drops

below zero if T
Alice

is committed, and moves the existing orders

to the Wishlist Table (lines 26–28) if it does. The resulting state of

the online store after both checkouts is shown in Table 2 in red

text. Therefore, the reconciliation strategy in GenericVC can handle

the out-of-stock scenario without aborting any transactions and

without any round trips to the application layer.

Use-Case 2: Assume a large dataset where multiple data analysts

collaborate to clean and prepare data to run machine learning

algorithms. Analyst Bob updates a column in a table to use a dif-

ferent unit of measurement while analyst Alice updates another

column to use a different scale and deletes some tuples with miss-

ing values. If T
Bob

committed first, T
Alice

would be aborted and

re-tried in MVCC. However, in the context of collaborative data

cleaning, Alice’s changes are not necessarily in conflict with Bob’s

changes, and accepting them in the first place could help decrease

abort rates, especially in high contention scenarios. In GenericVC,

detect_conflicts can be defined to handle attribute-level recon-

ciliation by comparing attribute ids instead of tuple ids, so that

changes to different columns are not considered in conflict. Addi-

tionally, detect_conflicts can prefer deletions over updates, so

that if a tuple is updated in one transaction and deleted in another

subsequent transaction, the deletion in the latter transaction is still

committed. While attribute-level conflict detection can be imple-

mented in existing MVCC and locking-based systems, preference

for deletions over updates is a semantic conflict resolution strategy

that requires context-aware conflict resolution. GenericVC enables

such context-aware conflict resolution strategies to be implemented

in the database layer either per table or per transaction for specific

use cases.

Table 2: Game store before Bob and Alice checkout (in black).
Red text shows reconciled state after both checkouts.

Game Inventory Table

game count
Elden Ring 1 0

Cyberpunk 2077 5 4

Shopping Cart Table

user game count
Bob Elden Ring 1 removed

Alice Elden Ring 1 removed

Alice Cyberpunk 2077 1 removed

Wishlist Table

user game count
Alice Elden Ring 1

7 SUMMARY AND FUTUREWORK
In this paper, we conducted a comparative analysis of Git and

MVCC, and have concluded that the features of both systems can

be combined into a single system. We proposed GenericVC for this

purpose, a flexible database and a version control system that can

serve a range of use cases from Git to MVCC to hybrid ones. The

key advantage of GenericVC is that it can handle a wide range

of use cases without the need for extra branching functionality

or additional application layer logic to handle Git-style branching

and MVCC-style concurrency control. We also question the exiting

conflict handling of MVCC which should be tunable similar to

isolation levels. For that we introduce two user-definable functions

that can be run by the DBMS at the validation phase to determine

how a conflict is defined and how it should be reconciled.

GenericVC is already under development, andwe plan to conduct

experiments to evaluate its performance and scalability in future

work. Allowing extensive configuration in GenericVC, especially

during conflict resolution, opens up a new research direction as

user-defined conflict resolution strategies would affect everything

from query performance to consistency guarantees and the system’s

correctness. Another research direction to explore is if the concur-

rency control mechanisms of GenericVC can be fully decoupled

from the storage layer and be used as a concurrency-control-as-a-

service for any storage system. Abstracting concurrency control

mechanisms from the storage layer can simplify development and

improve its flexibility and scalability. Since GenericVC is a highly

configurable system, we also plan to investigate the ways to auto-

matically tune it to provide the optimal performance for a given

workload. There is also extensive research on automatic tuning of

7

databases [1, 6, 11], but most of these studies focus on low-level

parameters such as memory and cache distribution, query planning,

and logging. In GenericVC, we also would like to explore how to

automatically tune the high-level parameters such as nested trans-

action behavior, isolation levels, conflict resolution and locking

strategies, that define the system’s architecture and behavior.

REFERENCES
[1] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Machine

Learning. In SIGMOD Proceedings. ACM, 1009–1024.

[2] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable isolation for

snapshot databases. In SIGMOD Proceedings. ACM, 729–738.

[3] Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh Gupta, Lorenzo Alvisi, and

Allen Clement. 2016. TARDiS: A Branch-and-Merge Approach To Weak Consis-

tency. In SIGMOD Proceedings. ACM, 1615–1628.

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.

In SOSP Proceedings. ACM, 205–220.

[5] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,

Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s

memory-optimized OLTP engine. In SIGMOD Proceedings. ACM, 1243–1254.

[6] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. TuningDatabase

Configuration Parameters with iTuned. Proc. VLDB Endow. 2, 1 (2009), 1246–1257.
[7] Git. 2005. https://git-scm.com/.

[8] Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya G. Parameswaran.

2017. OrpheusDB: Bolt-on Versioning for Relational Databases. Proc. VLDB
Endow. 10, 10 (2017), 1130–1141.

[9] George Karabatis. 2009. Nested Transaction Models. In Encyclopedia of Database
Systems. Springer US, 1896–1899.

[10] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.

Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-

nisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (2011), 298–309.
[11] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware

Database Tuning System with Deep Reinforcement Learning. Proc. VLDB Endow.
12, 12 (2019), 2118–2130.

[12] Michael Maddox, David Goehring, Aaron J. Elmore, Samuel Madden, Aditya G.

Parameswaran, and Amol Deshpande. 2016. Decibel: The Relational Dataset

Branching System. Proc. VLDB Endow. 9, 9 (2016), 624–635.
[13] J Eliot B Moss. 1985. Nested transactions: An approach to reliable distributed

computing. Massachusetts Institute of Technology.

[14] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable

Multi-Version Concurrency Control for Main-Memory Database Systems. In

SIGMOD Proceedings. ACM, 677–689.

[15] PostgreSQL. 1986. https://www.postgresql.org/.

[16] Nalin Ranjan, Zechao Shang, Sanjay Krishnan, and Aaron J. Elmore. 2021. Version

Reconciliation for Collaborative Databases. In SoCC Rec. ACM, 473–488.

[17] Maximilian E. Schüle, Lukas Karnowski, Josef Schmeißer, Benedikt Kleiner, Alfons

Kemper, and Thomas Neumann. 2019. Versioning in Main-Memory Database

Systems: From MusaeusDB to TardisDB. In SSDBM Proceedings. ACM, 169–180.

[18] Maximilian E. Schüle, Josef Schmeißer, Thomas Blum, Alfons Kemper, and

Thomas Neumann. 2021. TardisDB: Extending SQL to Support Versioning. In

SIGMOD Rec. ACM, 2775–2778.

[19] Tianzheng Wang, Ryan Johnson, Alan D. Fekete, and Ippokratis Pandis. 2017.

Efficiently making (almost) any concurrency control mechanism serializable.

VLDB J. 26, 4 (2017), 537–562.
[20] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An

Empirical Evaluation of In-Memory Multi-Version Concurrency Control. Proc.
VLDB Endow. 10, 7 (2017), 781–792.

8

https://git-scm.com/
https://www.postgresql.org/

	Abstract
	1 Introduction
	2 Logical Comparison of MVCC and Git
	3 Physical Comparison of MVCC and Git
	4 Other Related Work
	5 GenericVC: Configurable Versioning
	5.1 Git Commit Graph as Nested Transactions
	5.2 Isolation Levels
	5.3 Conflict Resolution: Prevention, Detection, and Reconciliation

	6 Beyond a Relational Database with Branching Capabilities
	7 Summary and Future Work
	References

