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ABSTRACT
Database queries traditionally operate under the closed-world as-
sumption, providing no answers to questions that require informa-
tion beyond the data stored in the database. Hybrid querying using
SQL offers an alternative by integrating relational databases with
large language models (LLMs) to answer beyond-database ques-
tions. In this paper, we present the first cross-domain benchmark,
SWAN, containing 120 beyond-database questions over four real-
world databases. To leverage state-of-the-art language models in
addressing these complex questions in SWAN, we present two solu-
tions: one based on schema expansion and the other based on user
defined functions. We also discuss optimization opportunities and
potential future directions. Our evaluation demonstrates that using
GPT-4 Turbo with few-shot prompts, one can achieves up to 40.0%
in execution accuracy and 48.2% in data factuality. These results
highlights both the potential and challenges for hybrid querying.
We believe that our work will inspire further research in creating
more efficient and accurate data systems that seamlessly integrate
relational databases and large language models to address beyond-
database questions.

CCS CONCEPTS
• Information systems→ Query languages; Information re-
trieval; Information integration.
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1 INTRODUCTION
The Relational model and SQL have achieved widespread accep-
tance and usage in data management systems. In particular, SQL
continues to evolve by adding new syntax and features, enhanc-
ing its capabilities to meet the growing demands of modern data
systems [32]. It is well known that database queries are evaluated
under a closed domain assumption, meaning that the queries ad-
dress aspects of the real world based solely on the data stored in
the relational database management system [30]. While the direct
approach is to say NO to beyond-database questions, researchers in
our community have also investigated alternatives such as provid-
ing answers based on incomplete data with heuristic algorithms [14]
and crowdsourcing [8]. In this paper, we explore the use of large
language models to address these questions.
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In the natural language processing community, open-domain
question answering has been extensively studied, often encompass-
ing a broader range of inquiries. This long-standing task aims to
provide factual answers to natural language questions by drawing
from large, unstructured collections of texts and documents, such
as Wikipedia. By pre-training on large corpus of knowledge, large
language models (LLMs) have demonstrated significant potential
in providing world knowledge and performing complex reason-
ing [12, 38]. In this paper, we are specifically interested in beyond-
database questions which have partial information grounded in
the relational database. Unlike open-domain questions, beyond-
database questions require integrating and reasoning with struc-
tured data from relational databases as well as drawing from large,
unstructured collections of texts.

Figure 1: An illustrative example contrasting the answering
of a beyond-database question solely using a database (left)
versus hybrid querying over both databases and large lan-
guage models (right).

A motivating example: Consider a simple database with a
single table containing superhero information, as shown in Figure 1.
The schema for the database is: superhero(hero_name, full_name).
Suppose the user wants to list all the hero names from the Marvel
Universe within the database. This would be considered as a beyond-
database question, since the database contains relevant or partial
information to the request but cannot directly provide the answer
(i.e., which heroes are Marvel universe). On the other hand, large
language models such as ChatGPT can be used to identify the
publisher for each superhero characters. Assume we treat LLMs
as a table containing the hero_name and the publisher. Then, a
SQL query like: "SELECT hero_name, full_name FROM LLM JOIN
superhero ON LLM.hero_name = superhero.hero_name WHERE
llm.publisher = ’Marvel’;" Hence, hybrid querying by integrating
relational databases and large language models offers a powerful
approach for addressing beyond-database questions.

In this work, we propose SWAN, Solving beyond-database queries
With generative AI aNd relational databases, the first hybrid query
benchmark. SWAN comprises 120 beyond-database questions and
spans four big databases, covering four diverse domains. The origi-
nal databases and questions are from the recent Bird benchmark[15],
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which is a benchmark for evaluating natural language to SQL trans-
lation. The data in these databases are collected from open-source
relational databases in platforms such as Kaggle. Also, the proposed
SWAN benchmark challenges large language models to both select
values from a given list (e.g., choose publisher name from a list of
predefined publishers) and generate free-form outputs (e.g., deter-
mine the city based on a street address). In addition to proposing
the SWAN benchmark, we also introduce HQDL, a preliminary solu-
tion for answering beyond-database questions. We evaluate HQDL
over the state-of-the-art large language models such as ChatGPT
(gpt-3.5-turbo) [22] and the GTP-4 turbo [1, 20]. Our experimental
results indicate significant challenges for current state-of-the-art
models in generating factual data and accurately answering beyond-
database questions with hybrid queries. With in-context learning
(ICL), GPT-4 Turbo achieves 40.0% execution accuracy and 48.2% of
its generated data is factually correct. Proposing a novel benchmark
for beyond-database queries will focus attention and drive more
research in this critical area. It will also encourage researchers to
develop innovative solutions that are founded on solid well under-
stood foundations. The evaluation results based on HQDL further
highlight the need for more advancements in improving the accu-
racy and reliability of answering beyond-database questions with
hybrid queries.

The paper is organized as follows: In Section 2, we discuss the
background and related works on hybrid querying. Section 3 in-
troduces the SWAN benchmark and provides details on the con-
struction of the databases and the corresponding beyond-database
questions. In Section 4, we present HQDL a preliminary solution for
utilizing large language models to solve these complex questions
and discuss potential areas for improvement. Section 5 showcases
our evaluation of HQDL on the SWAN benchmark. Finally, Section 6
concludes the paper.

2 BACKGROUND AND PROBLEM STATEMENT
In this section, we provide some basic background of large language
models (LLMs) and introduce related work from both the data-
base and the natural language communities for answering beyond-
database questions.

2.1 Large Language Models Basics
Large language models are trained on vast datasets to produce
high-quality responses based on input prompts. They have shown
remarkable capabilities in addressing complex tasks across various
domains, including logic reasoning [38], natural language to SQL
translations [7, 9, 27], and data system tuning [10, 39].

Large language models are frequently used to retrieve domain-
specific knowledge and to simplify the information retrieval process
by providing direct natural language answers. However, these mod-
els may exhibit hallucinations and factuality errors. Consequently,
recently many researchers have focused on enhancing the capa-
bilities of LLMs to provide factual information [34]. In-context
learning (ICL) is a widely adopted strategy to enhance the factual
accuracy of generated content. ICL enables a language model to
learn from example demonstrations within its context to improve
performance [2].

2.2 Related Work
Answering beyond-database questions has been investigated in a
variety of research efforts. CrowdDB [8], Qurk [18], Deco [25], and
hQuery [23] introduce crowdsourced query processing systems
that address the closed-world assumption in traditional query pro-
cessing. However, the cost of incorporating human input can be
significant, impacting both time and resources. Inspired by the capa-
bilities of LLMs, researchers have investigated whether LLMs can be
used for declarative prompting [24] and data cleaning tasks such as
data imputation where LLMs repair dirty or missing values in data
entries [3, 19]. While this is closely related to hybrid queries, hybrid
querying over relational databases and LLMs presents its own set of
challenges in combining structured and unstructured data sources,
ensuring the correctness of generated data, and materializing the
data for future uses. Furthermore, two recent studies [31, 33] laid
out the vision for augmenting relational databases with data gen-
erated from LLMs. However, due to the absence of an evaluation
benchmark, both studies are limited to preliminary case studies.
For instance, Galois [31] executed 46 SQL queries (drawn from the
Spider benchmark [36]) solely on LLMs, without involving any
relational databases. Also, they manually verified the generation
results, comparing the output table statistics (e.g., cardinality) and
verifying content accuracy with the ground truth. Our proposed
SWAN benchmark is built on top of databases collected in the Bird
benchmark [15], which has 270x (on average) more rows compared
to the databases in the Spider benchmark [36]. Moreover, in addi-
tion to content accuracy, we also compare the execution accuracy
among hybrid queries (see more explanations in Section 5)

3 SWAN CONSTRUCTION
3.1 Databases in SWAN
We constructed the SWAN benchmark1 based on the Bird bench-
mark [15]. In the Bird benchmark, there are eleven diverse database
domains. However, we have identified that many of these databases
are overly narrow, and the questions are too specific to be answered
effectively by a general intelligence model. For instance, the finan-
cial database includes detailed tables on bank accounts, credit card
information, loans, and trading transactions. This level of specificity
are out of the scope of a general AI’s capabilities. As a result, we
selected four diverse databases: European Football, Formula One,
California Schools, and Superhero. These databases cover a broad
range of topics, from sports statistics and history to educational
trends and fictional characters.

3.2 Schema Curation
The main challenges in evaluating hybrid queries are: i) generat-
ing beyond-database questions, and ii) ensuring the availability of
ground truth answers for these questions. Fortunately, the Bird
benchmark provides valuable assets: natural language questions,
SQL queries, and the databases. Leveraging these resources, we can
modify the databases to create questions that the databases can
not answer based on the database content. For the four selected
databases, we removed specific columns or entire tables to generate

1see https://github.com/ZhaoFuheng/SWAN/
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beyond-database questions. For example, in the Superhero data-
base, the 𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑟𝑜 table contains a 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟_𝑖𝑑 field, which is a
foreign key used to identify the 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟_𝑛𝑎𝑚𝑒 in the 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟
table. By dropping the 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟_𝑖𝑑 column, all questions related to
finding the name of the publisher become unanswerable based on
the newly curated database. While the entire publisher table can be
directly dropped, we kept the distinct values of 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟_𝑛𝑎𝑚𝑒 to
assist LLMs in correctly formatting the output related to publishers
(see more explanation in the next section). After schema curation,
the statistics of the selected databases are shown in Table 1.

Database Tables Rows/Table Cols Dropped
European Football 7 31828 12

Formula One 13 39561 12
California Schools 3 9980 12

Superhero 10 1061 11
Table 1: Statistics of databases in SWAN.

3.3 Free Form Response and Value Selection
In SWAN, the challenges for LLMs to generate factual data can
be broken down into two categories: i) free form response and ii)
value selection. The free form response requires LLMs to generate
data when some context is provided. For instance, in the California
Schools database, the tables originally contained both the school
name and the school url. We removed the school url column, and as
a result, we expect LLMs to generate short-form urls for the schools.
Often, the school url is closely related to the school name and often
ends with edu. Value selection involves choosing data values from a
predefined list (e.g., a list of unique publisher names). For instance,
after we removed the 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟_𝑖𝑑 field from the 𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑟𝑜 table
and the entire 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟 table from the Superhero database, we
retained the unique values of 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟_𝑛𝑎𝑚𝑒𝑠 , which contains
the names of all publishers for the superheroes in the database.
Consequently, the list of all publisher names can be provided to the
LLMs, allowing them to select the appropriate publisher for each
superhero.

3.4 Keys for Tables from LLMs
In relational databases, a foreign key column is often represented as
an integer linked to the primary key column in another table. How-
ever, integers do not provide any meaningful insights for LLMs to
generate useful data values. According to SQL standards, a foreign
key must reference a unique key in the foreign table. Therefore, we
have curated the databases to include meaningful foreign keys for
the data generated by LLMs. For example, in the Superhero database,
we assume the combination of 𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑟𝑜_𝑛𝑎𝑚𝑒 and 𝑓 𝑢𝑙𝑙_𝑛𝑎𝑚𝑒 of
a superhero serves as the key to finding the publisher informa-
tion. Also, we have ensured that there are no duplicate pairs of
(𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑟𝑜_𝑛𝑎𝑚𝑒 , 𝑓 𝑢𝑙𝑙_𝑛𝑎𝑚𝑒) in the table. Our approach of design-
ing meaningful keys for LLMs to generate data aligns with the data
model in crowd-sourcing systems. For example, Deco’s Fetch/Reso-
lution rules [25] use meaningful keys as input and ask crowd-source
workers to generate a group of attributes based on the given keys.

3.5 Beyond-Database Questions
For each database in SWAN, we provide 30 beyond-database ques-
tions, resulting in a total of 120 questions across all databases. For
each question, we also supply i) a hybrid SQL query that joins the
tables in the relational database with the tables generated by LLMs
(assume the values generated by LLMs are materialized as tables),
ii) a hybrid SQL query that directly invokes LLM calls based on
BlendSQL [11] functions, and iii) the corresponding gold SQL query
from Bird, such that the expected answer is the execution results of
the gold SQL query on the original Bird databases. Notably, these
hybrid queries are manually crafted and fully executable. They are
provided to assess the current capabilities of combining LLMs with
databases to answer beyond-database questions. Automating the
translation of beyond-database questions into hybrid queries is left
as future work.

4 ANSWERING BEYOND-DATABASE
QUESTIONS

In this section, we discuss two different approaches to answer
beyond-database questions in SWAN. One is based on schema ex-
pansion and the other is based on SQL user defined functions. At
the end of this section, we discuss the promising optimization op-
portunities of these solutions and outline potential directions for
future research.

4.1 HQDL
First, we introduce Hybrid Query Database and LLM (HQDL), a
preliminary solution for solving beyond-database questions based
on schema expansion. Given a beyond-database 𝑁𝐿 question, one
can expand the schema of the database by including new columns
or new tables such that 𝑁𝐿 question becomes answerable based on
the new schema. Then, LLMs can be used to fill in all the missing
data entries after schema expansion. Based on the newly updated
schema, one can write a regular SQL query to answer question 𝑁𝐿

directly.

4.1.1 Data Generation. For each database, SWAN provides a list
of missing columns and tables that need to be generated by LLMs
to answer the provided beyond-database questions. SWAN has also
provided the keys consisting of the minimal number of attributes
that represent the primary-key/foreign-key (PK-FK) relationships
between the existing tables in the relational database and the tables
generated by LLMs. This ensures that the necessary keys can be
used as input for the LLMs, enabling them to accurately generate
the missing data entries. We would also like to note that this infor-
mation (e.g., missing columns, keys) can be helpful, though its use
is optional. In HQDL, we choose to leverage this metadata directly.
Looking ahead, we envision future work to be fully automated, with
capabilities such as directly discovering join keys and automatically
creating new columns or tables.

The following is an example of a zero-shot prompt that has been
utilized to address and generate missing data values within the
Super Hero database. This structured prompt instructs LLMs to
infer and fill in missing data entries by supplying guidance, column
names, and example values for certain columns (e.g., publishers
and colors).
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Your task is to fill in the missing values
in the target entry from the `superhero `
database.

Return a single row with no explanation.

The columns are: `superhero_name `,`full_name
`,`eye_color `,`hair_color `,`skin_color
`,`publisher_name `,`race `,`gender `,`
moral_alignment `,`powers `

The possible values for `publisher_name ` are
[Dark Horse Comics ', 'DC Comics ', Marvel
Comics ', ...]

Value list of colors , power names , etc.

Target Entry:'{superhero_name}','{full_name}
' ,?,?,?,?,?,?,?,?

The output should consist of a single row
containing 10 fields.

Answer:

HQDL needs to instruct the LLMs to fill in the missing values in
the target data entry. HQDL also adopts the widely accepted ’No
Explanation’ rule introduced by OpenAI [21], which consistently
improves the quality of generated answers for semantic parsing [9].
Furthermore, HQDL provides value lists, such as publishers and
colors, for LLMs to select from. Since only the id fields are removed
(e.g., 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟_𝑖𝑑), HQDL can directly retrieve all these predefined
data values. The goal is to avoid ambiguous data values such as
’Marvel’ v.s. ’Marvel Comics’ in which both values represent the
same publisher but pose challenges for automatic evaluation.

In addition to zero-shot prompts, we also conduct investigations
on few-shot prompts. A one-shot prompt for generating the missing
data values for the Super Hero database is provided below:

Prefix (instructions and value lists)

/*An example is provided before the target
data entry*/

Example Entry:'3-D Man','Charles Chandler '
,?,?,?,?,?,?,?,?

Example Answer:'3-D Man','Charles Chandler ',
'Brown ','Grey','No Colour ','Marvel
Comics ','-','Male','Good','Agility ,Super
Strength ,Stamina ,Super Speed'

Target Entry:'{superhero_name}','{full_name}
' ,?,?,?,?,?,?,?,?

Answer:

As shown above, an example data entry and the corresponding
answer are provided to the LLM for the constructed record cor-
responding to ’3-D Man’ and Charles Chandler. In the evaluation
section (Section 5), we will show that few-shot demonstrations
significantly improve the quality of the generated data entries."

Data Extraction. After collecting all data entries generated by
the LLMs, HQDL materializes these entries into tables. HQDL uses
the Python csv module’s reader to process these entries, converting
them into a structured format, and inserting them into new tables in
the underlying SQLite database. Moreover, in SWAN, there are both
one-to-one and one-to-many relationships. When one-to-many
relationships occur, HQDL condenses the tuples in the "many" side
of the relationship into a long text. For example, each superhero
may be associated with many powers. HQDL would condense all
the powers into a long string separated by commas (e.g., "Agility,
Super Strength, Super Speed").

4.2 Hybrid Query UDFs
We observe that industry has started integrating LLM calls di-
rectly into SQL syntax through user defined functions, such as
DucksDB [28] and Google BigQuery [13]. For instance, finding all
hero names from the Marvel universe within the database can be
rewritten as follows in Google BigQuery:

SELECT T1.full_name , T1.hero_name
FROM superhero AS T1
JOIN ( SELECT publisher

FROM ML.GENERATE_TEXT(
MODEL `a_generative_model `,
(SELECT CONCAT(prompt , superhero.

hero_name) AS input_text
FROM superhero ),

STRUCT (0 AS temperature)
) ) AS T2 ON T1.hero_name = T2.

publisher
WHERE

T2.publisher = 'Marvel ';

Hybrid querying through UDFs offer more control for the data-
base to optimize the hybrid query, build materialized views, and
potentially reduce the amount of data generated by LLMs.

Since all four databases utilize SQLite, we can directly leverage
BlendSQL [26], an extended version of the SQLite relational data-
base management system that supports LLM functions. In SWAN,
we provide 120 hybrid queries using the BlendSQL syntax, enabling
SWAN to evaluate current systems in querying both relational
databases and LLMs.

4.3 Optimization Opportunities
While these two solutions (HQDL and Hybrid Query UDFs) can
be used to solve the challenges presented in our proposed SWAN
benchmark, we believe that there are opportunities to improve
upon these two solutions.

First, to answer these beyond database questions, what contexts,
other than the necessary keys and the predefined value lists, should
be presented in the prompt to reduce LLMs hallucination? There
are other attributes inside the relational database that may be rel-
evant and it remains an open question on how to select the best
context. One possible approach is to build a vector index on the
database values or rows and then fetch the relevant information
based on embedding similarity [5, 37]. Second, the prompts and
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Table 2: HQDL Execution Accuracy results on the SWAN benchmark using different number of demonstrations. The numbers
in brackets report the accuracy improvement compared to the zero shot method.

Model Demonstrations California Schools Super Hero Formula One European Football Overall

GPT-3.5 Turbo

0-shot 50.0% 13.3% 16.7% 16.7% 24.2%
1-shot 50.0% 23.3% 46.7% 26.7% 36.7% (+12.5%)
3-shot 46.7% 20.0% 46.7% 33.3% 36.7% (+12.5%)
5-shot 53.3% 20.0% 46.7% 33.3% 38.3% (+14.1%)

GPT-4 Turbo

0-shot 50.0% 23.3% 36.7% 16.7% 31.6%
1-shot 43.3% 23.3% 50.0% 23.3% 35.0% (+3.3%)
3-shot 50.0% 26.7% 50.0% 26.7% 38.3% (+6.7%)
5-shot 56.7% 23.3% 50.0% 30.0% 40.0% (+8.4%)

static examples used in HQDL and Hybrid Query UDFs are hand-
crafted. It would be more convenient for users if the data system
may automatically generate prompts and examples based on the
specific context and query requirements. A promising direction is
to develop a principled declarative prompt engineering toolkit [24].
HQDL requires LLMs to generate and materialize all missing data,
while Hybrid Query UDFs, through BlendSQL, optimize queries
by pushing down predicates to avoid generating unnecessary data
entries. Additionally, reusing previously generated data in HQDL is
straightforward. In BlendSQL, generated data is cached by mapping
the LLM input prompt to its output data. However, prompts with
similar meanings (e.g., "Is the superhero from theMarvel Universe?"
versus "Does the hero come from Marvel?") cannot directly reuse
previous results. A promising approach to address this is incorporat-
ing query rewriting within Hybrid Query UDFs to fully leverage all
cached LLM-generated data [38]. Query optimization and caching
are essential for reducing costs and increasing throughput, making
hybrid queries more accessible and efficient. BlendSQL currently
implemented batching—retrieving data values for multiple rows in
a single LLM call—and plans to support parallelized LLM calls in
the future to further minimize query latency.

5 EVALUATION
5.1 Evaluation Metrics
In the context of evaluating hybrid queries, we propose three met-
rics: execution accuracy (EX), data factuality, and the number of
input/output tokens used by the LLMs.

Execution Accuracy (EX). EX is a well accepted metric in the
domain of semantic parsing [7]. EX measures the percentage of
hybrid queries that produce identical results to the ground truth
(execution results from the Gold, correct, SQL). Since producing
identical results is the end goal of hybrid querying, we adopt the
EX metric.

Data Factuality.We use exact string match to verify the data
factuality for each data cell value. Because of the one-to-many
relationships (the key from a table maps to many values generated
by LLMs), we use the widely accepted F1 score, which is a harmonic
mean of precision and recall, to measure the overall factuality of
generate data entries for each database [35].

Input and Output Tokens.We report the number of input and
output tokens (i.e., words, sub-words) used in HQDL and Hybrid

Query UDFs, which determine the monetary cost. For instance,
GPT 3.5 Turbo priced at $3 per million input tokens and $6 per
million output tokens.

5.2 Experiment Configurations
We evaluate HQDL and Hybrid Query UDFs on several OpenAI
models (i.e., GPT-3.5 Turbo and GPT-4 Turbo) via OpenAI api calls.
In all requests, we set the temperature to 0.

Few Shots Demonstrations. In the few-shot prompts, we pro-
vide static examples randomly selected from the original database.
For HQDL, the few shots demonstrations are organized as static
rows. In Hybrid Query UDFs, the few shots demonstrations are
organized as a natural language question, an example database key,
and the answer to the natural language question on the example
database key (e.g., question: What is the driver code, key: Lewis
Hamilton, and answer: HAM).

5.3 HQDL Results
In this subsection, we report and analyze the EX scores and the
generated data factuality using F1 score.

Zero Shot.As shown in Table 2, in terms of overall accuracy over
all databases using 0-Shot demonstrations, GPT-4 Turbo achieves
31.6% accuracy on the proposed SWAN benchmark, surpassing GPT-
3.5 Turbo by 7.4%. One major challenge in using zero-shot prompts
to generate data entries lies in ensuring that the output format is
consistent, as this significantly impacts the ease of data extraction.
Despite specifying the number of fields need to be returned in the
input prompt, LLMs sometimes return too few or too many fields
and may occasionally return an empty string for a field. Moreover,
we can observe from Table 2 that for the California Schools database,
GPT-4 Turbo achieved the same execution accuracy as GPT-3.5
Turbo. Questions in the California Schools frequently ask for the
top schools. Consequently, queries answering these questions often
include a LIMIT clause to retrieve only the top results. Hence,
generating more accurate content for irrelevant entries does not
necessarily lead to improvements in query execution accuracy. This
observation motivated us to further examine the data factuality
using F1 scores.

Few Shot. The distinction between the few-shots and zero-shot
experiments is the inclusion of several static examples. We know
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Table 3: HQ UDFs evaluation results on the SWAN benchmark. The numbers in brackets report the accuracy improvement
compared to the zero shot method.

Model Demonstrations California Schools Super Hero Formula One European Football Overall

GPT-3.5 Turbo 0-shot 10.0% 23.3% 30.0% 10.0% 18.3%
5-shot 13.3% 23.3% 43.3% 3.3% 20.8% (+2.5%)

Table 4: The average F1 score for measuring the factuality of
the generated data using HQDL.

Model Demonstrations Average

GPT-3.5 Turbo

0-shot 20.9%
1-shot 37.3%
3-shot 41.4%
5-shot 42.7%

GPT-4 Turbo
0-shot 29.3%
1-shot 47.0%
3-shot 47.1%
5-shot 48.2%

that the capabilities of language models can be increased with exam-
ples provided for in-context learning [2]. Hence, we expect LLMs to
generate more accurate data with few shots, and the execution ac-
curacy should improve as more examples are provided. As shown in
Table 2, in general the execution accuracy improves for both models
as more examples are provided. When the prompt contains 5 static
examples, GPT-3.5 Turbo achieves 38.3% and GPT-4 Turbo achieves
40.0% execution accuracy, 14.1% and 8.4% accuracy improvements
compared to the zero shot method.

It is also interesting to note that both models achieve the highest
execution accuracy on the California Schools and also the lowest ex-
ecution accuracy on Super Hero database. One-third of the queries
in California Schools database contain a LIMIT clause, retrieving the
top schools. In contrast, many questions in the Super Hero database
seek specific superheroes (e.g., heroes from Marvel or those with
blue eyes), and only about one-tenth of the queries for this database
include a LIMIT clause. One explanation for execution accuracy
difference between questions in California Schools databse and
questions in Super Hero database is that LLMs may exhibit biases,
as previous research has shown that they tend to favor higher so-
cioeconomic entities [17]. For instance, while LLMs can accurately
identify schools with the highest standardized testing scores, they
may struggle to identify schools with average or below-average
grades. Because many queries in the California Schools database
contain a LIMIT clause, even when an LLM provides inaccurate
answers for many schools, the top results may still appear correct,
masking potential errors in the model’s full response.

Data Factuality To measure data factuality (using the F1 score),
we use exact string matching to compare the generated data with
the ground truth for each cell. Also, we compute the average F1
score over all cells for each database. When the generated content
is identical to the ground truth, then it scores a 100% F1 score. As

shown in Table 4, GPT-4 Turbo consistently generates more fac-
tual information than GPT-3.5 Turbo using the same prompt. For
instance, with the 5-shot prompt, GPT-4 Turbo scores 5.5% higher
than GPT-3.5 Turbo. Also, the results clearly showcase that provid-
ing more examples in the input prompt increases the factuality of
the generated output, which also leads to higher execution accuracy
when executing the hybrid queries.

5.4 Hybrid Query UDFs Results
We evaluated the performance of BlendSQL [26] on the SWAN
dataset to assess its effectiveness with hybrid query UDFs. Notably,
on GPT-3.5 Turbo, the execution accuracy for 0-shot and 5-shot
settings reached 18.3% and 20.8% (see Table 3), which are lower
compared to HQDL’s results of 24.2% and 38.3%. In our evaluation
of hybrid query UDFs, we provided the keys and instructed the LLM
to predict only the necessary information (most of the time a single
cell value). This approach contrasts significantly with HQDL, where
the LLM is given the key and tasked with predicting all column
values for the corresponding row. Predicting all column values may
be more advantageous than predicting a single column value, as
it mirrors a chain-of-thought process that enables the model to
leverage inter-dependencies between columns, thereby enhancing
accuracy and coherence in its predictions. In HQDL, each LLM
call generates a single row. In contrast, BlendSQL uses a default
batch size of 5, where each request combines five keys into a list,
prompting the LLM to return a list of five data entries corresponding
to the five keys. Although batching reduce the number of LLM calls,
it also increases the potential for errors, as processing multiple
entries in a single call may lead to inaccuracies in the returned
data [4].

Another noteworthy difference between HQDL and HQ UDFS
is in the format of the few-shot examples. In HQDL, we included
static rows in the prompt as few-shot demonstrations, and the goal
is to showcase the model how to complete a row of data based
on the given keys. In contrast, for HQ UDFS (e.g., BlendSQL), we
curated a list of question-answer pairs for each databases, and then
BlendSQL selects relevant examples based on similarity metrics
(e.g., cosine similarity using a sentence transformer) to find the
most similar questions. For example, a demonstration question in
the HQ UDFS system might be: ’Provide the city name based on the
address.’ Along with this question, given the address ’5328 Brann
Street’, the expected city name is ’Oakland’.

5.5 Evaluation Costs
The monetary costs and the system’s performance (e.g., latency
and throughout) are implicitly determined by the number of input
and output tokens. Here, we report the total number of input and
output tokens for HQDL and HQ UDFs.
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Table 5: Total tokens used for HQDL and HQ UDFs for zero
shot experiments.

Algorithm Input Tokens Output Tokens
HQDL 6.3 M 1.5 M

HQ UDFs 23 M 2 M

HQDL generates data entries for all the missing columns. As
shown in Table 5, using zero-shot prompt, a total of 6.3 million
tokens are used as inputs for LLMs, and 1.5 million tokens are gen-
erated by LLMs. On average, about 52k input tokens and 12k output
tokens are used per beyond-database questions. If the number of
beyond-database questions increases, the cost per question will
decrease.

For HQ UDFS, we expected it to use less tokens compared to
HQDL, because HQ UDFS give more control to the database query
optimizer. This allows the system to intelligently minimize token
usage by pushing down predicates, meaning it generates tokens
only for the specific data cells needed to answer the query. Surpris-
ingly, for zero-shot prompt, the total input and output tokens are 23
million and 2 million respectively, as shown in Table 5. Compared
to HQDL, HQ UDFs uses 3.6x more input tokens and 1.3x more
output tokens.

The increased costs of HQ UDFs can be attributed to its limited
use of cached results. For instance, to answer the beyond-database
question, ’What is the height of the tallest player?’, HQ UDFS used
the LLMs to generate heights for all players, as the database lacks
this information. Later, another question asks, ’Please list player
names who are taller than 180cm.’ The corresponding hybrid query
created for this question prompts the LLMs to answer ’Is the player
taller than 180cm?’ However, it is evident that the previously gener-
ated heights could be directly reused to answer this question, rather
than generating new responses. In HQ UDFS, LLM-generated con-
tent is cached as a mapping from input prompts to LLM output
answers, making it challenging for the system to efficiently reuse
cached outputs. In contrast, HQDL stores LLM-generated outputs
directly as entities within relationships (schema expansion), simpli-
fying reuse for users.

6 CONCLUSION AND FUTUREWORK
In this paper, we present the first benchmark, SWAN, for evaluat-
ing hybrid queries that answer beyond-database questions using
relational databases and large language models. In addition to the
benchmark, we also introduce HQDL, a preliminary solution for
answering questions in SWAN based on schema expansion. We also
provide queries to evaluate current Hybrid Query UDFs systems
(e.g., BlendSQL). Our evaluation demonstrates that there are still
many opportunities for improving the execution accuracy and also
increasing the overall efficiency. To improve the execution accu-
racy and ensure high data fidelity, retrieve-augmented generation
(RAG) [16] and supervised fine-tuning [6, 29] are two promising di-
rection to be integrated in hybrid querying systems. Moreover, there
are numerous opportunities to optimize the pipeline for executing
hybrid queries, increasing throughput and lowering monetary costs.

For example, to further reduce costs and improve system through-
put, it is essential to focus on: (i) implementing asynchronous and
parallel hybrid query execution, (ii) designing improved caching
mechanisms, and (iii) fully utilizing cached content.

Additionally, in the current benchmark, we provided the missing
columns for schema expansion and pre-written queries for both
HQDL and HQ UDFS. In future work, the process of answering
beyond-database questions should be fully automated. Given a
natural language question, LLMs should first evaluate whether it
can be answered using the existing schema. For questions requiring
information beyond the current database, LLMs could be designed
to automatically expand the schema, populate missing values, and
generate a SQL query (similar to HQDL) or construct a SQL query
with user-defined functions to directly prompt LLMs for required
information in real time.

We envision that our benchmark, the two baseline solutions,
and the discussions on future optimization opportunities will spark
interests within the community to develop comprehensive data
systems that leverage the full potential of relational databases and
large language models.
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