
Towards Functional Decomposition of Storage Formats
Martin Prammer*

Carnegie Mellon University
mprammer@cs.cmu.edu

Xinyu Zeng
Tsinghua University

zeng-xy21@mails.tsinghua.edu.cn

Ruijun Meng
Tsinghua University
mrj21@mails.tsinghua.edu.cn

Wes McKinney
Posit PBC
wes@posit.co

Huanchen Zhang
Tsinghua University
huanchen@tsinghua.edu.cn

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

Jignesh M. Patel
Carnegie Mellon University

jigneshp@cs.cmu.edu

ABSTRACT
The rise of data lakes containing mostly semi-structured and un-
structured data has changed how traditional data platforms interact
with collections of stand-alone files. Horizontally partitioned arrays
are a fundamental construction in these columnar-like file formats,
such as those partitioned into a column-chunk, row-group hierar-
chy (e.g., Parquet, ORC). Compressing each horizontal partition
results in storage savings. Simultaneously, row-skipping metadata
is a popular, lightweight indexing technique for accelerating colum-
nar scans. Thus, existing storage-layer partitions are also used for
general-purpose search acceleration. However, no single horizontal
partition size optimizes both compressibility and row-skipping-
driven scan performance.

Instead of settling for a suboptimal configuration, we return to
the age-old wisdom of physical data independence: data should be
kept separate from indexing structures. We propose splitting the
current status quo into a “storage layer” and a “search acceleration
layer” (SAL). By splitting these layers, row-skipping metadata is
no longer stuck using the same partition sizes as compression
blocks, allowing for fine-grained tuning of the SAL. In this paper,
we explore the impact of such a split; not only do we find that
search acceleration metadata is regularly optimal at small partition
sizes (10-100), but also that optimal sizing depends on the metadata
type, underlying data, and applied query. By separating the storage
layer and SAL, we enable each to evolve independently, allowing
for greater flexibility as datasets and application needs evolve.

1 INTRODUCTION
Over the last decade, there has been considerable interest in tab-
ular data storage formats like Parquet [27] and ORC [30] to aid
interoperability between data platforms [11, 13, 25, 32, 36]. The
disaggregation of storage and compute in the cloud has made these
data formats even more important [2, 10, 18, 31, 35]. Data is now
stored in low-cost cloud storage in these open formats and accessed
by data platforms that run in the compute layer. Cloud storage

*Work performed while at the University of Wisconsin-Madison.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

has become the primary data storage layer for such data platforms,
separating the storage and compute layers at an architectural level.

If we inspect the storage layer more closely, we find a myriad of
compute-adjacent tasks. Most prominently is compression-focused
compute, which is fundamental for modern, high-performance data
tasks [14, 15, 33]. We also find index structures such as small ma-
terialized aggregates (SMA, also known as zone maps) and bloom
filters stored directly adjacent to data [3, 9, 18, 24, 27, 30, 34]. These
index structures form the search acceleration layer (SAL). This layer
is leveraged to perform filtering via predicate pushdown, improving
performance by reducing file I/O bandwidth usage.

Many of these file formats horizontally partition columns into
nearly constant-length “chunks” or “blocks,” each of which is in-
dependently compressed and annotated with search acceleration
metadata [13, 27, 30, 34]. Thus, search acceleration and compression
must operate on the same horizontal partition size. But depending
on the underlying dataset, search acceleration may only be useful
when blocks are small; unfortunately, small blocks reduce compres-
sion efficiency. This trade-off forces chunk-based storage formats
to either optimize for compressed file size or row-skipping during
predicate pushdown or attempt to find a “one size fits most” config-
uration. Parquet and ORC have decided on their own partition-size
configuration, either via specification or default parameters. Newer
formats such as BtrBlocks [16] and Lance [34] challenge these ex-
isting parameters, proposing a set of new optimal configurations.

Although the contributions of each iteration of file format are
both true and realized, the continuous revision of file formats is
patently undesirable. To better inform future tabular data storage
formats, we attempt to find a horizontal partition size that performs
well in the general case. However, we find that the partition sizes
optimal for search acceleration and compressibility oppose each
other (Section 3). Worse still, even between metadata structures
that accelerate searching, we find that there is no “one size fits
most” block size; while it is obvious that the behavior of summary
structures depends on the underlying data, an optimal block size for
one data distribution may degrade scan-based filter performance
in another.

Without a singular, generally good horizontal partition size, we
must approach this problem from an alternate direction. Returning
to the fundamental notion of physical data independence [5], we
propose the separation of the search acceleration layer from the stor-
age layer. The same data may be used in different ways by different
applications, and the index layer may need to evolve dynamically.
We argue there needs to be two standards that evolve indepen-
dently and focus on their key strengths. First, a data storage layer
that focuses on efficient data storage aspects like compression, to

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Martin Prammer et al.

reduce the costs of data storage and transmission. Second, a loosely
coupled but independent layer that enables efficient “querying” of
data in the storage layer — the search acceleration layer.

Separating the SAL from the storage layer enables each to evolve
independently. As application needs change, search acceleration
structures can be added or removed. Similarly, both general im-
provements to compression techniques and inclusions of data-
specific compression techniques are much more straightforward
to implement. Further, these refinements can act as data changes,
allowing for a larger breadth of runtime-based optimizations for
both storage efficiency and search acceleration.

In this paper, we first demonstrate in Section 3 that the current
status quo of requiring search acceleration and storage partition
sizes to be the same leads to unsatisfactory compromises between
compressibility and search acceleration. Further, we show that
unlinking storage and search acceleration structures enables opti-
mizing partition sizes for each component, facilitating improved
per-component performance. From these initial results, we propose
a minimum set of goals for separating the search acceleration and
storage layers based on principals rooted in physical data indepen-
dence while still looking towards modern interoperability goals
(Section 4). From this foundation, we then explore in Section 5 the
impact of separated search acceleration and storage layers on a
real-world dataset.

2 BACKGROUND
In this section, we discuss the history and role of row-skipping
metadata in tabular data storage formats.

2.1 Blocked Arrays
Horizontal partitioning of large datasets is a well-studied technique
that is utilized for a variety of reasons. From a myriad of use cases,
there are many notable implementations, some of which we high-
light [16, 17, 27, 30, 34]. Many of these techniques are inspired
by the PAX data layout [1]. Although each format uses its own
terminology, each usually horizontally partitions tabular data into
“row groups.” Within each horizontal partition, values are vertically
partitioned, resulting in “blocked” or “chunked” columns.

This work focuses on the compression use case of these stor-
age formats, which prioritizes minimizing the compressed size of
stored data [13, 16]. Some forms of horizontal partitioning before
compression evolved out of necessity. In one such method, a file
is iteratively compressed as independent blocks, which are com-
pressed and decompressed in isolation due to memory constraints.
However, in many cases, compressed partitions must be entirely
decompressed to access individual elements [13, 27, 34], such as
when each partition is compressed with commodity compression
libraries such as ZStandard [21], zlib [19], or Snappy [8]. Thus, stor-
ing metadata describing the data held within the partition becomes
beneficial in enabling predicate pushdown without decompressing
the underlying block.

2.2 Partition-skipping Metadata
The two most common forms of partition-skipping metadata are
the small materialized aggregate (SMA, also known as a “zone map”)
and the bloom filter [3, 6, 7, 9, 22, 24, 28]. Before discussing their

implementations, we first discuss shared properties of partition-
skipping metadata.

First, partition-skipping metadata are defined over a partition
size. For each individual partition, a single SMA or bloom filter
unit is present. The number of horizontal partitions is the same
as the number of partition-skipping metadata units. Thus, increas-
ing the partition size decreases the number of metadata units. The
importance of the partition size parameter is rooted in its origin:
compression efficiency. Generally, a single partition size parameter
is selected for all horizontal partitions, optimizing for compress-
ibility, where the final partition is partially filled. While the exact
compressibility of a dataset is highly data dependent, general heuris-
tics of “at least a million” rows are common [21, 27, 34].

Second, partition-skipping metadata may emit false positives.
Bloom filters store a hash-based manifest of values within their
respective partition, which may result in false positives due to hash
collisions. SMA may emit false positives depending on their usage.
For example, a min/max SMA does not convey which exact values
are contained by their range. In contrast, a null count or distinct
count SMA precisely identifies the cardinality or the presence of
null values in a horizontal partition.

Finally, partition-skippingmetadata may scale in efficiency based
on allocated resources. For example, the size of a bloom filter can
be increased to reduce false positive rates [20, 28]. This process is
generally performed via either an optimization algorithm or a set of
heuristics [23]. In contrast, SMA are 𝑂 (1); while SMA may or may
not include a null count or distinct count, the practical impact of this
decision is growing from two values per SMA unit to four values.
Further, the efficiency of null counts and distinct counts is both
dataset- and application-dependent; thus, the decision to include
null counts and distinct counts is generally made per column rather
than per partition.

However, while SMA is generally of constant size per unit, the
number of row-skipping metadata units depends on the column’s
horizontal partition size. Thus, all row-skipping metadata have a
space complexity of at least 𝑂 (𝑛), where 𝑛 is the number of hori-
zontal partitions. The search acceleration overhead of row-skipping
metadata for a column is proportional to the number of horizontal
partitions. In practice, this overhead is small due to horizontal par-
tition sizes being dictated by compression-driven needs. When we
unlink search acceleration from storage, we find that many row-
skipping metadata configurations incur higher overhead costs. We
demonstrate these costs in the following section.

3 OBSERVATIONS
In this section, we evaluate the impact the horizontal partition size
of a blocked array has on both compressibility (Section 3.1) and
performance of search acceleration metadata (Section 3.2).

3.1 Optimizing Block Sizes for Compressibility
Existing storage formats apply row-skipping metadata at the same
granularity as their compression blocks. This is an intuitive ap-
proach because many compression techniques do not allow for the
retrieval of individual values within a compressed block. Although
it is well understood that compression algorithms benefit from

Towards Functional Decomposition of Storage Formats CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Figure 1: The compression ratio of the “hotspot” column, by
block size and if a global dictionary was used.

Figure 2: The compression ratio of the “gentle” column, by
block size and if a global dictionary was used.

larger block sizes, there are only soft guidelines for minimum effec-
tive block sizes [12]. However, because existing implementations
of row-skipping metadata require small block sizes, we investigate
the relationship between small block sizes and compression ratios.

For our analysis below, we use Zstandard (zstd) [21] to com-
press horizontal partitions of columns. We use zstd for two reasons:
First, it is already proven to perform at least comparably to other
state-of-the-art compression algorithms [15]. Second, it supports
creating a sampling-based dictionary to assist in compressing files
even when block sizes are small. Each dictionary is trained using
randomly sampled rows from its respective synthetic dataset. We
measure the compression ratio as the ratio of the size of the uncom-
pressed data to the compressed data (including zstd dictionaries,
if present). We operate zstd using its default compression level
parameter (𝐶𝐿𝑒𝑣𝑒𝑙 = 3).

First, we compress a “Hotspot” (𝑝 = 1.75) Pseudo-Zipfian dis-
tributed column, consisting of unsigned 32-bit integers over the or-
dered values [1, 100M] [37]. This distribution resembles a dictionary-
encoded column with a significantly skewed underlying dataset,
where 1 is the most frequent value, 2 is the second most frequent,
and so on. Our results are depicted in Figure 1. Compressing each
block in isolation, we find that zstd requires a block size of at least
10k rows to achieve a compression ratio greater than 5. Beneath
10k, we see a rapid drop in compression ratios. We also depict the
compression results when zstd first trains on 100 sampled blocks

Figure 3: The time to perform a scan-based filter on the
“hotspot” column, by block size.

(same data, randomized alignment) before compression to generate
an auto-optimized dictionary used by all blocks during compres-
sion. Although the dictionary does improve compression ratios at
the low end, the block size must still be reasonably large to achieve
near-optimal compression ratios.

Next, we also compress a “Gentle” Pseudo-Zipfean distributed
column (𝑝 = 0.5) using the same underlying values as the Hotspot
column, shown in Figure 2. In this case, while the column is closely
related to a dictionary-encoded column with a skewed underlying
dataset, the lower 𝑝 parameter results in a longer distribution tail.
While this distribution compresses comparatively poorly compared
to the hotspot distribution, we see a similar convergence to near-
maximum compression ratios once blocks are at least 1k rows.

Overall, these results match common wisdom for sizing blocks.
However, this commonwisdom directly impacts search acceleration
metadata: block-skipping Metadata attached to compression blocks
must function at least 1k+ row blocks, preferably 10k rows. The
following sections demonstrate that 1k-10k+ rows per metadata
unit results in suboptimal search acceleration performance.

3.2 Optimizing Block Sizes for Row-Skipping
Having investigated effective horizontal partition sizes for com-
pression, we now focus on the same for row-skipping metadata.
In this experiment, we use row-skipping metadata to accelerate a
scan-based filter operation over an uncompressed column. We use
the same hotspot and gentle distributions as before, as well as the
same block sizes. We filter for “data EQ predicate” where the predi-
cate value is randomly generated within the range [0, 100k). As the
distributions are skewed towards zero, few records will satisfy this
predicate: on average, 1 per hotspot distribution and 20 per gentle
distribution. We generate one SMA and one bloom filter per block.
The SMA is checked before the bloom filter to test for possible
value membership. Our SMA records the minimum and maximum
value per block, and our bloom filter is a single block Split Block
Bloom Filter (SBBF) based on Parquet’s implementation.1 Thus, for
each column of 32-bit integers, each block is augmented with 40B
of metadata: 8B per SMA, 32B per bloom filter.

1We do not apply xxHash64 before inserting values into the SBBF, as we only use a
single block SBBF and thus do not need to scramble the upper 32-bits.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Martin Prammer et al.

Figure 4: The time to perform a scan-based filter on the “gen-
tle” column, by block size.

Our experimental machine has an 8-core, 16-thread CPU capable
of modern SIMD instructions, which we leverage where possible,
and 64GB of DDR5 memory (4800 MT/s).

First, we find that block-skipping metadata is quite impactful
for the hotspot distribution at small block sizes (Figure 3). The best
configuration in this case is a block size of 128, resulting in a final
scan time of about 252 µs. To contextualize this number, the 1k,
10k, and baseline (no row-skipping metadata) scans took ∼1495 µs,
∼5835 µs and ∼7409 µs, respectively. Thus, while the 1k block size
is 4.96x faster than the baseline scan, it is ∼5.925x slower than the
optimal configuration.

In contrast, the gentle distribution gains no significant perfor-
mance improvement from block sizes of 1k (∼7143 µs) and 10k
(∼7048 µs) over the baseline configuration (∼7306 µs), as shown in
Figure 4. While the smallest block sizes show a modest improve-
ment over the baseline (32: (∼4504 µs)), block sizes between 100 to
256 slightly degrade scan performance. In both the sub-100 and 100
to 256 block size ranges, a significant amount of metadata overhead
is present — 40B per partition. However, while the sub-100 block
sizes are accompanied by fine-grained metadata units, the metadata
units in the 100-256 size range are neither fine-grained enough to
accelerate the query significantly nor lightweight enough to not
incur a performance loss from overhead.

Thus, we reach a crossroads: prioritize the ability to skip blocks
or prioritize compression ratios. Block formats today implicitly
bundle these two considerations into one parameter: the horizontal
partition size. This makes it nearly impossible to optimize both
while also unnecessarily increasing the complexity of the block
format specification.

4 SEARCH ACCELERATION LAYER
As demonstrated, the goals of search acceleration and storage layers
do not always align. In this section, we articulate the goals for a
SAL that has been separated from an underlying storage layer.

We first introduce a new term to describe a more general usage
of search acceleration metadata: coverage. Coverage defines the
number of records that a single unit of search acceleration meta-
data describes. For existing chunk-based storage formats, coverage
and partition size are equivalent. Coverage size is distinct from

horizontal partition size for two reasons: First, coverages are not
implied to be uniform across all columns in a dataset. This allows
for a SAL to tune coverage sizes per column. Second, coverages
are not implied to be uniform across different search acceleration
metadata for the same column. Within the same column, SMA units
may cover groups of 1k rows, while bloom filters may cover groups
of 10k rows. The ability to overlap search acceleration metadata
allows for a more nuanced approach for application-specific SALs.

A search acceleration layer is a collection of layers of search
acceleration metadata of the same kind with shared coverage pa-
rameters. For example, consider a column with 100M rows that we
horizontally partition into 100 individual, 1M row partitions. We
create a two-layer SAL to accelerate searches on this column: the
first layer is an SMA layer with coverages of 10k rows, and the
second layer is a bloom filter layer with coverages of 1k rows. We
apply an example query: count the number of rows where the pred-
icate equals 𝑥 . To search each of the 100-column partitions, we first
query each SMA unit; if the SMA unit contains 𝑥 in its range, we
then iterate over the bloom filter units (10 in total) covered by this
outer SMA unit. If both the SMA unit and bloom filter unit contain
the predicate value, we search the portion of the underlying data
covered by the queried SMA and bloom filter units via a scan-based
filter. Ideally, we have cached the covered portion of the underlying
partition, though we may have to decompress the larger horizontal
partition to expose this smaller covered segment of column data.

Now, we define our goals for search acceleration layers. First and
foremost, search acceleration metadata should be stored separately
from data. This separation is paramount to achieving maximal com-
pression ratios, which is necessary for a storage format to remain
competitive. Unless a storage layer can leverage included meta-
data for storage-related goals, their size reduces compression ratios
without clear benefit. Complex search acceleration metadata like
bloom filters can rapidly incur significant amounts of overhead and
thus should generally not be included in storage formats without
a clear storage-related benefit. On the other hand, SMA units are
generally lightweight when covering large horizontal partitions
and thus can be included at near-zero cost.

Second, the SAL must be optimized for both the underlying
data and the accelerated application. Independent of the underly-
ing data, some applications can tolerate larger space overheads to
maximize performance, while other applications must minimize
overhead while maintaining minimum latency requirements. An
application’s overhead and latency needs influence the choice of
search acceleration metadata and each metadata’s coverage parame-
ter. Further, both applications and their data access patterns change
over time; a given block may be “hot” for some time, only to become
“cold” later. If block-skipping metadata is baked into the storage
format and optimized for the hot case, that cost is now a perma-
nent debt on the storage cost. By unlinking search acceleration
metadata coverage from the underlying horizontal partition sizes
for compression, the SAL is now free to cache data at application-
specific granularities. Similarly, a SAL is well positioned to leverage
state-of-the-art storage layers that support partial decompression,
querying compressed data, and other future advancements.

We note that modern data formats often already implement SALs
to varying degrees. Our definition of a SAL allows us to explore
these existing implementations using a shared framework.

Towards Functional Decomposition of Storage Formats CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Figure 5: The performance of four different SAL configura-
tions for the synthetic pseudo-zipfian distributions. The four
configurations were selected from the best and worst config-
urations of each distribution.

Figure 6: The compression ratio of the evaluated taxi dataset
columns, by block size and if a global dictionary was used.

First, in-memory data formats usually begin with a standard
data storage format and then build additional search structures
on top. While this is partly motivated by the optionality of search
acceleration metadata in existing storage formats, many of these
data formats use their own SAL to guarantee quality of service.
Thus, a shared mechanism to represent SALs would reduce repeated
implementation costs, especially if shared libraries provide baseline
SAL implementations for common block formats.

Second, columns with dictionary-encoded data can already result
in what effectively amounts to a multiple-layer SAL. If we encode
an entire column with a single dictionary, if a value is absent from
the dictionary, then the value is absent from the column data. In
this case, we can use the dictionary values to perform predicate
pushdown before we query any other SAL metadata. This tech-
nique can be extended to other storage structures that indicate
value presence in the overall column or an individual horizontal
partition. A feature-complete SAL can leverage the underlying stor-
age layer to accelerate searching; while the dictionary was included
for compression, it still benefits search acceleration.

5 EXPERIMENTAL RESULTS
In this section, we explore the feasibility of arbitrarily sized row-
skipping metadata, unlinked from underlying horizontal partitions.

5.1 Synthetic Distribution Evaluation
We repeat the experiment from Section 3.2, though now we imple-
ment the search acceleration metadata as a two-layer SAL: SMA
then bloom filter. We evaluate every combination of the existing
horizontal partition sizes as coverage parameters for each layer
(“Bloom=16, SMA=16,” “Bloom=16, SMA=32,” etc.). We depict our
findings in Figure 5, where we showcase the best and worst SAL cov-
erage configurations for both the “zipf_gentle” and “zipf_hotspot”
distributions. The configuration that forgoes search acceleration
metadata is the worst-performing configuration we found for the
zipf_hotspot distribution. In contrast, the worst performing con-
figuration for the zipf_gentle distribution is when the bloom filter
coverage is set to 256, and the SMA coverage is set to 100.

While the “Bloom=16, SMA=1000000” configuration does im-
prove both scan-based filter queries over the baseline configuration
of no metadata for both datasets, the “Bloom=128, SMA=128” con-
figuration is about 15x faster for zipf_hotspot (∼252 µs). This result
mirrors our previous results, which show zipf_hotspot benefiting
significantly from fine-grained metadata (Section 3.2). However,
this same configuration is about 5% slower than the no metadata
baseline for zipf_gentle ∼7644 µs). Of the four configurations, only
“Bloom=16, SMA=1000000” benefits the zipf_gentle column. Broadly,
the performance differences between these two synthetic datasets
reflect their sensitivity to metadata type and granularity: “one size
fits most” leads to unsatisfactory compromises.

5.2 Real-world Dataset Evaluation
While we have demonstrated the usefulness of separating the search
acceleration and storage layers in synthetic workloads, we have not
shown their feasibility for a real-world workload. We introduce the
New York City (NYC) Yellow Cab dataset, provided by the NYC Taxi
and Limousine Commission for 2023 [26]. Within this dataset, we
highlight four rows: “Drop Off Location,” “Rate Code,” “Tip Amount,”
and “Total Fare.”

We clean the dataset by filtering out all rows that record a taxi
fare below the 2023 NYC initial taxi fare: $3.00. We represent all
columns of the Taxi dataset using 32-bit integers. For decimal val-
ues (tips and total taxi cost), we store the column as a cents-unit
integer. For enumerated columns, we store the enumerated values
as-is. Then, we sample each real-data column with replacement
to generate 100M-sized columns, the same size as the previously
explored synthetic distribution columns.

First, we compress our four columns using the same set of com-
pression parameters previously explored with the synthetic distri-
butions (Section 3.1). These results are depicted in Figure 6. Once
again, we find that a horizontal partition size of 10k rows or larger
is necessary to achieve near-maximum compression ratios.

Then, we apply scan-based filter queries to each taxi column
using the following predicate values.

(1) Howmany rides were paid for using $20, using the remaining
change as a tip? (0.2%)

(2) How many rides were tipped exactly $10? (0.7%)
(3) How many ride fares were negotiated before the ride began?

(0.5%)
(4) How many rides ended at Newark Airport? (0.3%)
(5) How many rides ended at LaGuardia Airport? (1.3%)

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Martin Prammer et al.

Figure 7: The performance of four different SAL configurations for the explored taxi dataset columns. The four configurations
were selected from the best configurations for each distribution.

Each query has a baseline scan latency of about 7.25ms. Similar
to the synthetic dataset exploration, we showcase a limited set of
results, though in this case, we only show the best-performing con-
figurations. These results are depicted in Figure 7. If a configuration
is best for a data set, we include this configuration’s performance
for all the data sets. For example, “Bloom=32, SMA=None” is the
best configuration for the scan applied to the Rate Code column.

The “Total Fare ($20)” query has a nearly opposite performance
characteristic compared to the “Drop Off Location (LGA)” configu-
ration. This result reinforces previous observations that the benefit
of search acceleration metadata is dataset-dependent. Of course, it
is not unusual that columns containing different data have different
optimal configurations for search acceleration metadata. In con-
trast, we are surprised by the significant differences between the
“Drop Off Location (EWR)” and “Drop Off Location (LGA)” configu-
rations. The benefit of search acceleration metadata can be wildly
different depending on the predicate value for the scan-based filter
performed. In this case, the best-performing SAL configuration
for the LaGuardia (LGA) drop-off query performs poorly for the
Newark (EWR) filter. The best-performing Newark configuration
(No bloom filter and SMA of coverage 32) is uniquely performant.
This uniqueness is due to the exact enumerated value for these two
airports: 1 for Newark and 138 for LaGuardia. While these numbers
make contextual sense, as LaGuardia Airport is within NYC and
Newark is in New Jersey, Newark Airport, having the lowest Drop
Off Location code, greatly benefits SMA.

Overall, we have reinforced that no “one size fits most” configu-
ration exists for search acceleration metadata. The effectiveness of
the SAL is impacted not only by the column’s data distribution but
also by the applied predicate.

6 CALL TO ACTION
With no “one size fits most” option, these results seem somewhat
bleak. Yet, these results also illustrate a clear path forward.

First, the scan latency reduction of search acceleration metadata
like bloom filters and SMA depends on the data distribution of the
underlying columnar data. This benefit comes at the cost of the

size of the SAL, which must be stored and processed to facilitate
row-skipping. Thus, incurring this additional processing cost to
leverage summary structures must be a conscious decision. In some
cases, SAL-based row-skipping does not compensate for the addi-
tional cost of processing significant amounts of search acceleration
metadata, resulting in the SAL increasing scan latency.

Further, each search acceleration metadata requires a coverage
size that is small enough to capture variance within a larger dataset.
If the data closely mirrors low-skew distributions, finding meaning-
ful differences between horizontal partitions can only be achieved
at small coverage sizes. While not the focus of this paper, the central
limit theorem from probability theory influences our results; under
the right circumstances, a large enough coverage is analogous to
a set of samples from an underlying distribution, resulting in the
summary statistics themselves trending towards a normal distribu-
tion [4, 29]. This concept elucidates the push-pull relationship be-
tween compressibility and search acceleration efficacy; while more
uniquely identifiable covered data may reduce scan latency, increas-
ing the distinction between partitions impedes partition-shared
compression dictionaries, which instead benefit from uniformity.

Together, these considerations incentivize the specialization of
storage formats and search acceleration layers. Only after decou-
pling search accelerationmetadata coverage sizes from compression-
optimized partition sizes can search acceleration layers be more
flexibly optimized. While we only explored varying coverage be-
tween bloom filters and SMA, one could conceivably use hetero-
geneously sized search acceleration metadata structures within a
single column for further opportunities to reduce scan latency.

7 CONCLUSIONS
Currently, search acceleration metadata like bloom filters and small
materialized aggregates serve as a tool to avoid decompressing hor-
izontal partitions of a compressed column. While advancements in
columnar-like file formats have demonstrated that these structures
can be used for search acceleration, this benefit is always shown in
the context of avoiding block decompression costs. We find this not
only narrow in scope but also self-limiting. Under this construction,

Towards Functional Decomposition of Storage Formats CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

the partition sizes for search acceleration metadata and compres-
sion are directly linked; as search acceleration metadata benefits
from small partitions while compression benefits from large parti-
tions, we are forced to choose between one or the other. Modern
storage layers always choose the latter option, as storage efficiency
is their chief concern.

In this work, we have showcased an alternative path: splitting
the storage layer into a dedicated storage component and a separate
search acceleration layer. By unlinking the two, each can prioritize
its own needs. Further, we find that evenwithin the SAL, underlying
data distribution can drastically change the optimal configurations
of row-skipping metadata.

ACKNOWLEDGMENTS
This research was supported in part by the National Science Foun-
dation (NSF) under grant CCF #2407690.

REFERENCES
[1] Anastassia Ailamaki et al. 2001. Weaving Relations for Cache Performance.. In

VLDB, Vol. 1. 169–180.
[2] Michael Armbrust et al. 2020. Delta lake: high-performance ACID table storage

over cloud object stores. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3411–3424.
https://doi.org/10.14778/3415478.3415560

[3] BurtonH. Bloom. 1970. Space/time trade-offs in hash codingwith allowable errors.
Commun. ACM 13, 7 (jul 1970), 422–426. https://doi.org/10.1145/362686.362692

[4] L. Le Cam. 1986. The Central Limit Theorem Around 1935. Statist. Sci. 1, 1 (1986),
78–91. http://www.jstor.org/stable/2245503

[5] Edgar F. Codd. 1985. Is your DBMS really relational? https://reldb.org/c/index.
php/twelve-rules/ (Note: The original document has been informally preserved
by Dave Voorhis, 2019).

[6] Benoit Dageville et al. 2016. The Snowflake Elastic Data Warehouse. In Proceed-
ings of the 2016 International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’16). Association for Computing Machinery, New York,
NY, USA, 215–226. https://doi.org/10.1145/2882903.2903741

[7] Databricks. 2024. Bloom filter indexes. https://docs.databricks.com/en/
optimizations/bloom-filters.html

[8] Google. [n. d.]. Snappy. https://google.github.io/snappy/ Accessed: November
12, 2024.

[9] Goetz Graefe. 2009. Fast loads and fast queries. In International Conference on
Data Warehousing and Knowledge Discovery. Springer, 111–124.

[10] Anurag Gupta et al. 2015. Amazon Redshift and the Case for Simpler Data
Warehouses. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). Association
for Computing Machinery, New York, NY, USA, 1917–1923. https://doi.org/10.
1145/2723372.2742795

[11] Rihan Hai, Christos Koutras, Christoph Quix, and Matthias Jarke. 2023. Data
Lakes: A Survey of Functions and Systems. IEEE Transactions on Knowledge and
Data Engineering 35, 12 (2023), 12571–12590. https://doi.org/10.1109/TKDE.2023.
3270101

[12] Yongqiang He et al. 2011. RCFile: A fast and space-efficient data placement
structure in MapReduce-based warehouse systems. In 2011 IEEE 27th International
Conference on Data Engineering. 1199–1208. https://doi.org/10.1109/ICDE.2011.
5767933

[13] Todor Ivanov and Matteo Pergolesi. 2020. The impact of columnar file formats on
SQL-on-hadoop engine performance: A study on ORC and Parquet. Concurrency
and Computation: Practice and Experience 32, 5 (2020), e5523.

[14] Svilen Kanev et al. 2015. Profiling a warehouse-scale computer. In Proceedings of
the 42nd Annual International Symposium on Computer Architecture (Portland,
Oregon) (ISCA ’15). Association for Computing Machinery, New York, NY, USA,
158–169. https://doi.org/10.1145/2749469.2750392

[15] Sagar Karandikar et al. 2023. CDPU: Co-designing Compression and Decompres-
sion Processing Units for Hyperscale Systems. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (Orlando, FL, USA) (ISCA ’23).
Association for Computing Machinery, New York, NY, USA, Article 39, 17 pages.
https://doi.org/10.1145/3579371.3589074

[16] Maximilian Kuschewski et al. 2023. BtrBlocks: Efficient Columnar Compression
for Data Lakes. Proc. ACM Manag. Data 1, 2, Article 118 (jun 2023), 26 pages.
https://doi.org/10.1145/3589263

[17] Gang Liao et al. 2024. Bullion: A Column Store for Machine Learning.
arXiv:2404.08901 [cs.DB] https://arxiv.org/abs/2404.08901

[18] Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes. 2023.
A Deep Dive into Common Open Formats for Analytical DBMSs. Proc. VLDB
Endow. 16, 11 (July 2023), 3044–3056. https://doi.org/10.14778/3611479.3611507

[19] Jean loup Gailly, Mark Adler, and Greg Roelofs. 2024. zlib. https://zlib.net/
[20] GabrielMersy, ZhuoWang, Stavros Sintos, and Sanjay Krishnan. 2024. Optimizing

Collections of Bloom Filters within a Space Budget. Proc. VLDB Endow. 17, 11
(Aug. 2024), 3551–3564. https://doi.org/10.14778/3681954.3682020

[21] Meta Platforms Inc. [n. d.]. Zstandard. https://facebook.github.io/zstd/ Accessed:
June 12, 2024.

[22] Michael Mitzenmacher. 2001. Compressed bloom filters. In Proceedings of the
Twentieth Annual ACM Symposium on Principles of Distributed Computing (New-
port, Rhode Island, USA) (PODC ’01). Association for Computing Machinery, New
York, NY, USA, 144–150. https://doi.org/10.1145/383962.384004

[23] Michael Mitzenmacher. 2018. A Model for Learned Bloom Filters and Optimizing
by Sandwiching. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf

[24] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA, Ashish Gupta, Oded Shmueli, and Jennifer Widom (Eds.). Morgan
Kaufmann, 476–487. http://www.vldb.org/conf/1998/p476.pdf

[25] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data lake management: challenges and opportunities. Proc. VLDB
Endow. 12, 12 (Aug. 2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[26] New York City Taxi and Limousine Commission. 2023. TLC Trip Record Data -
Yellow Taxi Trip Records, 2023. https://www1.nyc.gov/site/tlc/about/tlc-trip-
record-data.page

[27] Apache Parquet. 2024. Apache Parquet. https://parquet.apache.org Accessed:
June 12, 2024.

[28] Apache Parquet. 2024. Apache Parquet Documentation: Bloom Filter. https:
//parquet.apache.org/docs/file-format/bloomfilter/ Accessed: June 12, 2024.

[29] Janet Bellcourt Pomeranz. 1984. The Dice Problem—Then and Now. The Two-Year
College Mathematics Journal 15, 3 (1984), 229–237. https://www.tandfonline.
com/doi/abs/10.1080/00494925.1984.11972775

[30] Apache ORC Project. 2024. Apache ORC. https://orc.apache.org. Accessed:
2024-06-12.

[31] Raghu Ramakrishnan et al. 2017. Azure Data Lake Store: A Hyperscale Dis-
tributed File Service for Big Data Analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data (Chicago, Illinois, USA) (SIG-
MOD ’17). Association for Computing Machinery, New York, NY, USA, 51–63.
https://doi.org/10.1145/3035918.3056100

[32] Franck Ravat and Yan Zhao. 2019. Data lakes: Trends and perspectives. In
Database and Expert Systems Applications: 30th International Conference, DEXA
2019, Linz, Austria, August 26–29, 2019, Proceedings, Part I 30. Springer, 304–313.

[33] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
Acceleration Opportunities for Data Center Overheads at Hyperscale. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 733–750.
https://doi.org/10.1145/3373376.3378450

[34] LanceDB Development Team. 2024. LanceDB: A High-Performance Database
System. https://www.lancedb.org. Accessed: 2024-06-12.

[35] Jiyi Wu, Lingdi Ping, Xiaoping Ge, YaWang, and Jianqing Fu. 2010. Cloud Storage
as the Infrastructure of Cloud Computing. In 2010 International Conference on
Intelligent Computing and Cognitive Informatics. 380–383. https://doi.org/10.
1109/ICICCI.2010.119

[36] Matei Zaharia et al. 2021. Lakehouse: A New Generation of Open Platforms
that Unify Data Warehousing and Advanced Analytics. In 11th Conference on
Innovative Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021,
Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_
paper17.pdf

[37] Xinyu Zeng et al. 2023. An Empirical Evaluation of Columnar Storage For-
mats. Proc. VLDB Endow. 17, 2 (oct 2023), 148–161. https://doi.org/10.14778/
3626292.3626298 (Note: An extended version of the paper is available on arXiv:
https://arxiv.org/abs/2304.05028).

https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/362686.362692
http://www.jstor.org/stable/2245503
https://reldb.org/c/index.php/twelve-rules/
https://reldb.org/c/index.php/twelve-rules/
https://doi.org/10.1145/2882903.2903741
https://docs.databricks.com/en/optimizations/bloom-filters.html
https://docs.databricks.com/en/optimizations/bloom-filters.html
https://google.github.io/snappy/
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1109/TKDE.2023.3270101
https://doi.org/10.1109/TKDE.2023.3270101
https://doi.org/10.1109/ICDE.2011.5767933
https://doi.org/10.1109/ICDE.2011.5767933
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/3579371.3589074
https://doi.org/10.1145/3589263
https://arxiv.org/abs/2404.08901
https://arxiv.org/abs/2404.08901
https://doi.org/10.14778/3611479.3611507
https://zlib.net/
https://doi.org/10.14778/3681954.3682020
https://facebook.github.io/zstd/
https://doi.org/10.1145/383962.384004
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
http://www.vldb.org/conf/1998/p476.pdf
https://doi.org/10.14778/3352063.3352116
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://parquet.apache.org
https://parquet.apache.org/docs/file-format/bloomfilter/
https://parquet.apache.org/docs/file-format/bloomfilter/
https://www.tandfonline.com/doi/abs/10.1080/00494925.1984.11972775
https://www.tandfonline.com/doi/abs/10.1080/00494925.1984.11972775
https://orc.apache.org
https://doi.org/10.1145/3035918.3056100
https://doi.org/10.1145/3373376.3378450
https://www.lancedb.org
https://doi.org/10.1109/ICICCI.2010.119
https://doi.org/10.1109/ICICCI.2010.119
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.14778/3626292.3626298

	Abstract
	1 Introduction
	2 Background
	2.1 Blocked Arrays
	2.2 Partition-skipping Metadata

	3 Observations
	3.1 Optimizing Block Sizes for Compressibility
	3.2 Optimizing Block Sizes for Row-Skipping

	4 Search Acceleration Layer
	5 Experimental results
	5.1 Synthetic Distribution Evaluation
	5.2 Real-world Dataset Evaluation

	6 Call to Action
	7 Conclusions
	Acknowledgments
	References

