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ABSTRACT
AI systems that serve natural language questions over databases
promise to unlock tremendous value. Such systems would allow
users to leverage the powerful reasoning and knowledge capabil-
ities of language models (LMs) alongside the scalable computa-
tional power of data management systems. These combined ca-
pabilities would empower users to ask arbitrary natural language
questions over custom data sources. However, existing methods
and benchmarks insufficiently explore this setting. Text2SQL meth-
ods focus solely on natural language questions that can be ex-
pressed in relational algebra, representing a small subset of the
questions real users wish to ask. Likewise, Retrieval-Augmented
Generation (RAG) considers the limited subset of queries that can
be answered with point lookups to one or a few data records within
the database. We propose Table-Augmented Generation (TAG), a
unified and general-purpose paradigm for answering natural lan-
guage questions over databases. The TAG model represents a wide
range of interactions between the LM and database that have been
previously unexplored and creates exciting research opportuni-
ties for leveraging the world knowledge and reasoning capabili-
ties of LMs over data. We systematically develop benchmarks to
study the TAG problem and find that standard methods answer
no more than 20% of queries correctly, confirming the need for
further research in this area. We release code for the benchmark at
https://github.com/TAG-Research/TAG-Bench.

1 INTRODUCTION
Language models promise to revolutionize data management by let-
ting users ask natural language questions over data, which has led
to a great deal of research in Text2SQL and Retrieval-Augmented
Generation (RAG) methods. In our experience, however (includ-
ing from internal workloads and customers at Databricks), users’
questions often transcend the capabilities of these paradigms, de-
manding new research investment towards systems that combine
the logical reasoning abilities of database systems with the natural
language reasoning abilities of modern language models (LMs).

In particular, we find that real business users’ questions often
require sophisticated combinations of domain knowledge, world
knowledge, exact computation, and semantic reasoning. Database
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systems clearly provide a source of domain knowledge through
the up-to-date data they store, as well as exact computation at
scale (which LMs are bad at).

LMs offer to extend the existing capabilities of databases in two
key ways. First, LMs possess semantic reasoning capabilities over
textual data, a core element of many natural language user queries.
For example, a Databricks customer survey showed users wish to
ask questions like which customer reviews of product X are positive?,
orwhy did my sales drop during this period?. These questions present
complex reasoning-based tasks, such as sentiment analysis over
free-text fields or summarization of trends. LMs are well-suited to
these tasks, which cannot be modeled by the exact computation or
relational primitives in traditional database systems.

Secondly, the LM, using knowledge learned during model train-
ing and stored implicitly by the model’s weights, can powerfully
augment the user’s data with world knowledge that is not cap-
tured explicitly by the database’s table schema. As an example, a
Databricks internal AI user askedwhat are the QoQ trends for the "re-
tail" vertical? over a table containing attributes for account names,
products and revenue. To answer this query the system must under-
stand how the business defines QoQ (e.g., the quarter over quarter
trends from the last quarter to the current quarter or this quarter
last year to this quarter this year), as well as which companies are
considered to be in the retail vertical. This task is well-suited to
leverage the knowledge held by a pre-trained or fine-tuned LM.

Systems that efficiently leverage databases and LMs together to
serve natural language queries, in their full generality, hold poten-
tial to transform the way users understand their data. Unfortunately,
these questions cannot be answered today by common methods,
such as Text2SQL and RAG.While Text2SQLmethods [26, 28, 31, 32]
are suitable for the subset of natural language queries that have
direct relational equivalents, they cannot handle the vast array of
user queries that require semantic reasoning or world knowledge.
For instance, the previous user query asking which customer reviews
are positive may require logical row-wise LM reasoning over re-
views to classify each as positive or negative. Similarly the question
which askswhy sales dropped entails a reasoning question that must
aggregate information across many table entries.

On the other hand, the RAG model is limited to simple relevance-
based point lookups to a few data records, followed by a single LM
invocation. This model serves only the subset of queries answer-
able by point lookups and also fails to leverage the richer query
execution capabilities of many database systems, which leaves com-
putational tasks (e.g., counting, math and filtering) to a single in-
vocation of the error-prone LM. In addition to being error prone
and inefficient at computational tasks, LMs have also been shown
to perform poorly on long-context prompts limiting their ability to
reason about data at scale in the generation phase of RAG.

https://github.com/TAG-Research/TAG-Bench
https://doi.org/10.1145/nnnnnnn.nnnnnnn


CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

We instead propose table-augmented generation (TAG) as a
unified paradigm for systems that answer natural language ques-
tions over databases. Specifically, TAG defines three key steps, as
shown in Figure 1. First, the query synthesis step syn translates
the user’s arbitrary natural language request 𝑅 to an executable
database query 𝑄 . Then, the query execution step exec executes 𝑄
on the database system to efficiently compute the relevant data 𝑇 .
Lastly, the answer generation step gen utilizes 𝑅 and 𝑇 , where the
LM is orchestrated, possibly in iterative or recursive patterns over
the data, to generate the final natural language answer 𝐴. The TAG
model is simple, but powerful: it is defined by the following three
equations, but captures a wide range of previously under-studied
interactions between LMs and databases.

Query Synthesis: syn(𝑅) → 𝑄 (1)
Query Execution: exec(𝑄) → 𝑇 (2)

Answer Generation: gen(𝑅, 𝑇 ) → 𝐴 (3)

Notably, the TAG model unifies prior methods, including both
Text2SQL and RAG, which represent special cases of TAG and serve
only a limited subset of user questions.

While several prior works address these special cases of TAG, we
provide the first end-to-end TAG benchmark composed of a broad
set of realistic queries that require LM reasoning and knowledge ca-
pabilities. We demonstrate the significant research challenges posed
by these types of questions, as well as the promise of efficient TAG
implementations. Our evaluation analyzes the vanilla Text2SQL
and RAG baselines as well as two stronger baselines, Text2SQL with
LM generation and retrieval with LM-based re-ranking. Across a
variety of query types, we find each baseline method consistently
fails to achieve high accuracy, never surpassing 20% exact match
on the benchmark. On the other hand, we implement hand-written
TAG pipelines on top of the recent LOTUS runtime [21] and find
they achieve up to 20 − 65% higher accuracy compared to the base-
lines. This significant performance gap demonstrates the promise
of building efficient TAG systems.

2 THE TAG MODEL
We now describe the TAG model, which takes a natural language
request 𝑅 and returns a natural language answer 𝐴 grounded in
the data source. We outline three main steps that TAG systems im-
plement: query synthesis, query execution, and answer generation.
We define TAG tractably as a single iteration of these steps, but one
can consider extending TAG in a multi-hop fashion.

2.1 Query Synthesis
The syn function takes a natural language request 𝑅 and generates
a query 𝑄 to be executed by the database system. Given a user
request, this step is responsible for (a) deducing which data is
relevant to answering the request (e.g., using the table schema), and
(b) performing semantic parsing to translate the user request into
a query that can be executed by the database system. This query
could be in any query language, but in our example we use SQL.

Figure 1 shows an example TAG instantiation for the user query
which asks, “Summarize the reviews of the highest grossing romance
movie considered a ‘classic’". Here, the data source contains infor-
mation about each movie’s title, revenue, genre, and an associated

Query Synthesis

“Summarize the reviews of the highest grossing romance movie considered a ‘classic’.”

Query Execution

genrereviewrevenuemovie_title

Action“solid film…”432.2Shang-Chi

Romance“still best…”2257.8Titanic

Romance“a guilty…”2257.8Titanic

…………

genrereviewrevenuemovie_title

Romance“still best…”2257.8Titanic

Romance“a guilty…”2257.8Titanic

…………

Answer Generation

“Summarize the reviews of the highest grossing romance 
movie considered a ‘classic’.”

“{movie_title: “Titanic”, revenue: 2257.8, review: “still 
best…”, genre: “Romance”}…”

“The reviews of Titanic discuss the on screen chemistry…”

1

2

3

Figure 1: An example TAG implementation for answering the
user’s natural language question over a table about movies.
The TAG pipeline proceeds in three stages: query synthesis,
query execution, and answer generation
review. In this step, the system leverages the semantic reasoning
abilities of the LM to generate a SQL query that uses attributes on
movie_title, review, revenue, and genre from the data source.
Note that in this example, the database API is able to execute LM
UDFs within SQL queries, so this step also introduces calls to the
LM for each row to identify classic films within the query.

2.2 Query Execution
In the query execution step, the exec function executes the query
𝑄 in the database system to obtain the table 𝑇 . This step leverages
the database query engine to efficiently execute the query over
vast amounts of stored data. The database API can be served by a
wide variety of systems, which we explore in Section 3. Some APIs
may allow for LM-based operators [18–21], permitting the data-
base engine to leverage the LM’s world knowledge and reasoning
capabilities within exec.

In the example shown in Figure 1, the database query is a se-
lection and ranking query written in SQL, which returns a table
containing relevant rows. The query performs the selection us-
ing an LM to assess which movies are classics according to their
movie_title, as well as a standard filter on genre to find romance
movies. The query also ranks the results based on revenue to find
the highest grossing film. As the figure shows, the resulting table
contains reviews for the movie “Titanic”.

2.3 Answer Generation
The answer generation step in TAG mirrors the generation step
in RAG. In this step, the gen function uses the LM to generate
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an answer 𝐴 to the user’s natural language request 𝑅, using the
computed data 𝑇 .

Figure 1 shows the final stage of the example TAG pipeline
outputting a summary of the reviews on "Titanic" as the answer
to the original user request. In the example, the relevant data 𝑇 is
encoded as a string for the model to process. The encoded table is
passed to the LM along with the original user request, 𝑅. To obtain
the answer, this step leverages the model’s semantic reasoning
capabilities over the review column to summarize the reviews.

3 TAG DESIGN SPACE
In this section, we explore the generality of the TAG model and
describe the rich design space it produces, highlighting several
under-studied opportunities for further research.

Query Types The TAGmodel is expressive enough to serve a broad
range of natural language user queries. We consider two important
query categorizations, according to (a) the level of data aggregation
required to answer the query and (b) the knowledge and capabilities
needed for answering the query. First, the TAGmodel captures both
point queries, such as retrieval-based questions [3, 9, 15, 16, 25, 30]
which require look-ups to one or a few rows of the database, as well
as aggregation queries, such as summarization or ranking-based
questions which require logical reasoning across many rows of
the database. Secondly, the TAG model enables natural language
queries with varying demands on the system to provide data or
reasoning-based capabilities, including for tasks such as sentiment
analysis and classification.

Data Model The underlying data model can take many forms.
Our implementation uses relational databases to store and retrieve
structured attributes for knowledge-grounding in the downstream
question-answering task. Others may operate onmore unstructured
data (e.g., free-text, images, video, and audio) or semi-structured
data, which may be stored with a variety of data models, such as
key-value, graph, vector, document, or object stores.

Database Execution Engine and API The underlying system
used to store the data can use many possible database execution
engines. Text2SQL considers the setting of an SQL-based query
engine for retrieving relational data for user queries. In this setting,
synwill leverage the knowledge of the data source, such as the table
schema, and return a SQL query to perform the retrieval step. In
another common setting, retrieval systems over vector embeddings,
syn transforms the natural language query into an embedding and
exec performs similarity-based retrieval over the vector store.

While these two settings have beenwidely studied, several under-
studied alternative settings present interesting opportunities for
efficiently implementing TAG systems to serve a broader range
of queries. For instance, recent works augment relational models
with semantic operators [21], which provide a set of declarative
AI-based operators (e.g., filtering, ranking, aggregating, and per-
forming searchwith natural language specifiers) or LM user-defined
functions [19], which provide a general-purpose LM function. Ad-
ditionally, query languages like MADLib [10], Google’s BigQuery
ML [1], and Microsoft’s Predictive SQL [24] augment SQL-based

APIs with native ML-based functions. Leveraging these systems
provides unique opportunities for executing optimized reasoning-
based retrieval patterns. For instance, in the example shown in
Figure 1, a TAG pipeline implemented with semantic operators [21]
might use a sem_filter operator to filter rows based on whether
they are a ’classic’ during the query execution step.

LM Generation Patterns Given the table 𝑇 of relevant data, gen
can be comprised from a vast array of implementation decisions
to produce the final natural language answer 𝐴 in response to the
user request 𝑅. While Text2SQL omits the final generation step and
stops short after query execution, RAG pipelines typically leverage
a single LM-call generation implementation where relevant data
is fed in context. In this setting, several works study sub-problems
related to table encoding [8], prompt compression [5], and prompt
tuning [13] to optimize the in-context learning results.

More recent research, such as LOTUS [21], highlights the po-
tential of composing iterative or recursive LM generation patterns
for answering queries involving reasoning-based transformations,
aggregations, or rankings across multiple data rows. Early work
demonstrates the rich design space presented by these LM-based
algorithms and promising results on several downstream tasks.

4 EVALUATION
In this section, we introduce the first TAG benchmark and evaluate
a collection of baselines, aiming to address the following questions:

(1) How do existing methods for table question answering per-
form on queries requiring semantic reasoning orworld knowl-
edge?

(2) How does a hand-written implementation of the TAG model,
which divides computational and reasoning steps across
DBMS and LM operations, perform on these queries?

4.1 Benchmark Methodology
Existing benchmarks have explored how models perform on ba-
sic queries answerable entirely from data in the data source. We
build upon prior work by modifying queries such that they require
knowledge not directly available in the data source or semantic
reasoning to answer. We select BIRD [17], a widely used Text2SQL
benchmark on which LMs have been evaluated, for its large scale
tables along with its variety of domains and query types.

Dataset Our queries span 5 domains selected from BIRD, each
containing diversity in query types. We select california_schools,
debit_card_specializing, formula_1, codebase_community, and euro-
pean_football_2 as the DB sources for our queries.

Queries The BIRD benchmark defines fundamental query types, in-
cludingmatch-based, comparison, ranking, and aggregation queries.
We select queries among these types from the BIRD benchmark
and modify them to require either world knowledge or semantic
reasoning for the model to answer. As an example of a modified
query requiring world knowledge, in the california_schools DB, a
modified query adds an additional clause asking for only schools
in the Bay Area. This information is not in the table and requires
the model’s world knowledge to answer. Next, a modified query
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requiring LM reasoning asks for the top 3 most sarcastic comments
on a particular post in the codebase_community DB. For evaluation
on these queries, we rely on human-labeled ground truth. Our final
benchmark consists of 80 modified queries, 40 requiring parametric
knowledge and 40 requiring reasoning, with 20 of each of the 4
chosen BIRD query types.

Evaluation metrics We measure accuracy as the percentage of
exact matches as compared to the labeled correct answer for the
match-based, comparison, and ranking query types. For aggrega-
tion queries, we provide qualitative analysis on results using each
baseline. We also measure execution time in seconds for each query.

Experimental setup We use the instruction tuned variant of
Meta’s Llama-3.1 model [2] with 70B parameters as our LM for
both Text2SQL and final output generation. We use SQLite3 as
our database API for baselines involving SQL and use an E5 base
embedding model [23] for our RAG baseline. We run Llama-3.1-
70B-Instruct with vLLM [14] on 8 A100 80GB GPUs.

4.2 Baselines

Text2SQL In this baseline, the LM generates SQL code which is
run to obtain an answer. For a given NL query, we construct an
LM prompt containing table schemas for every table in the query’s
domain, using the same prompt format as in the BIRD work. We
evaluate this baseline executing the generated SQL code in SQLite3
andmeasuring the number of incorrect answers, including instances
where the model fails to generate valid SQL code.

Retrieval Augmented Generation (RAG) RAG style methods
have been explored for table retrieval [6, 25], where tabular data is
embedded into an index for search. For our baseline, we use row-
level embeddings. A given row is serialized as "- col: val" for each
column before being embedded into a FAISS [7] index. During query
time, we perform vector similarity search to retrieve 10 relevant
rows to feed in context to our model along with the NL question.

Retrieval + LM Rank We extend the RAG baseline by utilizing an
LM to assign a score between 0 and 1 for retrieved rows to rerank
rows before input to the model, as is done in the STaRK work [25].
We use Llama-3.1-70B-Instruct as our reranker.

Text2SQL + LM In this baseline, our model is first asked to generate
SQL to retrieve a set of relevant rows to answer a given NL query.
This is an important distinction from the Text2SQL baseline, where
the model is asked to directly generate SQL code that alone provides
an answer to the query when executed. Similar to the RAG baseline,
relevant rows are fed in context to the model once retrieved.

Hand-written TAG We also evaluate hand-written TAG pipelines,
which leverage expert knowledge of the table schema rather than
automatic query synthesis from the natural language request to
the database query. We implement our hand-written TAG pipelines
with LOTUS [21]. The LOTUS API allows programmers to declara-
tively specify query pipelines with standard relational operators as

well as semantic operators, such as LM-based filtering, ranking, and
aggregations. LOTUS also provides an optimized semantic query
execution engine, which we use to implement the query execution
and answer generation steps of our hand-written TAG pipelines.

4.3 Results
Table 1 shows the accuracy, measured by exact match, and execu-
tion time of each method. As the table shows, across the selected
BIRD query types, we find that our hand-written TAG baseline
consistently achieves 40% exact match accuracy or better, where
all other baselines fail to exceed 20% accuracy.

The Text2SQL baseline performs poorly on all baselines with an
execution accuracy no higher than 20% but especially poorly on
ranking queries with only 10% accuracy, as many of the ranking
queries require reasoning over text. The Text2SQL + LM genera-
tion baseline has similar poor performance across baselines, but
does worse on match-based and comparison queries with only 10%
accuracy. On these query types, several context length errors occur
trying to feed in many rows to the model after the executed SQL.

Turning our attention to the RAG baseline, we see that it fails to
answer a single query correctly across all query types, highlighting
its poor fit for queries in this space. Adding LM reranking allows
Retrieval + LM rank to answer a query correctly among the com-
parison queries, however the baseline still performs worse than all
others besides RAG.

Our hand-written TAG baseline answers 55% of queries correctly
overall, performing best on comparison queries with an exact match
accuracy of 65%. The baseline performs consistently well with over
50% accuracy on all query types except ranking queries, due to the
higher difficulty in ordering items exactly. Overall, this method
gives us between a 20% to 65% accuracy improvement over the
standard baselines.

Additionally, Table 2 highlights the weaknesses of standardmeth-
ods in answering the query types discussed in Section 3. Namely,
vanilla Text2SQL especially struggles on queries requiring LM rea-
soning with 10% exact match accuracy, due to its omission of the
answer generation step. Meanwhile, the RAG baseline and Retrieval
+ LM Rank baseline struggle on all query types, answering only one
query correctly, due to their reliance on the LM to handle all exact
computation over data. In contrast, the hand-written TAG baseline
achieves over 50% accuracy on both queries requiring knowledge
and queries requiring reasoning, emphasizing the TAG model’s
versatility in the queries it encapsulates.

Notably, along with offering superior accuracy, the hand-written
TAG method offers an efficient implementation with up to 3.1×
lower execution time over other baselines. The hand-written base-
line takes an average of 2.94 seconds for all queries. This relatively
low execution time highlights that an efficient TAG system can be
designed by exploiting efficient batched inference of LMs.

Lastly, we qualitatively analyze the results of each baseline on
aggregation queries. Figure 2 shows the results for the RAG, Naive
TAG, and hand-written baselines on the example query "Provide
information about the races held on Sepang International Circuit.".
The RAG baseline is only able to provide information about some
of the races, as most of the relevant races are not retrieved. On the
other hand, the Text2SQL + LM baseline is not able to utilize any



Text2SQL is Not Enough: Unifying AI and Databases with TAG CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Table 1: Accuracy and execution time (ET) for TAG benchmark queries, averaged over all queries and each query type: TAG
significantly improves answer quality while achieving the fastest or nearly fastest execution time.

Method Overall Match-based Comparison Ranking Aggregation

Exact Match ↑1 ET (s) ↓ Exact Match ↑ ET (s) ↓ Exact Match ↑ ET (s) ↓ Exact Match ↑ ET (s) Exact Match ↑ ET (s) ↓

Text2SQL 0.17 5.63 0.20 4.72 0.20 4.01 0.10 7.26 N/A 6.53
RAG 0.00 3.23 0.00 3.73 0.00 2.29 0.00 2.01 N/A 4.89
Retrieval + LM Rank 0.02 4.82 0.00 6.20 0.05 4.19 0.00 3.42 N/A 5.46
Text2SQL + LM 0.13 9.08 0.10 11.25 0.10 3.89 0.20 11.80 N/A 9.38
Hand-written TAG 0.55 2.94 0.60 1.70 0.65 5.05 0.40 2.50 N/A 2.50
1 Excludes aggregation since accuracy is not measured.

Query: Provide information about the races held on Sepang International Circuit 

RAG Text2SQL + LM Hand-written TAG

Based on the given data points, the following information
is available about the races held on Sepang International
Circuit: The races held on this circuit are the Malaysian
Grand Prix. The location of the circuit is Kuala Lumpur,
Malaysia. The following races were held on this circuit:
2001 Malaysian Grand Prix, 2003 Malaysian Grand Prix,
2002 Malaysian Grand Prix, 2000 Malaysian Grand Prix.

The data points provided do not contain specific
information about the races held on Sepang International
Circuit. However, based on general knowledge, the
Sepang International Circuit is a racing circuit in Sepang,
Malaysia, and it has hosted the Malaysian Grand Prix, a
Formula One World Championship event, from 1999 to
2017.

The Sepang International Circuit in Kuala Lumpur,
Malaysia, hosted the Malaysian Grand Prix from 1999 to
2017. The races were held on the following dates: 1999:
October 17 (15th round) 2000: October 22 (2nd round),
2001: March 18 (2nd round), 2002: March 17 (2nd
round), 2003: March 23 (2nd round), 2004: March 21
(2nd round), 2005: March 20 (2nd round), …, 2016:
October 2 (16th round), 2017: October 1 (15th round).

Figure 2: Example Aggregation Results: The RAG baseline provides an incomplete answer to the query while Text2SQL + LM
fails to answer the question using any data from the DB. The Hand-written TAG baseline provides the most thorough answer,
synthesizing data from the DB and its own world knowledge.

Table 2: TAG benchmark results averaged over queries re-
quiring Knowledge or Reasoning: TAG performs consistently
well with above 50% exact match accuracy on both Knowl-
edge and Reasoning query types.

Method Knowledge Reasoning

Exact Match ↑ ET (s) ↓ Exact Match ↑ ET (s) ↓

Text2SQL 0.20 5.23 0.10 5.52
RAG 0.00 2.73 0.00 2.58
Retrieval + LM Rank 0.03 4.97 0.00 3.87
Text2SQL + LM 0.10 10.27 0.20 6.39
Hand-written TAG 0.53 3.50 0.60 2.24

information from the DBMS, relying only on parametric knowledge
and providing no further analysis. The hand-written baseline pro-
vides a thorough summary of all the races from 1999 to 2017 held
at Sepang International Circuit. We observe a similar trend across
other aggregation queries provided by the benchmark, with initial
results highlighting the potential of TAG systems to successfully
aggregate large amounts of data to provide informative answers.
We leave quantitative analysis to future work.

5 RELATEDWORK

Text2SQL Text2SQL using LMs has been extensively explored in

prior work. WikiSQL [33], Spider [29], and BIRD [17] are all pop-
ular datasets for cross-domain Text2SQL. These datasets contain
structured data across many domains on which the task of convert-
ing natural language queries to SQL is evaluated. However, this
direction does not utilize model capabilities beyond SQL genera-
tion, keeping queries that require reasoning or knowledge beyond
a static data source out of scope.

Retrieval Augmented Generation Retrieval augmented gener-
ation (RAG) [16] enables LMs to extend beyond their parametric
knowledge to large collections of text. SQuAD [22] and HotPotQA
[27] focus on question-answering over single document and multi-
ple document sources respectively. The dense table retrieval (DTR)
model [11] extends RAG to tabular data, embedding tabular context
to retrieve relevant cells and rows for a query. Join-aware table re-
trieval [6] adds a table-table similarity score term to the DTR model
to improve performance on complex queries involving joined ta-
bles. In contrast to prior RAG work, the TAG model encompasses
a larger field of queries users have over their data by leveraging
LM capabilities in the query execution step and allowing DBMS
operations for exact computation over large amounts of data.

NL Queries over Semi-structured Data Prior work has explored
the relational information between table entities and unstructured
entity fields in semi-structured data sources. STaRK [25] evaluates
table retrieval methodologies across semi-structured knowledge
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bases (SKBs), including both structural and nonstructural informa-
tion. SUQL [20] addresses the task of conversational search, where
an LM is used as a semantic parser to handle unstructured compo-
nents user queries over hybrid data. While these works primarily
focus on natural language search queries over semi-structured data,
we seek to explore a broader range of queries leveraging more LM
capabilities for tasks beyond search and lookup.

Agentic Data Assistants Recent work has explored LM agents
as data assistants [12]. Spider2-V [4] explores multimodal agent
performance in tasks involving code generation and GUI controls.
Though we define the TAG model tractably as one iteration of the
syn, exec, and gen functions, future work may explore extending
this in an agentic loop.

6 CONCLUSION
In this work we proposed table-augmented generation (TAG) as
a unified model for answering natural language questions over
databases. We developed benchmarks to study two important types
of queries: those that require world knowledge, and those that re-
quire semantic reasoning capabilities. Our systematic evaluation
confirms that baseline methods are unable to make meaningful
traction on these tasks. However, hand-written TAG pipelines can
achieve up to 65% higher accuracy, demonstrating substantial re-
search opportunities for building TAG systems.
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A SAMPLE QUERIES
We detail the modifications made to BIRD queries for our benchmark. Each query is modified to require either LM knowledge or reasoning
to answer. Sample queries are shown below.

Match-based

Original BIRD Query:
What is the grade span offered in the school with the highest longitude?
Modified Query:
What is the grade span offered in the school with the highest longitude in cities in that are part of the ’Silicon Valley’ region?
Analysis:
This query is modified to require LM knowledge of which cities are within the Silicon Valley region of California, information not available
in the data source.

Comparison

Original BIRD Query:
Among the players whose height is over 180, how many of them have a volley score of over 70?
Modified Query:
Among the players whose height is over 180, how many of them have a volley score of over 70 and are taller than Stephen Curry?
Analysis:
This query is modified to require LM knowledge of how tall Stephen Curry is.

Ranking

Original BIRD Query:
What are the titles of the top 5 posts with the highest popularity?
Modified Query:
Of the 5 posts wih highest popularity, list their titles in order of most technical to least technical.
Analysis:
This query is modified to require LM reasoning over a textual field, the post’s title.

Aggregation

Original BIRD Query:
Write all comments made on the post titled ’How does gentle boosting differ from AdaBoost?’
Modified Query:
Summarize the comments made on the post titled ’How does gentle boosting differ from AdaBoost?’ to answer the original question.
Analysis:
This query is modified to rely on LM reasoning over text on the textual comment fields to provide a summary.

B LM PROMPTS
We summarize the prompts used with instruction tuned Llama-3.1 80B for query synthesis and answer generation.

B.1 Query Synthesis
For the query synthesis step, in our case a Text2SQL step, we use the same table schema encoding and LM prompt as the original BIRD
benchmark. An example prompt for query synthesis is shown below.

1 -- Example Prompt for Query Synthesis
2 CREATE TABLE frpm
3 (
4 CDSCode TEXT not null primary key ,
5 Academic Year TEXT null ,
6 ...
7 )
8
9 CREATE TABLE satscores
10 (
11 ...
12 AvgScrRead INTEGER null ,
13 AvgScrMath INTEGER null ,
14 ...
15 )
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16
17 CREATE TABLE schools
18 (
19 ...
20 District TEXT not null ,
21 School TEXT null ,
22 ...
23 )
24
25 -- External Knowledge: None
26 -- Using valid SQLite and understading External Knowledge , answer the following questions for the tables provided above

.
27 -- Among the schools with the average score in Math over 560 in the SAT test , how many schools are in the bay area?
28 SELECT

B.2 Answer Generation
On the Text2SQL + LM and RAG baselines, the answer generation step requires the LM to answer a user question with the provided rows in
context. We utilize a separate prompt for aggregation queries, while match-based, comparison, and ranking share the same prompt. We show
both prompts below.

1 -- Example Prompt for Answer Generation for Match -based , Comparison , and Ranking Queries.
2
3 You will be given a list of data points and a question. Use the data points to answer the question. Your answer must be

a list of values that is evaluatable in Python. Respond in the format [value1 , value2 , ..., valueN ]. If you are
unable to answer the question , respond with []. Respond with only the list of values and nothing else. If a value
is a string , it must be enclosed in double quotes.

4
5 Data Point 1:
6 ...
7 - School: <school name for first row >
8 - AvgScrMath: <average math score first row >
9 ...
10 Data Point 2:
11 ...
12 - School: <school name for second row >
13 - AvgScrMath: <average math score second row >
14 ...
15
16 Question: Among the schools with the average score in Math over 560 in the SAT test , how many schools are in the bay

area?

1 -- Example Prompt for Answer Generation for Aggregation Queries.
2
3 You will be given a list of data points and a question. Use the data points to answer the question. If a value is a

string , it must be enclosed in double quotes.
4
5 Data Point 1:
6 ...
7 - PostId: <post id for first row >
8 - Text: <comment text first row >
9 ...
10 Data Point 2:
11 ...
12 - PostId: <post id for second row >
13 - Text: <comment text second row >
14 ...
15
16 Question: Summarize the comments made on the post titled "How does gentle boosting differ from AdaBoost ?" to answer the

original question.

C HANDWRITTEN PIPELINES
We use the LOTUS package to construct hand-written TAG pipelines. For each query in our benchmark, a pipeline consisting of a series of
dataframe transformations and filters along with LOTUS semantic LM operators was written in Python. Example pipelines are visible below.

1 -- Match -based
2 query = "What is the grade span offered in the school with the highest longitude in cities in that are part of the '

Silicon Valley ' region ?"
3
4 schools_df = pd.read_csv ("../ pandas_dfs/california_schools/schools.csv")
5 unique_cities = pd.DataFrame(schools_df ["City "]. unique (), columns =[" City "])
6 sv_cities = unique_cities.sem_filter ("{ City} is a city in the Silicon Valley region ")
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7 schools_df = schools_df[schools_df ["City "]. isin(sv_cities ["City "])]
8 schools_df = schools_df.sort_values(by=[" Longitude"], key=abs , ascending=False).head (1)
9 prediction = schools_df [" GSoffered "]. tolist ()[0]
10
11 return prediction

1 -- Ranking
2 query = "Of the 5 posts wih highest popularity , list their titles in order of most technical to least technical ."
3
4 posts_df = (
5 pd.read_csv ("../ pandas_dfs/codebase_community/posts.csv").sort_values(by=[" ViewCount"], ascending=False).head (5)
6 )
7
8 prediction = posts_df.sem_topk ("What {Title} is most technical?", 5).Title.values.tolist ()
9
10 return prediction

1 -- Aggregation
2 query = "Summarize the comments made on the post titled 'How does gentle boosting differ from AdaBoost?' to answer the

original question"
3
4 posts_df = pd.read_csv ("../ pandas_dfs/codebase_community/posts.csv")
5 comments_df = pd.read_csv ("../ pandas_dfs/codebase_community/comments.csv")
6 posts_df = posts_df[posts_df ["Title"] == "How does gentle boosting differ from AdaBoost ?"]
7 merged_df = pd.merge(posts_df , comments_df , left_on ="Id", right_on =" PostId ")
8
9 prediction = merged_df.sem_agg (" Summarize the comments", all_cols=True)._output [0]
10 return prediction
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