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ABSTRACT
Like other software systems, database systems benefit from hard-
ware performance improvements. For the longest time, acquiring
new hardware resulted in significant software efficiency gains due
to exponential improvements of hardware capabilities. Physical lim-
its in hardware manufacturing have brought former niche designs
into standard components, such as multiple cores and specialized
circuits. Even with these new designs, hardware improvements
are decreasing, while software and applications are still becoming
increasingly complex and resource demanding. Given the resource
consumption of hardware manufacturing, the ideal lifecycle of hard-
ware naturally has to extend from an efficiency aspect.

In this paper, we try to estimate efficiency of lifecycle duration
of database hardware. We calculate the reduction in performance
improvements of hardware using publicly available performance
numbers, as well as our own benchmarks, and relate them to the
specified thermal design power to get the power efficiency. Incor-
porating estimations on hardware and power production carbon
intensity, we challenge current wisdom on hardware replacement
frequencies and try to establish new rules of thumb on the ideal
hardware lifecycles for database deployments. We present opportu-
nities for future research trends.

1 INTRODUCTION
Processor clock frequency increased steadily over multiple decades.
Running an application on a newer CPU with higher frequency
improved its single-thread performance without any modifications.
In recent years, the CPU clock frequency has stagnated. For con-
tinuous performance improvement, vendors have increased the
number of CPU cores with two major consequences.

First, the performance of applications does not improve anymore
by simply running them on a newer processor. Instead, they must
use parallel algorithms to leverage the hardware improvements [28],
which database systems have been successfully doing [33].

Second, processors are becoming larger and their production
uses more energy. At the same time, their per-watt computation
power is still increasing and their operation becomes more energy
efficient.

This opens the question, whether server lifecycles need to be
adapted to these changes. While industry answers such questions
mostly based on economic decisions, another aspect that needs to
be addressed is ecological efficiency.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

In this paper, we analyze the performance and efficiency im-
provements of 15 years of CPU generations. Using publicly available
benchmark data and hardware specifications, we model end-to-end
hardware carbon footprints and break-even points for hardware
replacement from an ecological viewpoint.

Our analysis confirms previous findings that hardware improve-
ments are slowing down and embodied carbon from manufacturing
hardware makes up an increasing part of the overall footprint of
server usage. Our own benchmarks show that this effect is drasti-
cally increased for database workloads, to the extent that from a
performance and efficiency improvement aspect hardware upgrades
are hardly justified. This opens an opportunity for researchers and
industry to extend server lifetime by focusing on long-term hard-
ware support, considering hardware durability in software design,
and research in usability of aging hardware. We make the case for
conducting new research in the field of aging hardware.

We make the following contributions:

• We analyze CPU performance trends for 15 years of CPU
generations.

• We calculate end-to-end carbon footprints of database server
deployments and their break-even points when replaced
with upgraded hardware.

• We discuss implications of our findings and point out rele-
vant, novel research directions.

The rest of this paper is structured as follows. Section 2 gives
an overview of CPU performance trends. In Section 3, we present
our model for server life-cycle carbon dioxide (and equivalents)
emissions and present model calculations for different server gener-
ations and workloads. We discuss our findings and research oppor-
tunities in Section 4. We propose new metrics for benchmarking
efficiency in Section 5. In Section 6, we present related work before
concluding in Section 7.

2 HARDWARE EVOLUTION
Breakthroughs in hardware research have continuously improved
performance for many decades. With decreasing transistor size,
hardware manufacturers can increase the frequency of a processor
while the power stays the same. Recently, hardware design has run
into thermal design challenges, which decrease energy efficiency
and increase circuit degradation at higher frequencies. As a solution,
manufacturers have started increasing core counts on increasingly
large chips, as well as specializing circuits and turning off transistors
adaptively in dark silicon designs [10]. In this section, we analyze
the performance of several CPU generations.
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Figure 1: Intel Xeon CPU evolution.

2.1 CPU Trends
We analyze CPU specifications [21] to identify how CPU perfor-
mance and energy consumption have evolved over the last decade.
Performance Metrics.We investigate several CPU metrics that
impact an application’s performance. The CPU’s frequency deter-
mines how many cycles an application has available per second.
Increasing the frequency also increases the number of instructions
executed per second if the workload is not limited by another re-
source (e.g., memory). The number of cores multiplies the cycles
executed per second. This allows for parallelizing an application so
that multiple threads utilize the cores simultaneously, increasing
the overall performance. Besides CPU cycles, memory bandwidth
impacts performance as it defines how much data an application
can read from and write to memory per time unit. The data trans-
fer bandwidth between CPUs and peripheral devices is another
aspect influencing database performance. The IT industry is mov-
ing towards utilizing specialized hardware [29], which increases
the relevance of interconnect technology between a CPU and pe-
ripheral devices. PCI Express (PCIe) is a common interconnect for
attaching peripheral devices, such as solid-state drives (SSDs) [16],
accelerator cards, and smart network interface cards (sNICs). The
number of PCIe lanes supported by a CPU influences the number of
PCIe devices that can be attached to the CPU. Combined with the
supported PCIe generation and its data transfer rate, the number of
supported lanes defines the theoretical bandwidth between the CPU
and PCIe devices. We include the bandwidth trends in our hardware
evolution analysis since memory bandwidth [38] and interconnect
bandwidth [35] improvements can alleviate performance bottle-
necks in data systems. Advances in the CPU architecture, such
as wider vector registers, can lead to single-thread performance
improvements, which are orthogonal to frequency increases. The
efficiency considerations in this work use CPU benchmark num-
bers as performance references. We argue that the CPU benchmark
numbers reflect architectural CPU advances.
Energy Consumption Metrics.We use the thermal design power
(TDP) provided by the hardware vendors as an indicator of the
power (in watts) necessary to run a CPU. TDP is defined as the

power needed to maintain the base frequency under a compute-
intensive workload [6, 26]. Hardware manufacturers calculate the
TDP based on different criteria. Intel calculates the TDP based on
the maximum power consumption under a sustained workload
necessary to maintain the base frequency [6]. On the other hand,
AMD uses the maximum cooling power required to maintain the
specification performance under a sustained workload [26]. Since
the CPU’s thermal footprint over a sustained period aligns with the
CPU’s total power draw, the definitions of both vendors amount
to the CPU’s maximal power output. Both definitions do not in-
clude the power output during short-running performance bursts
exceeding the peak frequency (overclocking).
CPU Models. In this section, we analyze Intel server CPUs, which
have a worldwide market share of over 60% from 2012 to 2024 [37]1.
Figure 1 shows performance and efficiency metrics for Intel Xeon
CPU families launched since 2011. We exclude Xeon W Processor,
Xeon E Processor, Xeon D Processor, and Xeon E3 CPU collections.
These are suitable for workstations, edge computing, and embedded
applications rather than large-scale data centers or enterprise-level
infrastructure. We exclude Xeon Max Series CPUs (HPC-optimized
with high-bandwidth memory). The Xeon 6 family contains models
with either efficiency or performance cores.We exclude CPUmodels
with efficiency cores.
Base Frequency. Figure 1 shows the base frequency, number of
cores, memory bandwidth, PCIe bandwidth, TDP, and TDP per
core of the selected Intel Xeon CPUs. The minimum and maximum
frequencies differ significantly since each CPU collection contains
a variety of CPU models, from entry-level CPUs for light workloads
to high-performance CPUs for compute-intensive workloads, such
as real-time analytics. The median base frequency slightly varies
between 2.0 GHz and 2.5 GHz. It does not show an increasing or
declining trend over time.
Core Count. With a stagnating median frequency over time, CPU
performance can still be improved with increasing cores, which is
the trend in the last decade (see Figure 1). A steeper increase in

1In our extended experiments, we observe that other architectures exhibit very similar
trends.
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Figure 2: Performance and energy efficiency of TPC CPUs.

cores can be observed starting from 2017, rising from 28 cores in
2017 to 64 cores in 2023. The latest Intel Xeon 6 processors provide
up to 128 cores. The core count grew by 16× from 2011 to 2024.
MemoryBandwidth.We investigate the theoretical memory band-
width of the selected CPUs. The CPU specifications provide the
number of supported memory channels and the maximum sup-
ported double data rate (DDR) memory speed. We calculate the
theoretical memory bandwidth per CPU as:

Memory BW = # Memory channels × Memory speed × 8 B

where 8 bytes are the data payload per transfer. Figure 1 shows the
memory bandwidth increase over the different CPU families. The
medianmemory bandwidth has increased slightly from 2011 to 2016,
with values between 30 and 80 GB/s. After 2016, the bandwidth has
increased significantly until 2024. The Xeon 6 CPUs (2024) support
a median bandwidth of 10.3× the bandwidth of the E7 v4 Family
(2016). Compared to 2011, the bandwidth increased by 18×.
PCIe Bandwidth. We investigate the theoretical PCIe bandwidth
of the selected CPUs. The CPU specifications provide the number
of supported PCIe lanes and the PCIe generation. We derive the
transfer rate of the PCIe physical layer from the generation. The
selected CPUs support either PCIe 3, 4, or 5, which translates to a
transfer rate of 8, 16, and 32 GT/s, respectively. We calculate the
theoretical PCIe bandwidth per CPU as:

PCIe BW = # Supported PCIe lanes × Transfer rate × 1 bit

where 1 bit is the data payload per transfer. We omit the bandwidth
for the E7 Family CPUs (2011) due to a lack of PCIe generation
information in the specifications. Figure 1 shows that the total
theoretical PCIe bandwidth barely changed from 2012 to 2019 with
values ranging between 24 and 48 GB/s. The median bandwidth has
increased steeply starting in 2020, reaching a maximum of 384 GB/s
in 2024. The bandwidth increased by 12× until 2024, compared to
the median bandwidth of 40 GB/s in 2012.
Increasing TDP. The TDP stayed constant between 2011 and 2017,
except for a lower level median TDP for Xeon E5 (2012) and Xeon
E5 v2 (2013) CPUs (see Figure 1). Since 2017, it has significantly
increased, correlating with the increase in core count. From 2011
up to 2024, the median TDP grew by 5.3×.

Declining TDP per Core. Figure 1 also shows the CPU’s overall
TDP per core. We calculate it as:

TDP per core =
TDP

Core Count
While the CPU’s overall TDP indicates an increasing trend, the TDP
per core is declining. There are significant TDP per core differences
between concrete CPU models. For example, Xeon E5 CPUs show
the most significant difference of more than 30 watts per core.

2.2 Efficiency of CPUs for Database Workloads
After identifying the trends for a large set of Intel Xeon CPUs, we
investigate the changes in energy efficiency for selected CPUs used
for database workloads.
SPEC CPU Integer Performance Data. SPEC CPU2006 [17] and
SPEC CPU2017 [5] are CPU performance benchmark suites by the
Standard Performance Evaluation Corporation (SPEC). SPEC CPU
contains SPECspeed and SPECrate benchmark suites. SPECspeed fo-
cuses on single-threaded workloads, using tasks like data compres-
sion and text processing for evaluating general-purpose CPU perfor-
mance. SPECratemeasuresmulti-thread performance formulti-core
systems, simulating environments like databases and web servers.
SPECspeed and SPECrate exist in two versions: one with integer
benchmarks and one with floating-point benchmarks [36]. In this
work, we use integer benchmark results2 as CPU performance met-
rics. We use SPECspeed results for single-thread performance and
SPECrate for multi-thread performance. The older SPEC CPU 2006
benchmark suite was replaced by the SPEC CPU 2017 benchmark
suite. We combine the 2006 and 2017 integer result datasets for
SPECspeed and SPECrate. The 2006 performance values are higher
than the 2017 values, requiring a conversion factor for combin-
ing the datasets. We quantify the performance difference of both
datasets to ensure comparability. For the same CPU models, num-
ber of sockets, and memory configuration, the performance differs
by 8.7× for SPECspeed and 9.4× for SPECrate, on average, with a
standard deviation of 0.4 for both. This aligns with factor nine as
empirically determined by Rupp.3 We multiply the performance

2SPEC benchmark results: https://www.spec.org/results.html
3Rupp’s Microprocessor Trend Data: https://github.com/karlrupp/microprocessor-
trend-data/blob/f2121ab2b83a156b114fe34e62e1edeca98e8e38/newdata.txt

https://www.spec.org/results.html
https://github.com/karlrupp/microprocessor-trend-data/blob/f2121ab2b83a156b114fe34e62e1edeca98e8e38/newdata.txt
https://github.com/karlrupp/microprocessor-trend-data/blob/f2121ab2b83a156b114fe34e62e1edeca98e8e38/newdata.txt
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Table 1: CPU specifications of the evaluation servers.

Cache Size

Processor Frequency # Cores L1d L1i L2 L3
[GHz] [KiB] [KiB] [MiB] [MiB]

E7-4880 v2 2.5 15 32 32 0.25 37.5
E7-4850 v4 2.1 16 32 32 0.25 40
8180 2.5 28 32 32 1 38.5
8259CL 2.5 24 32 32 1 35.75
8352Y 2.2 32 48 32 1.25 48
8480CL 2.0 56 48 32 2 105

value of the 2017 datasets by a factor of nine. We refer to a combined
set as SPECspeed and SPECrate, respectively. The SPEC datasets
contain numbers for systems with one or more CPUs. When refer-
ring to either SPECspeed or SPECrate performance, we report the
performance per CPU, i.e., the performance value divided by the
number of CPUs.
CPU Selection. The Transaction Processing Performance Council
(TPC) publishes result data for the TPC benchmarks.We select CPUs
of systems used for reported TPC-C and TPC-H V2 benchmark
results.4 We use TPC-H results measured with a dataset size of
1000 GB. We argue that selecting CPUs based on systems used for
TPC database benchmarks results in a set of CPUs employed by the
industry for database workloads. We focus on systems with Intel
Xeon CPUs, which were used for more than 55% of the reported TPC
results. Given the resulting set of CPUs 𝐶 , we filter the SPECspeed
and SPECrate datasets. The datasets only contain entries for CPUs
that are present in 𝐶 . Figure 2 shows the relative change in single-
thread and multi-thread performance, as well as energy efficiency
(i.e., multi-thread performance per TDP) for the TPC CPUs. For each
metric, we use the mean value of the 2006 CPUs as the reference
value for calculating the relative change.
Single- and Multi-Thread Performance. Figure 2 shows the
change in single-thread (SPECspeed) and multi-thread (SPECrate)
performance, as well as the efficiency of the TPC CPUs (SPECrate
per TDP) over their launch years. Despite the stable CPU base
frequency, single-thread performance has increased over time. We
attribute the improvements to advances in the CPU architecture
(e.g., wider vector registers). However, the increase in single-thread
performance is marginal compared to themulti-thread performance,
which provides a better insight into a CPU’s overall performance.
The increase in multi-thread performance over time is significant,
matching the increasing trend in the number of cores (see Figure 1).
Efficiency. While the moving average of energy efficiency (i.e.,
multi-threaded performance per TDP) increases over time, the
growth is significantly higher until 2016 and started flattening
since then.

2.3 CPU Improvements for Data Management
The SPECrate benchmark suite is highly relevant for integer per-
formance of server systems. However, it does not reflect typical
operations found in database contexts. We evaluate different Intel
CPUs with launch dates ranging from 2014 (Ivy Bridge) to 2023 (Sap-
phire Rapids), which have been either available to us in our lab or
4TPC benchmark results: https://www.tpc.org/tpch/results/tpch_results5.asp?version=
3

can be rented as bare metal instances on Amazon EC2 (m5n.metal
with Intel Xeon 8259CL). Table 1 shows the CPU specifications
of the evaluation servers. We evaluate two tasks representative
of data management: (i) the analytical TPC-H benchmark and (ii)
parallel sorting. We run TPC-H with a scale factor of 10 and 25
query streams on Hyrise [8] to evaluate analytical database work-
loads. Hyrise is a relational research database system that keeps
data memory-resident. For sorting, we use the parallel implementa-
tion of std::sort in libstdc++ 3.4.32 with GCC 13. Sorting is a
typical task that is hard to fully parallelize and frequently used in
most data processing systems. We generate a vector of four billion
random integer values (uint32_t, 16 GB), and measure the time to
sort the entire vector. We compare both results with the SPECrate
2017 scores (see Section 2.2). We assume that compiler-driven opti-
mization incorporates advances in CPU architecture. For TPC-H
and sorting, we use all logical threads of a single CPU.

The performance results are shown in Figure 3a. Over the span of
nine years, the multi-threading performance of the SPECrate scores
improves by a factor of 7.26×. For complex database workloads,
such as the analytical TPC-H benchmark, the difference is lower
with a factor of 4.44×. While analytical workloads with concurrent
query streams scale to large core counts, performance is often not
CPU-bound but limited by the main memory bandwidth. For the
single process sorting 32 GB in parallel, the factor is 3.03×, being
significantly lower than the improvement of the SPECrate score.
Improvements in sorting performance reflect recent increases in
memory bandwidth.

To assess efficiency improvements, we also measure the power
consumption using perf and the Running Average Power Limit
(RAPL) interface. Previous research showed that RAPL-based mea-
surements are sufficiently accurate for recent Intel CPU genera-
tions [23]. The efficiency results are shown in Figure 3b. We make
two observations. First, for all three benchmarks, efficiency im-
proves over time. However, for SPECrate and sorting, efficiency
improves slower than performance. While the SPECrate scores im-
proved by 7.26×, efficiency only improved by 2.7×. An exception is
the most recent Sapphire Rapids CPU (Intel Xeon 8480CL), whose
efficiency is 11.13× better than the Ivy Bridge CPU. We used the
same concurrent query load for all systems with core counts rang-
ing from 15 to 565. For the Sapphire Rapids, this load does not fully
utilize all logical threads allowing the CPU to reduce its power
consumption. Second, while CPUs usually get faster with every
generation, efficiency improvements are less steady. For the parallel
sorting experiment, the 2017 Skylake CPU (8180) is less efficient
than the more than three years older Ivy Bridge CPU. The following
Cascade Lake and Ice Lake CPU generations improve significantly
over the Skylake CPU before the Sapphire Rapids CPU shows a
slight degradation in terms of efficiency again.

3 HARDWARE LIFECYCLE EFFICIENCY
An organization may consider upgrading its database server hard-
ware, looking for an improvement in performance and energy effi-
ciency. Usually, the latest CPU generations outperform their pre-
decessors and are more energy efficient. The new generation can

5Running 50 concurrent query streams on the Sapphire Rapids server reduces the
TPC-H runs per kJoule to 0.43.

https://www.tpc.org/tpch/results/tpch_results5.asp?version=3
https://www.tpc.org/tpch/results/tpch_results5.asp?version=3
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(a) Performance of evaluated benchmarks.
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(b) Efficiency: performance results relative to energy consumption.

Figure 3: Performance and efficiency results for different generations of Intel Xeon server CPUs and three different benchmarks.
The blue arrow denotes the improvement factor comparing the oldest and newest CPU generations.
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Figure 4: Lifecycle of a database server. The dimmed stages are not considered in our carbon footprint model.

handle more work per time unit and requires less energy per work
unit compared to the previous generation. However, the carbon
footprint from manufacturing the new hardware increases as the
hardware capability increases [15]. This increase is primarily due
to carbon emissions from mining raw materials, manufacturing,
assembly, packaging, and transportation. Facility infrastructure
construction and chip manufacturing generate capital expenditure
(capex)-related carbon emissions, while hardware use and energy
consumption generate operational expenditure (opex)-related car-
bon emissions [15]. Recent research has shown that capex-related
emissions are 23× higher than opex-related emissions for data
center operators and cloud providers [15]. Thus, evaluating the
environmental efficiency of upgrading a server’s hardware should
ideally include a "cradle-to-grave" analysis of the hardware, includ-
ing its capex and opex-related carbon emissions.

Typically, decision-makers use cost-benefit, lifecycle, and break-
even analyses to assess a project’s economic viability. In this work,
we focus on the environmental break-even analysis and provide
a framework to determine the ecological efficiency of replacing a
database server. Intuitively, the project will reach the break-even
point when the carbon output from the operational use equals

that from hardware manufacturing. We model the amortization of
hardware manufacturing by operating hardware over time.

3.1 Manufacturing and Operational Footprint
The lifecycle of a database server includes mining raw materials,
transportation, manufacturing, operation, and recycling, as depicted
in Figure 4. Each stage contributes to the server’s overall carbon
footprint. In the procurement phase, the footprint is mostly im-
pacted by the mining of materials and manufacturing processes,
while in the operation phase, energy consumption has the most
significant impact. As a result, our analysis primarily focuses on
these two stages without transportation and cooling.

A server’s carbon footprint (SCF) consists of emissions from
the manufacturing of its various hardware components (ECF) and
carbon emissions from its operation (OCF) until the end of its life
(EOL):

SCF = ECF +
𝑡EOL∑︁
𝑡=0

OCF𝑡

The ecological break-even point (𝑡be) of replacing a server occurs
when the carbon footprint of operating the current server (c) over
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time equals the embodied carbon of the new server (n) and its
projected operational carbon footprint:

𝑡be∑︁
𝑡=0

Oc
CF𝑡 = En

CF +
𝑡be∑︁
𝑡=0

On
CF𝑡

The carbon footprint of manufacturing hardware includes procur-
ing raw materials, gas emissions from the manufacturing process,
and transporting hardware to the operational site.

Embodied carbon data from manufacturing is typically not pub-
licly available or incomplete. We model the embodied emissions
from manufacturing (ECF) and from operating the server over time
(OCF) following the framework proposed by Gupta et al. [14]. We
consider the carbon footprint (CF) of manufacturing the server’s
main components: CPU (ECFCPU), DRAM (ECFDRAM), and SSD
(ECFSSD) to model the embodied carbon from manufacturing (ECF):

ECF = ECFCPU + ECFDRAM + ECFSSD

In this model, the embodied carbon footprint from manufacturing
CPUs, DRAM, and SSDs is calculated as follows:

ECFCPU =
(CIfab × EPA + GPA + MPA) × Area

Yield
ECFDRAM = EDRAM × Capacity

ECFSSD = ESSD × Capacity

Wemodel the operational carbon footprint as the sum of the carbon
emissions from operating the server’s main components, CPUs,
DRAM, and SSDs:

OCF = OCFCPU + OCFDRAM + OCFSSD

We model the yearly operational carbon emissions from the differ-
ent server components as follows:

OCFCPU = kWhmax/y × NPC × GCI

OCFDRAM = kWh/y × Capacity Factor × GCI

OCFSSD = kWh/y × GCI

We estimate the yearly power draw (kWhmax/y) for the CPU us-
ing the CPU’s thermal design power (TDP), which is the power
consumption under maximum theoretical load [6]. We consider
the grid carbon intensity (GCI) to convert power draw to carbon
emissions.

We model the normalized power consumption (NPC) as a linear
function of utilization, drawing inspiration from the observations
reported by Barroso and Hölze regarding the relationship between
power, energy efficiency, and utilization [3]:

NPC = P0 + Pslope × Utilization

In line with previous research on energy-efficient servers, we
define utilization as a performance measure – for instance, the ratio
of queries per second to maximum queries per second [3, 13, 30].
Based on the findings of Barroso and Hölze, who monitored thou-
sands of Google servers over six months, we assume that servers
are rarely idle or functioning at their maximum theoretical capac-
ity and typically operate between 10% and 50% of their maximum
utilization levels [3].

For DRAM, we align the power value with values reported by Lee
et al. [27]. As for the SSD, we consider the manufacturer’s power
specifications.

Table 2: Model parameters

Parameter Description Selected Range Ref.Value

MPA Procure material 0.5 0.5 kg CO2/cm2 [14]
EPA Fabrication energy 2.15 0.8-3.5 kWh/cm2 [14]
CIfab Fab CO2 intensity 0.365 0.03-0.7 kg CO2/kWh [14]
GPA GHG from fabrication 0.3 0.1-0.5 kg CO2/cm2 [14]
Yield Fab yield 0.875 0-1 [14]
EDRAM DRAM emb. CO2 0.3 0-0.6 kg CO2/GB [14]
ESSD SSD emb. CO2 0.015 0-0.03 kg CO2/GB [14]
EHDD HDD emb. CO2 0.06 0-0.12 kg CO2/GB [14]
WDRAM DRAM power 0.1 0.1 Watts/GB [27]
WSSD SSD power 3 2-3 Watts [7]
P0 Min. power (% of TDP) 50 0-100 [3]
Pslope Power slope 0.5 0-1 [3]

Table 2 outlines the parameters used in the model, including
the chosen values and a reference for further explanation of these
selections.
Limitations and Assumptions. We make the following simplify-
ing assumptions to make the estimation of CO2 footprints tractable.
(1) When estimating the CO2 for a server’s production, we only
consider the most relevant components like CPU, DRAM, and SSD.
(2) When estimating the CO2 footprint for operating a server, we
do not consider the energy consumption and the resulting emitted
CO2 for cooling because these numbers are highly reliant on the
overall data center setup. (3) We simplify the assumption that for a
fixed workload, a newer server with an x % better performance con-
sumes x % less energy, positively affecting its power draw and, thus,
its CO2 footprint during operation. (4) For the scenarios discussed
in the following sections, we adopt the simplifying assumption that
a utilization rate of x% reflects a server’s average utilization over
time—for example, over a year. This means that, on average, the
server operated at x % of its total peak performance throughout the
year.

In the following, we explore scenarios involving replacing hard-
ware, considering different energy mixes and server utilization, and
analyzing various systems and workloads.

3.2 Scenarios and Workloads
In the following, we give examples of environmental break-even
analysis for two scenarios. We answer the question of when up-
grading the current hardware setup to a new one minimizes the
environmental impact of manufacturing and operating the server.
We use the model presented above to estimate the CO2 emissions
from both the current and new systems, in addition to the manufac-
turing footprint of the new system. To validate our model estima-
tions, we refer to the HPE Power Advisor [18] for comparison and
assessment. Additionally, we provide an overview that compares
our findings with previous related work focusing on non-database
workloads, highlighting the main differences between our model
results and earlier studies.
Scenario 1: SPECrate performance in Germany. In the first
scenario, we compare two possible setups based on their SPECrate
performance. As our current system, we assume a server with
an Intel Xeon Platinum 8352Y CPU from Q2 2021, 8× 64 GB of
DDR4 DRAM, and two 1.6 TB NVMe SSDs. We analyze after what
amount of time it is reasonable – from a CO2 footprint perspective
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Figure 5: Projected CO2 accumulated emissions of current
and new hardware based on SPECrate numbers for 30% uti-
lization and a German energy mix.

Figure 6: Projected CO2 accumulated emissions of current
and new hardware for a sorting workload, 60% utilization
and a Swedish energy mix.

– to replace the current system with a two years newer system
having an Intel Xeon Platinum 8480C CPU from Q1 2023 and the
same DRAM and SSD capacity. For our comparison, we assume
to (1) run both setups in Germany with a GCI of 344g of CO2
per kWh [9], (2) a workload that leads to a system utilization of
30%, and (3) the SPECrate numbers as a representative indicator of
how well the CPUs perform on our given task. We use the model
presented in Section 3.1 to estimate the CO2 emissions emitted
for manufacturing and running both systems. Figure 5 shows that
replacing the current hardware with the next generation reduces
the accumulated CO2 after roughly 1.7 years. Thus, if we expect
to run the new system for less than 1.7 years an upgrade is not
advisable. The reason for the short replacement cycle is that, given
our assumptions, the more recent hardware is much more efficient
such that the CO2 savings during operation rapidly compensate for
the additional CO2 footprint for its production.
Scenario 2: Sorting workload in Sweden. In a second scenario,
we assume the current and new systems to be nine years apart.
Both are equipped with 8× 64GB of DDR4 DRAM and two 1.6TB

NVMe SSDs. The CPU of the current system is an Intel Xeon E7-
4880 v2 (released in 2014), and the CPU of the new system is an
Intel Xeon Platinum 8480CL (released in 2023). In contrast to the
scenario above, we assume the workload to be sorting, which is
more representative of database workloads than SPECrate perfor-
mance. We rely on our measurements of the parallel std::sort
workload from Section 2.3 to estimate the performance difference
between the current and the new system. Additionally, we assume
the servers to be 60% utilized and to be placed in Sweden, leading
to a GCI of 25g of CO2/kWh.

Figure 6 shows that the new system’s manufacturing CO2 foot-
print is very large in comparison to the saved CO2 from operational
improvement due to performance increase. Due to the low carbon
intensity from Sweden (GCI of 25g of CO2/kWh) and the limited
performance improvements from the new hardware, replacing the
system only reduces the accumulated CO2 emissions after a dura-
tion of approximately 17 years.
Validating our Model. To validate our findings and the estimation
of the operational carbon footprint, we compare the accumulated
CO2 emissions as reported by our model to those reported by HPE’s
Power Advisor [18].6 Since HPE’s Power Advisor only supports a
limited set of hardware, we keep the DRAM and SSD configurations
from Scenario 1 and 2 but select two subsequent generations of
servers with AMD CPUs that are used to report TPC-H benchmark
numbers. The current system is an HPE ProLiant DL325 Gen10
server from 2019 with an AMD 7502P 2.5 GHz 32 Core CPU and
we consider to replace it with the three years newer successor: an
HPE ProLiant DL325 Gen11 server with an AMD 9334 2.7 GHz
32 Core CPU. For our comparison, we chose the CPU’s SPECrate
numbers as a performance indicator, a 30% utilization, and Sweden
as the location. Comparing Figure 7a showing the numbers gener-
ated by our model and Figure 7b showing the numbers from the
HPE Power Advisor, we see that the absolute numbers are similar
while the break-even points are five years apart. Several factors
account for the differences between the models. The HPE Power
Advisor considers the power usage utilization of the data center,
networking, and power supply inefficiencies in addition to the com-
ponents considered in our model. However, both analyses report
a break-even point of more than ten years and strongly advise
against an immediate hardware upgrade to the latest generation.
This result is even more evident when we use the manufacturing
carbon emissions for both systems as reported by HPE [19, 20].
Compared to our model, HPE estimates an approximately three
times higher CO2 manufacturing footprint, shifting the break-even
point far beyond 17 years. This underlines our general observation
that short replacement cycles are not recommended.
Comparison with non-DB workloads. Li et al. assessed the car-
bon footprint of various deep neural network (DNN) workloads
on different high-performance computing (HPC) systems [30]. We
compare our results with their findings. Similarly to our proposed
scenarios, Li et al. analyze the impact of replacing a current system
with more energy-efficient hardware on accumulated carbon emis-
sions over time. They report a break-even point of less than five
years for low (20g CO2/kWh), medium (200g CO2/kWh), and high

6We actively do not consider the CO2 footprint for cooling from the HPE Power
Advisor to be consistent across both models.
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(a) Projected CO2 accumulated emissions using our model. (b) Projected CO2 accumulated emissions using HPE Power Advisor.

Figure 7: Comparison between the projected CO2 emissions of our model and the HPE Power Advisor based on SPECrate
numbers for 30% utilization and a Swedish energy mix.

(400g CO2/kWh) carbon intensity scenarios as well as break-even
points of less than two years for low (20%), medium (40%), and high
(60%) utilization levels at a fixed medium carbon intensity (200g
CO2/kWh). Our results show a significant difference in the break-
even point projection for the low carbon intensity scenario (20g
CO2/kWh). We identify four reasons for this difference. First, we
consider the embodied carbon of the whole system (CPU, DRAM,
HDD/SSD), while they only consider the embodied and operational
carbon of the GPUs. Second, they utilize Carbontracker [2], a tool
that gathers statistics during system operation to estimate the grams
of CO2 from the operation. Third, the workloads considered in their
work are much more compute-heavy, which produces faster carbon
savings given the better energy efficiency of the new hardware.
Finally, the jumps between the performance improvements of new
GPU generations considered in their analysis are higher than those
we considered between CPU generations.

4 DISCUSSION
Continuously improving performance of state-of-the-art systems
often comes with the price of upgrading system components to
newer generations at an unsustainable rate. In this paper, we ar-
gue that this is not reasonable for database deployments. As our
results show, replacing hardware frequently does not improve per-
formance significantly for typical database workloads, but it leads
to significantly higher carbon emissions. We propose that database
systems research should actively target hardware-friendly algo-
rithms to support extended hardware lifetimes. We envision future
algorithms to incorporate hardware maintenance with the explicit
goal of increasing hardware lifetime.

Previous research efforts focus on thermal management and
update cycles to extend the lifespan of hardware. Fluctuating tem-
peratures affect the lifespan of a CPU and increase cooling costs. For
every 10°C temperature increase, the chip’s failure rate doubles [25].
Current solutions propose software-based thermal management
techniques to extend the lifespan of chips [34, 40]. They slow the

major heat-generating processes in CPUs to keep temperatures
below a certain threshold. NVM devices, such as SSDs, suffer from
low endurance problems because the number of erase operations
for memory cells is limited. The state-of-the-art solutions reduce
SSD write traffic by proposing a comprehensive write buffer cache
mechanism [12, 22]. Additionally, recent efforts regarding the lifes-
pan of DRAM are focusing on investigating the aging behavior of
DRAM cells, which leads to performance degradation [4]. We be-
lieve that the database community is positioned well to contribute
to this line of research.

The lifetime of hardware, however, is limited, especially with
high-intensity computing, so replacing it is inevitable. Hardware
vendors recommend a product lifetime of four years [19], while
cloud vendors target a six-year replacement rate in their fleets [1]. In
Figures 5 and 6, we show that the break-even point of the systems’
carbon footprint can take up much longer. We observe a signif-
icant difference in the break-even points when utilizing energy
with higher carbon intensity. Utilizing a carbon-intensive energy
mix makes upgrading hardware to a new generation economical
and ecological within less than one year. Transitioning towards
low-carbon energy extends the efficient usage of systems past the
recommended lifetime potentially by years.

To facilitate this, hardware vendors need to enable access and
ease of maintenance of hardware components affected by high
system utilization, such as SSDs and DRAM DIMMs. One notable
initiative in this direction is the Right to Repair legislation proposed
by the European Commission [11]. The legislation emphasizes the
priority of repair over replacement, as well as integrating an ease
of repairability standard. In combination, the utilization of low-
carbon energy and the repairability of components contribute to
more environmentally friendly data processing.

Another dimension we have not included in this paper is the
effect of increasing application complexity on carbon emission and
the ecological efficiency of hardware upgrades. The rise of com-
plex machine learning models in mainstream software applications
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drives hardware spending and deployment and the carbon footprint
of the IT sector. Large companies are currently missing their carbon
reduction targets mainly due to generative AI.7 Database research
has the opportunity to set a positive example and reduce carbon
emissions rather than increase them.

We see the need for new efficiency metrics to facilitate research
in environmentally friendly database research. Current database
metrics are typically measured in queries or transactions per second
for transactional systems or query execution time for analytical
systems. Efficiency metrics used in benchmarks such as those from
the Transaction Processing Performance Council also consider cost
or power. While cost is calculated based on a three-year deployment
– too short, as we have seen in our analysis – power is onlymeasured
during the actual run. We see the need for an attribution of the
lifecycle carbon footprint to each performance run.

Energy-efficient and green database systems design receives at-
tention from industry and academia. Barroso and Hölzle introduced
the notion of energy-proportional machines after observing that the
energy efficiency—defined as the ratio of performance to power—of
thousands of Google servers dropped by more than 50% at average
utilization levels (20%-30%) compared to the energy efficiency at
peak performance [3]. In an energy-proportional server, power con-
sumption is proportional to the delivered performance, meaning
that when the server is idle, it does not draw any power and only
draws the highest power at peak performance. Designing energy-
proportional systems is still a significant challenge, primarily due to
1) the nonlinear relationship between current hardware power con-
sumption and performance, 2) the lack of broader dynamic power
range modes of hardware, and 3) the poor interaction between soft-
ware and the power management features offered by hardware [13].
Research on energy-proportional servers is essential for reducing the
carbon footprint of database systems and extending the operational
lifespan of the hardware behind them. For this to succeed, hardware
vendors must offer a broader range of power features, e.g., inactive
power modes or a wide dynamic power range. At the same time,
database system designers must prioritize the tight coupling of
software and hardware’s power management features to develop
systems that consume power in proportion to their work. More
efficient hardware and hardware operation will ultimately also in-
crease the ecological server lifetime, further mandating a focus on
research in the area of lifetime extension of database servers.

5 MEASURING EFFICIENCY
Current database benchmark metrics are typically measured in
queries or transactions per second for transactional systems or
query execution time for analytical systems.With a narrow focus on
peak performance, database research fails to incentivize efficiency
of hardware and software.

Established efficiency metrics used in benchmarks such as those
defined by the TPC consider cost or power. While cost is calculated
based on a three-year deployment, power consumption is measured
during benchmark execution. Both metrics are relevant but hardly
ever used in research. Additionally, current benchmarks fail to

7For example, Microsoft reports a 29.1% increase in carbon emissions since 2020 [31]
despite their targets to net carbon neutrality in 2030, other companies have similar
trends.

represent the ever-increasing software complexity and application
bloat. While transactional throughput and query latency improve
over time due to hardware and database architecture improvements,
these are quickly eaten up by applications adding additional queries
and transactions per user. Applications and complete deployments
should, therefore, report resources consumed per user or end-to-end
workload unit rather than per simple database interaction.

With our model for carbon footprints, we hope to lay a foun-
dation for reporting ecological efficiency of database systems and
applications. In our current model, we focus on static workloads.
This model can also be used to measure the increasing efficiency
or inefficiency of database applications by normalizing the carbon
footprint of different deployments or application versions per user.

6 RELATEDWORK
Increased carbon emissions are widely discussed and impact many
decisions made by commercial companies [39]. Gupta et al. [14]
developed a framework to measure the carbon footprint of hard-
ware. Their framework involves three cases: the trade-off between
general-purpose and specialized hardware, minimizing hardware
resources, and recycling hardware. The MIT Materials Systems
Laboratory designs PAIA [32] to provide an efficient and cost-
effective estimate of the carbon footprint of products. This tool
is used by many commercial companies, e.g., Intel, Dell, Cisco, and
IBM. Li et al. [30] analyze the carbon footprint of high-performance
computing (HPC) systems. They consider the carbon footprint of
the hardware components and the geographic carbon intensity to
characterize the carbon footprint of a system across its lifecycle.
The authors conclude that hardware upgrades often come with per-
formance improvements at the price of increased embodied carbon
depending on the carbon intensity of the energy source.

Nambiar and Poess make an early analysis of the performance
improvements of DBMS in comparison to Moore’s law [33]. Their
results from 2010 show a close resemblance of TPC-C improvements
to the general hardware improvements. Koomey et al. [24] provide
an overview of trends in performance, costs, and energy use for
servers. The performance trends for servers track Moore’s law well.

Our research extends previous work to database workloads and
shows that current hardware improvements do not translate to
database performance.

7 CONCLUSION
In this paper, we analyze the efficiency of database hardware up-
grades and their impact on lifecycle carbon emissions.We show that
current hardware improvements do not fully translate to database
performance and servers require very long lifetimes to break even
with previous generations in regions with low carbon intensity
power generation. With this work, we hope to show the necessity
for research on environmentally conscious research in database
systems including extending hardware lifetime and support for
older hardware.
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