
Adaptive Factorization Using Linear-Chained Hash Tables
Paul Groß∗

Centrum Wiskunde & Informatica
Amsterdam, Netherlands

gross@cwi.nl

Daniel ten Wolde∗
Centrum Wiskunde & Informatica

Amsterdam, Netherlands
dljtw@cwi.nl

Peter Boncz
Centrum Wiskunde & Informatica

Amsterdam, Netherlands
boncz@cwi.nl

ABSTRACT
We introduce factorized aggregations and worst-case optimal joins
in DuckDB with an adaptive mechanism that only uses them when
they enhance query performance. This builds on the adoption of a
new hash table design (“Linear-Chained”) for equi-joins. Our first
insight is that the collision-free chains of this new design enable
efficient factorized and worst-case optimal processing. We further
defer the decision to use factorization and worst-case optimal joins
from optimization to runtime. Our second insight is that we can
obtain accurate statistics, even if the join inputs lack these (e.g.
because they are sub-queries or Parquet files), by leveraging runtime
heuristics and constructing efficient on-the-fly sketches, during the
hash join build. Finally, we show that machine learning models
using these metrics can achieve close to optimal performance with a
high accuracy. Furthermore, we propose heuristic-based approaches
that offer comparable performance to these models, while relying
on cheaper to obtain run-time statistics and being more explainable.

1 INTRODUCTION
A large body of research on worst-case-optimal joins (WCOJ) [19]
and factorization [20] has identified algorithms that reduce the
complexity class of certain queries, compared to classical methods.
However, factorized techniques so far have not made it into main-
stream systems, and where WCOJs have been deployed, they still
face query optimization challenges. They typically require upfront
investment at least proportional to the query input – such as sort-
ing or the creation of a specialized data structure like tries – and
subsequently also involve more complex logic. Therefore, faster
results are typically only obtained in queries that have intermediate
results significantly larger than both the query inputs and output
– such that avoiding these intermediates justifies the mentioned
upfront investment and complex logic [5]. Hence, the new algo-
rithms cannot replace classical ones but become new options for
an optimizer to select when opportune. Regrettably, estimating the
costs for such queries is hard and requires specialized statistics,
as pioneered in graph database systems [7], but whose creation
and maintenance on base tables are absent in practice and hard to
justify a-priori.

∗Both authors contributed equally to this research.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

v₃

v₃

v₁ v₂

v₄v₁v₁ v₄k₃

ptr(k₁)

ptr(k₃)

...

HT before

0x0

0x1

0x2

0x3

k₂
Insert record

ptr(k₁)

ptr(k₂)

ptr(k₃)

...

HT after

0x0

0x1

0x2

0x3

k₂

k₃ k₃ k₃

k₁ k₁v₁ v₂k₁ k₁

Salt

collision

Insert into

next empty
slot

Figure 1: The Linear-Chained Hash Table combines linear
probing and chaining. Inserting 𝑘2 leads to a hash collision
with 𝑘1. Therefore, 𝑘2 is inserted into the next available
bucket. The chains consist of records with the same key.

In this paper, we break this dilemma by making factorization and
WCOJs adaptive, making the following contributions:

• the “Linear-Chained” hash table design that uses linear prob-
ing to handle key collisions and chains for duplicate keys.

• an implementation and evaluation of factorized aggregation
and WCOJs in DuckDB [21], exploiting these hash tables.

• a mechanism to postpone the decision to use these algo-
rithms from query optimization to runtime by putting sta-
tistics from sketches created during hash join builds into a
simple model with high accuracy.

Background. DuckDB [21] is an embeddable analytical database
system originally developed at CWI. It has a push-based vectorized
execution engine [6] with morsel-driven multi-core parallelism [15].
DuckDB uses compressed columnar storage with MinMax-powered
predicate pushdown [1] and keeps HyperLogLog (HLL) statistics
on all columns for join cardinality estimation [10]. There is support
for out-of-memory data processing for many of its operators [14].
Finally, it has a feature-rich extension framework that can be used
to add parser and optimizer rules and introduce new operators
or UDFs [24]. One such extension is DuckPGQ [24] which adds
SQL/PGQ support for graph processing from SQL:2023. DuckPGQ
translates graph pattern matching queries into relational query
plans with multiple n:m joins. This can trigger the WCOJs and
factorized aggregation presented here. However, our work targets
all SQL queries in DuckDB, not only those phrased in SQL/PGQ.

Classical systems perform joins table-at-a-time in some table
join order. In contrast, WCOJs, such as the Leapfrog Triejoin [25],
are algorithms that process a whole join graph in one go. They
order the join attributes, and for each attribute value, find a list
of tuple bindings. They then intersect these lists for all attributes
in the chosen order, using data structures that ensure that the
runtime of these intersections is in the order of the shortest list (this

CIDR2025, January 19–22, 2025, Amsterdam, The Netherlands Groß et al.

typically involves a trie [9, 19, 25]). Note that WCOJs still generate
redundancies. Just generating the query result is by definitionworst-
case optimal, but that result can be redundant. For instance, in a
social network multi-step friendship query, all further join bindings
from one friend onwards are the same for all people who have
that friend. Factorized Query Processing [3] aims to compactly
represent query results to avoid such redundancies, using compact
representations. These are structures that compress results using
algebraically [11, 17, 20]. For instance, if we have a friends relation
from user𝐴 to users 𝐵,𝐶 , and 𝐷 , we can represent this through flat
tuples as ⟨𝐴⟩ × ⟨𝐵⟩ ∨ ⟨𝐴⟩ × ⟨𝐶⟩ ∨ ⟨𝐴⟩ × ⟨𝐷⟩. The corresponding
factorized representation ⟨𝐴⟩ × (⟨𝐵⟩ ∨ ⟨𝐶⟩ ∨ ⟨𝐷⟩) is more sparse.

We build our factorized processing on the idea of the 3D Hash
join [8] that used hierarchical chaining. For each bucket, there is
first a chain containing the colliding keys, and for each key, there is
then another chain with pointers to the records with that key. This
data structure is only efficient for joins with frequent duplicates.
Here, we present the Linear-Chained hash table, which is efficient
for all equi-joins and enables factorized processing.

Our work is quite close to ongoing research in Umbra [5] that,
similar to the 3D Hash Join [8], also splits a join in a lookup that
delivers a chain pointer and a later expand phase. In [5], the authors
focus on the query optimization opportunities provided by reorder-
ing join-lookup and -expand operators independently, but they also
investigate the integration of WCOJ in their factorized framework.
Our work differs in that we also look into factorized aggregations
and investigate how to move the optimization of factorized queries
to runtime, using on-the-fly computed heuristics and sketches, to
avoid the requirement of having detailed base table statistics.

The Kùzu graph database system includes factorized processing
and WCOJs [13], but query optimization is still a challenge – we
found that it needs optimizer hints to generate a WCOJ even in
triangle queries. Graph query optimization over multiple n:m joins
is an active research topic, e.g., with [7] showing progress in cardi-
nality estimation. But in the general case, estimation errors remain
significant [17]. We side-step many of these issues by computing
statistics on-the-fly directly on the join inputs.

Outline. In Section 2, we explain the implementation of factor-
ized query processing in DuckDB and its application for queries
involving aggregations and joins. Section 3 describes the calculation
and exploitation of on-the-fly sketches to make factorization run-
time adaptive. Finally, Section 4 contains a performance evaluation,
and Section 5 concludes with suggestions for future work.

2 THE LINEAR-CHAINED HASH TABLE
Linear hash tables store records directly in the hash buckets and
therefore resolve lookups typically with one CPU-cachemiss.While
many systems use linear probing for the aggregation operator
(GROUP BY), bucket-chaining is often used for hash joins. Bucket-
chained hash tables store records separately from the hash buckets;
so lookups typically generate two cache misses: one for the bucket
and one for the record. Unlike in aggregation, join hash tables can
hold (many) duplicate keys, and then linear hash tables perform
worse than chained ones [4]. A second advantage of chaining is
the build phase, where the first step is to materialize the records
– as for chaining this requires no parallel synchronization, while

for linear probing it does. A third advantage is efficient selective
joins: by keeping a small bloom-filter (“salt”) in the highest 16 bits
of the buckets – which contain 64-bit record pointers – queries that
find no match can be identified without accessing the records [15].
Selective workloads therefore do not need to keep the records in
the CPU cache, and the buckets are much smaller than the records,
so they fit in the caches better than linear hash tables.

In addition, we use the uppermost bit of the salt to mark whether
there was a hash collision on a bucket during the build. When
probing this bucket, we can now check this collision bit to know
whether we must do linear probing in case the salt does not match.

As a part of this work, DuckDB v1.1.0 adopted the Linear-Chained
Hash Table, introduced in this paper. It is a bucket-chained hash
table, where in case a newly inserted key collides with an already
inserted different key, this is resolved with linear probing, as shown
in Figure 1. Our implementation tries the next bucket in case of a
collision to profit from cache locality, but other collision handling
strategies, such as quadratic probing could also be used.

As a result, chaining is only used when there are multiple records
with the same key. Because each bucket stores only records for a
single key, the salt is no longer a mini bloom-filter (where each key
sets a few bits) but is a 15-bit hash, providing low false positives at
a low computational cost.

Compared to DuckDB’s original hash table, this approach has
advantages in processing selective joins – thanks to the accurate salt
– as well as in joins with many duplicates: after the first probe hit, all
subsequent hits on items with the same key can now be generated
from the pure chain without key comparisons. The disadvantage
is the additional key equality check during insertion if a bucket
is non-empty; in case this is due to duplicate keys, its probing
advantages outweigh this disadvantage – so this only has negative
effects for true hash collisions, which are rare given DuckDB’s
generous bucket sizing (#buckets =̃ 2x#records)

100 101 102

Scale Factor

1.00

1.05

1.10

S
p

ee
d

u
p

LC

LC + salt

Figure 2: Linear-Chaining
(LC) with salt improved TPC-
H performance.

1 2 4 8 16 32 64 128

Build Key Frequency

1:1

1:2

1:4

1:8

1:16

1:32

1:64

1:128

P
ro

b
e

K
ey

H
it

R
at

e

1.0

1.2

1.4

1.6

S
p

ee
d

u
p

Figure 3: LC is better with se-
lectivity (collision-bit & salt)
and build key frequency.

Figure 2 shows the speedup of the linear-chained hash table
compared to the previous hash join implementation in DuckDB for
the combined runtime of all TPC-H queries. With no salt optimiza-
tion, the speedup is generally close to the baseline but becomes
higher with larger scale factors. Using salt optimization, the new
join is faster for every scale factor, with better performance for
larger-scale factors. This shows that the salt can reduce the number
of cache misses, which becomes more relevant with larger hash
tables. The matrix in Figure 3 shows an exhaustive test for different
duplicate key frequencies on the build side (X-axis) and probe hit
ratios (Y-axis). For the experiments, we chose a probe-side cardi-
nality of 228 and a build-side cardinality of 224. The matrix shows

Adaptive Factorization Using Linear-Chained Hash Tables CIDR2025, January 19–22, 2025, Amsterdam, The Netherlands

Aggregation

COUNT(P.part) 

GROUP BY O.item

0

1

2

0

0

[0,0,0] 
[1] 
[2]

[0,0,0] 
[0,0,0]

O.item [O.item]
Factorized Intermediate

O.item COUNT(P.part)

 HT for

O.item=P.item

 Create

Chain Heads

 Get count from chain head
(traverse chain or use cache)

 Update

Hash Table

0

0

0

1

2

0

1

2

0

0

order item
Relation Orders

0

1

2

3

4

0

1

2

0

0

item part
Relation Parts

1st Hash Join

O.item=P.item

2

2

0

0

-

-

1

1

[2]

1

[0,0,0]

9

[1]

1

O.item [O.item]

Aggregate HT on O.item

Join HT on P.itemChain Heads

ptr(k₂)1

ptr(k₀)

ptr(k₁)

3

1

Count Pointer

Figure 4: Cached COUNT(expr) aggregate computation: Prob-
ing tuples sharing the same pointer can use the chain head’s
aggregate, avoiding repeated traversal for counting.

Baseline Factorized
(no caching)

Factorized
(with caching)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

R
u

nt
im

e
[s

] 0.576

0.460

0.033

Figure 5: Factorization benefits with and without caching.

that there are no regressions and that the speedup scales with the
frequency of the build key, which is due to fewer comparisons
due to the key-unique chains. Further, there are also speedups for
highly selective joins as they benefit from both the salt comparison
and the collision bits. However, queries with high selectivity show
lower speedup because many key-unique chains remain unprobed,
making the effort to ensure their key uniqueness redundant. Impor-
tantly, for our work here, Linear-Chained hash tables provide the
basis for factorized processing.

Exploiting Linear-Chained Hash Tables.We can now apply the
idea of the 3D Hash join [8] in DuckDB to let a join probe emit
chain pointers that point to a chain in the hash table rather than
expand the result with one result tuple for every hit on the same
key. This practical idea is what in factorization theory is called a
d-representation [17, 20], where factorization happens by pointing
to the definition of a result. In contrast to f-representations, this
approach enables the definition to be reused multiple times by re-
peatedly emitting the same chain pointer. Both representations
avoid join expansion, but the list of values to expand the input with
is computed and stored only once for d-representations. In contrast,

in f-representations, it gets computed and stored potentially multi-
ple times. The 3D Hash join paper used factorization only to delay
join expansion, such that higher-up filters or selective joins in the
same pipeline could eliminate tuples before expansion (“deferred
unnesting”). We further pursue this idea in both (grouped) aggre-
gations on n:m joins and cyclic hash joins, i.e., in cases where join
expansion can be avoided and the benefit of factorization is high.

Factorizable aggregates are composable functions like MIN(expr),
MAX(expr), SUM(expr), COUNT(expr), whose GROUP BY (if present)
does not depend on the build side of a not yet expanded join lower
in the query pipeline. If the aggregate input expr also does not
depend on the build side, these do not need to be expanded at all to
compute their result; for SUM and COUNT one just needs to multiply
the result with the length of the chain. Further, any composable
aggregate whose input expr comes from the build side of a factor-
ized join can be (partially) cached after computation. The advantage
of these cached partial aggregates is that they get computed only
once, while a key can be probed many times, reducing memory
access and computation. Once the hash table is built, the count of
unique chains is known. We use an array sized to this count, which
holds pointers to the chains and space to store partial aggregates,
as shown in Figure 4. Instead of directly emitting pointers to the
chains, the join probe then emits pointers to this array.

We developed amicrobenchmark to evaluate factorization perfor-
mance for aggregations with and without caching. The benchmark
involves two tables: Orders, consisting of 500,000 rows containing
10,000 distinct item IDs, and Parts, which includes 1,000,000 rows
with 50,000 distinct part IDs and 10,000 distinct item IDs.

The query used for this benchmark can be found in the top right
corner of Figure 4. DuckDB’s non-factorized query plan serves
as our baseline. This plan expands the probing tuples due to the
duplicates on the build side, resulting in a large intermediate result.
As the join and the aggregation are performed on the same key
(o.item), we can opt for a factorized plan. Using the previously
described caching optimization, we only compute the aggregations
per key once. We can then cache the results for subsequent accesses,
as shown in Figure 4.

Orders is the build side as it is smaller. Using the item key, with
500,000 entries and 10,000 distinct values, results in an average
chain length of 50 in the hash table. This reduces the factorized in-
termediate size to just 2% of a flat result. For aggregation, each item
key occurs 100 times on average. When accessing a chain for the
first time, we will traverse it to get the chain length and then cache
it. Therefore, a full traversal is only needed 1% of the time. Figure 5
shows that even without caching, factorization improves perfor-
mance, yielding a 1.25x speedup. With caching enabled, we observe
a substantial enhancement in runtime with a 17.58x speedup.

Worst-case optimal joins can be especially efficient for cyclic
patterns over n:m joins, such as shown in Figure 1. Finding cycles
within a graph is a common task [22], but challenging from a sys-
tems perspective due to the size of the intermediate result being
significantly larger than the final result. In DuckDB’s standard join
query plan, the example triangle query is executed using two (hash)
equi-joins: the first join matches the relations R.dst=S.src and the

CIDR2025, January 19–22, 2025, Amsterdam, The Netherlands Groß et al.

src

0

0

0

1

2

0

1

2

0

0

dst
Relation T

2nd Hash Join

R.src=T.dst

[S.dst]=[T.src]

0

0

0

1

2

[2,1,0] 
[0] 
[0]

[2,1,0] 
[2,1,0]

R.src [S.dst]
Factorized Intermediate

2

-

0

1

[0]

[2,1,0]

[0]

T.dst [T.src]

 Probe

 HT for

R.src=T.dst

 HT for

R.dst=S.src

0

0

0

1

2

0

1

2

0

0

src dst
Relation S

0

0

0

1

2

0

1

2

0

0

src dst
Relation R

1st Hash Join

R.dst=S.src

2

0

-

1

[0]

[2,1,0]

[0]

S.src [S.dst]

Hash Table built on T.src

 Intersect

Hash Table built on S.src

Figure 6: WCOJ plan in DuckDB. The first join probe finds a
list (chain pointer). The second join as well. Then, these two
lists are intersected to generate the result.

"follows" has edges
(a "connecting table")
SELECT *
FROM follows R,

follows S,
follows T

WHERE R.dst = S.src
AND S.dst = T.src
AND T.dst = R.src

Listing 1: SQL triangle join.

R S

T
R.src=T.dst 

2nd Join

R.dst=S.src 
1st Join

[T.src]=[S.dst] 
2nd Join

1st Join Build Side

2nd Join Build Side

Figure 7: Join Schema.

second closes the cycle with S.dst=T.src and T.dst=R.src. Specifi-
cally, the first hash table is built on table S using key S.src while
the second hash table is built on table T using the combined keys
T.src and T.dst.

In contrast, exploiting the Linear-Chained Hash Tables, the first
join will not expand but generate a chain pointer representing
a list of S.dst-s. The second hash table should only be created
on T.dst. As a consequence, a lookup with R.src in the second
hash table will find a matching T.dst and again deliver a chain
pointer, that represents a list of T.src-s. The join result can then be
computed by intersecting the list of S.dst-s from the first join with
the list of T.src-s from the second. Provided the complexity of this
intersection is linear to the shortest of the two lists, this is a WCOJ.

This WCOJ query plan is shown in Figure 6. Note that in the
second join, we depict the list of T.src-s inline in the left join input,
though in reality in DuckDB these are chain pointers that point
into the first hash table. These chain pointers are a factorized d-
representation because in the first join, a pointer to the same list of
S.dst-s is generated for any R.dst with the same value.

In the DuckDB implementation of the intersection-join, we use
a hash-based approach to allow two lists to be intersected in time

linear to the shortest list. For this purpose, we allocate large buffers
in which many mini linear hash-tables are stored one after the
other, one for each list, each sized by the smallest power of two
larger than the list length. The buckets of these mini hash tables
are salted pointers to the records already present in the original
hash table allocated. Intersection uses the smallest list to probe and
performs lookups in the mini hash table of the larger list.

3 FACTORIZING ADAPTIVELY
A standing challenge in WCOJs is deciding when to use them over
binary joins (BJs) as they can make queries slower [17]. This also
holds for our factorized aggregation technique, which exploits a
delayed expansion over n:m joins to calculate (sub) aggregates over
a list of join matches once and re-use it. However, if the join turns
out to be not n:m but n:1, these lists have length 1, and this technique
only adds overhead. The same holds for our WCOJ algorithm.

Previous work (e.g., [9]) has focused on using the optimizer to
create factorized query plans. For this, it should estimate the size
of intermediate join results and estimate their cost, or more heuris-
tically, detect patterns such as cycles in join graphs. A big issue for
optimizers here is the lack of reliable (or any) statistics to predict
join sizes. This is especially hard to do over multiple joins and on
inputs computed by sub-queries. Errors made in estimates com-
pound, making them unreliable [12]. This problem is particularly
present in modern data pipelines, where DuckDB is often deployed.
It is common practice to directly query Parquet files, such that even
information about foreign and primary keys is lacking, and it is
even hard to identify an n:m join in the first place.

We present an adaptive approach that uses runtime statistics
to decide whether to employ a factorized query plan. While the
query optimizer detects opportunities for factorized execution, it
does not commit to factorization immediately. Instead, it marks the
plan as potentially factorizable, prompting the hash joins to collect
statistics during their hash build phase. The optimizer currently
targets cyclic joins and changes only the behavior of (i) the join
that closes the cycle (the join with a double key condition – the 2nd
join in Figure 6), and (ii) the join whose build side delivers the key
involved in that lookup (the first join in Figure 6). We refer to this
key, labeled as S.dst in Figure 6, as the "embedded key." The change
introduces the creation of fast sketches based on the embedded key
during the materialization phase of the joins. We chose the closing
of cyclic n:m joins as a starting point because it typically reduces
intermediate results. Generalizing adaptive factorized processing
to different join shapes is left as future work.

For the triangle query in Figure 6, both the binary and factorized
join plan begin similarly by building the first hash table on the same
key (S.src = R.dst from Figure 6), differing only in the probe
phase where they either emit chain pointers or expand the result.
After building the first join’s hash table, there is exact information
on the number of chains and their length, plus the information from
the sketches on the embedded key (S.dst). Next, the second hash
table will be built, creating sketches on its respective embedded key
(T.src). After finishing the materialization of the records and before
filling the hash buckets, we can now decide whether to proceed
with a BJ or WCOJ plan based on runtime statistics.

Adaptive Factorization Using Linear-Chained Hash Tables CIDR2025, January 19–22, 2025, Amsterdam, The Netherlands

Specifically, to change the two normal hash joins into a plan
where the first join performs factorized lookups (emits chain point-
ers) and the second hash join that closes the cycle using a combined
key, is turned into another factorized join on only a single key;
and runs list intersections to compare with the second key. If this
decision is made, mini hash-tables are created on all the chains in
both hash tables as a final part of the second hash join’s build phase.
After this, the probe pipeline will start, looking up each tuple in the
first hash table and delivering factorized results containing chain
pointers. Subsequently, it will perform a lookup in the second hash
table, which delivers another chain pointer, and then it performs a
list intersection on both chains to emit flat results.

AMS Sketch. We need to gather statistics regarding the explosive-
ness of the join pattern that we might handle with a list intersection
in the WCOJ plan. For this, we use the AMS sketch, a linear sketch
suitable to estimate the join size between relations [2].

The AMS sketch consists of a matrix 𝑀 ∈ Z𝑑×𝑤 , where the
number of rows 𝑑 determines the number of hash functions used,
and the number of columns𝑤 is the number of buckets per hash
function. In our implementation, for every item 𝑖 , we use the 64-bit
hash generated during the hash join materialization phase. This
hash must be computed in both the binary and the factorized join
plan so there is no additional overhead in hashing the keys for the
sketch. This 64-bit hash is split into its bytes. For each row 𝑗 , we
consider the 𝑗-th byte of this hash. We derive two functions from
this byte: (1) The function ℎ 𝑗 (𝑖) determines the bucket 𝑏 in the 𝑗-th
row to which item 𝑖 is mapped based on the last 7 bits of the 𝑗-th
byte. (2) 𝑔 𝑗 (𝑖) maps item 𝑖 to either +1 or −1 depending on the most
significant bit of the byte. We then increment 𝑏 with 𝑔 𝑗 (𝑖).

To estimate the join size of two sketches 𝑀1, 𝑀2 ∈ Z𝑑×𝑤 , we
compute the estimate per row 𝑗 as 𝑒 𝑗 =

∑𝑤
𝑘=1𝑀1, 𝑗,𝑘 ·𝑀2, 𝑗,𝑘 using

the dot product, and then use the mean of the row estimates.
We construct an AMS sketch on the previously mentioned em-

bedded keys for both join sides during the hash join materialization.
For Figure 6, this results in the two sketches 𝑀S.dst for the first
and𝑀T.src for the second join. The sketches from both hash tables
can be used to estimate the result size of the list intersection. Then,
by dividing this by the average cardinality of the two build sides,
we get the “Chain Intersection Explosion Factor” feature that is less
dependent on cardinalities.

We also estimate the self-join size of the chain keys for each join
build side by applying its AMS sketch twice. Dividing this by the
cardinality of the build side results in the feature “1st Join Chain
Keys Skew”.

HLL Sketch. This well-known sketch estimates the number of
distinct values. During the build of our Linear-Chained hash table,
in the first step of materializing all records, DuckDB already com-
putes the hash on key, so it is cheap to compute an HLL sketch. The
number of distinct values can be used to size the bucket array and
provide the average chain length.

Along with the statistics from the HLL and AMS sketches, we
use simple measures like the average chain length of the first hash
table as features for our models, which decide whether to pick a
WCOJ or BJ plan.

Feature Overview. Next to the statistics we get from the HLL and
the AMS sketches, we use heuristics like the average chain length of
the first hash table as features to predict whether to choose a WCOJ
or BJ plan. The complete feature list is in Table 1. Additionally,
the table presents the Pearson correlation coefficient (PCC) for
each feature, illustrating its relationship with the "Faster Class"
and the WCOJ over BJ speedup. A positive PCC indicates that the
likelihood of WCOJ being faster increases as the feature increases,
while a negative correlation suggests the opposite relationship. Our
experiments show that computing these sketches and gathering
the heuristics only adds an average runtime overhead of 0.35%.

Figure 8 depicts the speedup of triangle queries across different
relations compared to the "Both Joins Min Average Chain Length"
and the “1st to 2nd Join Build Size Ratio”. The figure shows that the
factorized-WCOJ approach does not always outperform the base-
line, with speedups ranging from 0.23x to 14.91x. Further, it suggests
that runtime parameters correlate with speedup. This aligns with
the intuition that longer chains produce large intermediate results,
which WCOJ can avoid. Furthermore, looking at the “1st to 2nd
Join Build Size Ratio”, we observe that certain features serve as pre-
dictors only in specific cases. For instance, this feature is a reliable
predictor of when not to use WCOJ, namely if its value is smaller
than ≃ 0.05. The intuition behind this is that the probe side of the
1st join is where WCOJ mitigates the explosion of intermediate
results. If the size of the 1st join probe side is too small compared to
the 2nd join size, the benefits of WCOJ get smaller. This also shows
the potential of combining multiple features in a model.

4 EVALUATION
In this section, we evaluate the performance of our WCOJ imple-
mentation for cyclic joins and the benefits of using it adaptively.
The cyclic join experiment was run on a cloud instance running
Fedora 40, Intel Xeon Gold 5115 with 40 threads and 248 GB RAM.
The experiments on adaptivity experiments were performed on
a machine running Fedora 40, featuring a 96 threads AMD EPYC
CPU and 128 GB RAM.

Cyclic Joins. We evaluated the performance of factorized cyclic
joins in DuckDB by performing triangle joins along links in the
WebStan dataset1, which has 685,231 nodes and 7,600,595 edges.

We compared the results with DuckDB v1.0.0 and KùzuDB [13]
version 0.4.2.12 commit 89d47d152, an embeddable graph DBMS
and Umbra [18] version v0.2-400-g806f09709, a state-of-the-art re-
lational DBMS. Both systems feature a WCOJ implementation. Fig-
ure 9 shows the results. In both KùzuDB and DuckDB binary joins
were slower than WCOJ. As mentioned previously, KùzuDB re-
quired hints to recognize the faster WCOJ plan. DuckDB’s factor-
ized WCOJ using list intersection slightly outperformed KùzuDB’s
WCOJ implementation in both single-threaded and multi-threaded
versions. The speedup between the single-threaded and multi-
threaded versions of the WCOJ implementation of DuckDB is less
than the normal BJ, indicating potential for further optimization,
as parts of the algorithm are not executed in parallel.

Umbra’s WCOJ performs best with 8 threads, while the binary
join is the best in all cases, even outperforming Umbra’s WCOJ.

1https://snap.stanford.edu/data/web-BerkStan.html

https://snap.stanford.edu/data/web-BerkStan.html

CIDR2025, January 19–22, 2025, Amsterdam, The Netherlands Groß et al.

Table 1: Features with Correlations to the Faster Class 𝐶𝑓 and the Speedup 𝐶𝑠 .

Feature Name Description 𝐶𝑓 𝐶𝑠

1st Join Build Side Cardinality Size of the build side for the first join. -0.29 -0.04
1st Join Number of Unique Chains Number of unique chains in the first join. -0.31 -0.04
1st Join Average Chain Length Average Chain Length in the first join. 0.58 0.05
1st Join Chain Keys Skew Skew of chain keys processed by list intersection, estimated from the 1st

AMS sketch self-join size.
-0.02 0.03

2nd Join Build Side Cardinality Size of the build side for the second join. -0.24 -0.03
2nd Join Number of Unique Chains Number of unique chains in the second join. -0.22 -0.02
2nd Join Average Chain Length Average chain length in the second join. -0.08 -0.01
2nd Join Chain Keys Skew Skew of chain keys processed by list intersection, estimated from the 2nd

AMS sketch self-join size.
-0.09 -0.01

Both Joins Average Chain Length Average chain length across both joins. 0.43 -0.01
Both Joins Average Build Side Cardinality Average build side cardinality for both joins. -0.29 -0.04
Larger Join Average Chain Length Average chain length of the join with the larger build side cardinality. -0.08 -0.01
Both Joins Max Average Chain Length Maximum of the two average chain lengths of the two Joins. -0.08 -0.01
Both Joins Min Average Chain Length Minimum of the two average chain lengths of the two Joins using an

accurate value for the first join and an HLL-based estimation for the second.
0.64 0.01

Both Joins Min Chain Keys Skew Minimum chain key skew across both joins. 0.11 0.17
Number of Unique Relations Number of unique relations involved in the triangle query. -0.34 -0.09
Chain Intersection Join Size Predicted size the join result processed by list intersection, estimated from

the product of the two AMS sketches.
-0.07 -0.01

Chain Intersection Explosion Factor Chain intersection join size divided by both joins average build side cardi-
nality

0.12 0.17

1st to 2nd Join Build Size Ratio Ratio of the first join’s build side cardinality to the second join’s. 0.08 0.09

When runningUmbra in the default setting (set debug.multiway=’c’,
which stands for cautious), it chooses a WCOJ plan on this query.
However, for Umbra, the WCOJ is the wrong choice; by disabling
multiway joins (’d’), the binary join plans appear to be faster, high-
lighting the optimizer challenges WCOJs pose.

Adaptive Factorization. To evaluate the performance of dynami-
cally choosing between a WCOJ or BJ plan, we compared several
heuristics and machine learning models in their ability to predict
which plan to use based on statistics gathered during runtime.

We combined three different datasets for this evaluation: (1) A
synthetic dataset consisting of 305 graphs, each containing between
100 and 100,000 nodes and between 100 and 10 million edges and a
wide range of in- and out-degrees. (2) SNAP datasets [16] featuring
more than 1 million edges. (3) LDBC SNB BI [23] datasets of scale
factors 1, 3, and 10. The SNB test dataset includes 352 unique queries
representing all possible 3-way relational cycles. Each relation is
once stored in a DuckDB table and once as a Parquet file2.

In order to test our approach in various degrees of difficulty, we
created four workloads featuring queries on datasets with progres-
sively fewer (useful) static statistics: workload𝑊1 (n=900) contains
triangle queries over PK-FK relations in the SNB datasets, stored as
DuckDB base tables, which contain HLL table stats the optimizer
leverages for join ordering.𝑊2 (n=1200) extends𝑊1 with queries
that perform graph joins across tables from the synthetic and SNAP
datasets (which are single-edge tables). When joining edges from
different datasets using dense integer vertex IDs, joins can still
be explosive, but many join keys will not hit anything. We name

2See https://github.com/cwida/CyclicJoinBench for the full benchmark

this workload "Filtering Joins", referring to the sometimes heavy
filtering effects experienced in the join - a phenomenon that is hard
to predict in advance using static cost models and typically will
lead to cardinality estimation errors, a wrong join order, and diffi-
culty in deciding between using WCOJ or BJ based on the statistics
available during query optimization.𝑊3 (n=1800) contains only the
SNB (PK-FK) queries from𝑊1, but now in two variants: on DuckDB
base tables (with HLLs) and Parquet files (without HLLs). The effect
when joining on Parquet tables is, therefore that there are no table
statistics (regarding the number of DISTINCT keys), such that the
DuckDB query optimizer creates worse join orders than with base
tables.𝑊4 (n=2400) builds upon𝑊3 by again adding filtering join
queries, both on DuckDB base tables and their Parquet equivalents.

For each query, we measured the runtimes of the BJ and the
WCOJ plan to calculate the WCOJ’s speedup and identify queries
where it outperforms the BJ, serving as target labels for our models.
We trained various machine learning models using a 70/30% train-
test split, using runtime data and statistics derived from the sketches
to construct the features outlined in Table 1.

As our data contains both the WCOJ and BJ runtime for each
query, we can additionally simulate scenarios such as the potential
speedup when the WCOJ plan is always or never used, which are
shown in the top four rows of Table 2.

The best achievable speedup is higher than consistently opting
for a WCOJ. For example, in𝑊1, the best speedup is 1.3x, com-
pared to 1.15x for WCOJ, highlighting the potential of adaptive
factorization. We can capitalize on this by using machine learning
models to determine the execution strategy on runtime, as shown
in Table 2. The random forest model achieves the highest speedup

https://github.com/cwida/CyclicJoinBench

Adaptive Factorization Using Linear-Chained Hash Tables CIDR2025, January 19–22, 2025, Amsterdam, The Netherlands

100 101 102

Min Avg Chain Length

10−1

100

101

S
p

ee
d

u
p

HLL Table Stats

100 101 102

Min Avg Chain Length

HLL Table Stats, Filtering Joins

100 101 102

Min Avg Chain Length

No Table Stats

100 101 102

Min Avg Chain Length

No Table Stats, Filtering Joins

H4 Predicted WCOJ

H4 Predicted BJ

10−2 10−1 100

1st vs 2nd Join Size

10−1

100

101

S
p

ee
d

u
p

10−2 10−1 100

1st vs 2nd Join Size

10−2 10−1 100

1st vs 2nd Join Size

10−2 10−1 100

1st vs 2nd Join Size

H4 Predicted WCOJ

H4 Predicted BJ

Figure 8: Comparison of WCOJ speedup over BJ with respect to "Both Joins Min Average Chain Length" (top) and "1st to 2nd
Join Build Size Ratio" (bottom) for triangle queries on relations from DuckDB tables or Parquet. High correlation is observed
with tables due to better join ordering statistics, but it decreases with Parquet files or filters. While minimum chain length
roughly correlates with speedup, a low "1st to 2nd Join Build Size Ratio" predicts poor WCOJ performance. Furthermore, we
show when 𝐻4 from Table 2 would opt for WCOJ and BJ, showing that we can create good models from these features.

0 20 40 60 80
Time (s)

KùzuDB - WCOJ

Umbra - WCOJ

DuckDB - WCOJ

KùzuDB - BJ

Umbra - BJ

DuckDB - BJ
1 Thread

4 Threads

8 Threads

Figure 9: Performance of triangle-count queries in web-
BerkStan. DuckDB and KùzuDB profit fromWCOJs; Umbra
does not. Allocation of mini-hash tables in DuckDB’s WCOJ
is (still) serial, impairing its parallel scaling.

with 1.29x. The most important features of this model are the "Min
Chain Length" and the "1st Join Chain Length" as depicted in Fig-
ure 10. However, with 98 nodes, this model is already quite complex
and counter-intuitive and bears the risk of over-fitting (despite our
70/30 train/test approach) and hinders system adoption. In contrast,
the decision tree shown in Figure 11 might be a better choice as it
offers similar performance with only 9 nodes. Like the random for-
est, one of the key features used is the "Min Chain Length", opting
for a WCOJ if chains are longer than 5.

Also, simpler heuristics (e.g., use WCOJ if a feature exceeds
a threshold) can achieve good speedups. For instance, 𝐻1 using
only the first join’s average chain length reaches 1.27x speedup
on DuckDB tables (𝑊1). However, it performs worse on Parquet
files (𝑊3). When running queries on tables, the optimizer can use
HLL table statistics to delay explosive joins. Therefore, if the first
join has longish chains, subsequent joins likely do as well, making
the first join’s chain length a strong predictor. This heuristic does

not work with poor join ordering. Further, we can improve the
decision-making by combining multiple features, as in 𝐻4, yielding
good performance in all datasets, as shown by the colors in Figure 8.
Importantly, the "MinChainLength" feature needs an estimate of the
chain length of the second join, which can be provided by run-time
computation of an HLL during hash-build. Similarly "MinKeySkew"
needs an AMS sketch on both join inputs.

Table 2: Speedup of WCOJ over BJ for different models for
adaptive decision-making across different workloads𝑊1 to
𝑊4 with progressively less static statistics for join ordering.
With good join ordering, simple heuristics like 𝐻1 perform
well, while bad join ordering requires more complex models.

Selection Method 𝑊1 𝑊2 𝑊3 𝑊4

Static Models Speedup

Always use slower algorithm 0.84 0.86 0.83 0.87
Always use faster algorithm 1.30 1.42 1.39 1.47
Always use WCOJ 1.15 1.28 1.23 1.34
Always use BJ 1.00 1.00 1.00 1.00

Heuristics Speedup, Use WCOJ if True

𝐻1 = 1stJoinChainLength > 10 1.27 1.36 1.29 1.37
𝐻2 = MinChainLength > 5.5 1.27 1.37 1.29 1.37
𝐻3 = 𝐻2 ∨ MinKeySkew > 5 1.26 1.36 1.32 1.40
𝐻4 = 𝐻3 ∧ JoinSizeRatio > 0.05 1.27 1.37 1.35 1.42

Machine Learning Models Speedup

Decision Tree 1.26 1.38 1.34 1.41
Logistic Regression 1.22 1.30 1.27 1.31
Random Forest 1.29 1.39 1.30 1.37
Gradient Boosting 1.29 1.39 1.29 1.38

CIDR2025, January 19–22, 2025, Amsterdam, The Netherlands Groß et al.

0.00 0.05 0.10 0.15 0.20 0.25
Importance

2nd Join Chain Keys Skew
1st vs 2nd Join Size

Larger Join Avg Chain Length
2nd Join Avg Chain Length

Unique Relations
1st Join Chain Keys Skew

Explosion Factor
Min Chain Keys Skew

1st Join Avg Chain Length
Min Avg Chain Length

Figure 10: The feature importance of the random forest
shows that the "Minimum Average Chain Length" and the
"1st Join Average Chain Length" are the most relevant.

We think heuristics (or simple models) are preferred over learned
models in real systems, as they are understandable by developers.
In this regard, it is a happy coincidence that 𝐻4 happens to outper-
form our ML models. We would still call for caution regarding the
generality of 𝐻4’s performance, which remains to be battle-tested
in real deployment, but we think it provides a good starting point.

5 CONCLUSION
We presented the Linear-Chained hash table design, which was
merged into DuckDB v1.1.0 without performance regressions over
the previous bucket-chained design. Its collision-free chains are a
practical form of so-called d-representations in factorized query pro-
cessing. We used them to implement a proof-of-concept WCOJ and
factorized aggregation that is closely integrated with the existing
binary hash join in DuckDB, with low impact on its source code.

Identifying opportunities where WCOJ and factorization accel-
erate queries are beneficial is an unsolved optimizer challenge.
This paper shows that runtime adaptivity can help: in the build
phase, one can inspect all build-side tuples and construct AMS and
HLL sketches. These statistics are created on the true join inputs;
whereas statistics on base tables – often unavailable in the first
place – get perturbed by operators in between the scan and the join,
causing estimation errors. Using the statistics of our sketches, we
were able to create a simple and robust model to predict whether
WCOJs on cyclic joins improve DuckDB performance.

Future Work.We are still working to improve the Linear-Chained
hash table on the implementation level, and also plan to test an
“unchained” [4] variant that clusters all records for a duplicated key
together to improve memory locality. However, unlike [4], to avoid
regressions, we think this should only be done adaptively, e.g., if an
HLL sketch sees evidence of long chains. This is easier to integrate
in vectorized engines like DuckDB than in compiling engines like
Umbra: to use runtime adaptivity, the latter must perform JIT re-
compilation after making runtime decisions or include the code for
both branches, causing code growth exponential in the number of
decisions. Both issues may increase compilation latency.

Our next step is integrating factorized techniques into DuckDB
or DuckPGQ, enabling factorized aggregation to adapt dynamically
to runtime statistics and compose with non-factorized components.
We will also explore supporting more complex join shapes by en-
hancing our hash table-based d-representation.

Samples = 39.3%
Speedup = 0.73

Samples = 22.5%
Speedup = 1.08

Samples = 6.9%
Speedup = 3.43

Samples = 27.2%
Speedup = 1.89

1st Join Chain Keys Skew <= 5.82
Samples = 61.9%
Speedup = 0.86

1st Join Chain Keys Skew <= 116.9
Samples = 34.2%

Speedup = 2.2

Min Avg Chain Length <= 5.54
Samples = 96.0%
Speedup = 1.34

True

Samples = 4.0%
Speedup = 12.54

 False

Min Chain Keys Skew <= 588.86
Samples = 100.0%

Speedup = 1.78

Figure 11: The decision tree identifies the "MinimumAverage
Chain Length" and "Chain Key Skew" as important features
for decision-making.

REFERENCES
[1] Daniel Abadi et al. 2013. The Design and Implementation of Modern Column-

Oriented Database Systems. Found. Trends Databases (2013), 197–280.
[2] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The Space Complexity of

Approximating the Frequency Moments. In STOC. ACM, 20–29.
[3] Nurzhan Bakibayev et al. 2012. FDB: A Query Engine for Factorised Relational

Databases. Proc. VLDB Endow. (2012).
[4] Altan Birler et al. 2024. Simple, Efficient, and Robust Hash Tables for Join

Processing. In DaMoN. ACM, 4:1–4:9.
[5] Altan Birler, Alfons Kemper, and Thomas Neumann. 2024. Robust Join Processing

with Diamond Hardened Joins. Proceedings of the VLDB Endowment 17, 1 (2024).
[6] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-

Pipelining Query Execution. In CIDR. 225–237.
[7] Jemery Chen et al. 2023. Accurate Summary-based Cardinality Estimation

Through the Lens of Cardinality Estimation Graphs. SIGMOD Rec. (2023), 94–102.
[8] Daniel Flachs, Magnus Müller, and Guido Moerkotte. 2022. The 3D Hash Join:

Building On Non-Unique Join Attributes. In CIDR.
[9] Michael J. Freitag et al. 2020. Adopting Worst-Case Optimal Joins in Relational

Database Systems. Proc. VLDB Endow. (2020), 1891–1904.
[10] Michael J. Freitag and Thomas Neumann. 2019. Every Row Counts: Combining

Sketches and Sampling for Accurate Group-By Result Estimates. In CIDR.
[11] Pranjal Gupta et al. 2021. Columnar Storage and List-based Processing for Graph

Database Management Systems. Proc. VLDB Endow. 14, 11 (2021), 2491–2504.
https://doi.org/10.14778/3476249.3476297

[12] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of
Errors in the Size of Join Results. In SIGMOD. ACM Press, 268–277.

[13] Guodong Jin et al. 2023. KÙZU Graph Database Management System. In CIDR.
[14] Laurens Kuiper, Peter Boncz, and Hannes Mühleisen. 2024. Robust External Hash

Aggregation in the Solid State Age. In ICDE. IEEE.
[15] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-

driven parallelism: A NUMA-aware query evaluation framework for the many-
core age. In SIGMOD.

[16] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[17] Amine Mhedhbi. 2023. GraphflowDB: Scalable Query Processing on Graph-
Structured Relations. Ph. D. Dissertation. University of Waterloo.

[18] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR.

[19] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case
Optimal Join Algorithms. J. ACM (2018), 16:1–16:40.

[20] Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD Rec.
(2016), 5–16.

[21] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In SIGMOD.

[22] Siddhartha Sahu. 2020. The ubiquity of large graphs and surprising challenges
of graph processing: extended survey. VLDB J. (2020), 595–618.

[23] Gábor Szárnyas et al. 2022. The LDBC Social Network Benchmark: Business
Intelligence Workload. Proc. VLDB Endow. (2022), 877–890.

[24] Daniel ten Wolde, Gábor Szárnyas, and Peter A. Boncz. 2023. DuckPGQ: Bringing
SQL/PGQ to DuckDB. Proc. VLDB Endow. (2023), 4034–4037.

[25] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.
In ICDT. 96–106.

https://doi.org/10.14778/3476249.3476297
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 The Linear-Chained Hash Table
	3 Factorizing adaptively
	4 Evaluation
	5 Conclusion
	References

