
Trampoline-StyleQueries for SQL

Louisa Lambrecht Torsten Grust
University of Tübingen
Tübingen, Germany

firstname.lastname@uni-tuebingen.de

Altan Birler Thomas Neumann
Technical University of Munich

Munich, Germany
firstname.lastname@tum.de

ABSTRACT
We introduce trampoline-style queries as an alternative expressive
foundation for iterative computation in SQL. A trampoline repeat-
edly executes a family of branch queries which can exercise fine-
grained control over (1) the routing of rows between iterations and
(2) the emission of output rows. We relate trampoline-style queries
to the established recursive CTEs, provide a taste of how trampo-
lines elegantly cover a wide range of applications, and shed light
on strategies for their massively parallel implementation inside
contemporary relational database systems.

1 FROM FIXPOINTS TO TRAMPOLINES
The ability of SQL:1999’s WITH RECURSIVE [16] to perform general
iterative computation over tabular data right inside the query en-
gine should render it most popular among database practitioners.
Instead, the construct leads a rather shadowy existence, with a
reputation of having obscure semantics and an inefficient imple-
mentation.

WITH RECURSIVE T AS (q0 UNION ALL q∞(T)) computes the fix-
point of the iterated query q∞ [6]. With their roots in database and
set theory, fixpoints do provide a fitting and expressive foundation
for in-database iteration, but they require semi-naive evaluation [1]
to be computed efficiently: this mode of query evaluation (1) limits
the visibility of already computed results, and (2) relies on mono-
tonicity constraints, enforced through ad-hoc, far-reaching (yet
incomplete) syntactic restrictions imposed on the iterated query q∞.
In daily SQL pratice, theses issues lead developers to workarounds
that may make queries both hard to read and incur runtime penal-
ties [5].
Trampoline style for SQL. Given these long-standing deficits of
WITH RECURSIVE, this paper explores the design of an iteration
construct for SQL that banks on a different general foundation for
iterative computation: Trampoline style has its roots in the program-
ming languages community, originally devised as a compilation
technique for recursive programs [15]. A trampoline-style program
repeatedly executes a dispatcher (or trampoline) that determines the
next step of computation to be performed. The program’s current
iteration may emit results as well as directions for the dispatcher
on how to proceed in the subsequent iteration. Any iterative com-
putation can be cast into trampoline style [3].

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference on
Innovative Data Systems Research (CIDR’25). January 19-22, 2025, Amsterdam, The
Netherlands.

1 WITH TRAMPOLINE
2 T(b,c1,...,c𝑚) BRANCH(b) AS (
3 q0
4 BRANCH 1: q1(T)
5 ···
6 BRANCH n: qn(T)
7)
8 TABLE T;

(a) Prototypical form of a
WITH TRAMPOLINE query.

�

q0

...q1(T) qn (T)

result
b c 1 ···c𝑚
···
t···

b=0?

b=1? b=n ?

(b) Sketch of the data flow
through WITH TRAMPOLINE.

Figure 1: Trampoline style for SQL: WITH TRAMPOLINE.

We argue that trampoline style can be adapted to serve as an
expressive, elegant, and efficient alternative foundation for
iteration in SQL. In what follows, we discuss WITH TRAMPOLINE,
a SQL construct that builds on the trampoline style of computation.
In imitation of the original trampoline style, a WITH TRAMPOLINE
query dispatches its input to one of several branch queries on a
row-by-row basis, thus exercising fine-grained control over the
computation performed in each iteration (as opposed to WITH RE-
CURSIVE which threads all rows through q∞). Complex iterative
and branching data flow maps to trampoline queries in a concise
and modular fashion. In consequence, trampoline-style queries can
simulate stateful imperative programs, run pattern matchers over
masses of time-series data, or help to efficiently implement the
cascading semantics of SQL DML statements. We elaborate on these
exemplary use cases below.

WITH TRAMPOLINE. To make things tangible, let us refer to the
protoypical trampoline-style SQL query in Figure 1a1 and the sketch
of its data flow in Figure 1b.
• The initial iteration of this WITH TRAMPOLINE query evaluates
SQL query q0, yielding a table T with columns (b, c1, ... , c𝑚).

• In each subsequent iteration, all queries in the branches t =

1, ... , n are run. A dispatcher ensures that query qt will be evalu-
ated only over those rows directed to its branch t (these are the
rows in table T with column b = t; in Figure 1b, see the edges
from the dispatcher � to the q1, ... , qn).

• The branch queries qt may return rows with column b set to
– b = 0 to indicate that these rows should be collected to form
the overall result table (once we collect such a row for output,
we set its column b to t to record that branch query qt emitted
that row), and/or

1We consider the exact syntactic form of WITH TRAMPOLINE to be secondary—the
prototypical syntax in Figure 1a should serve us well for now.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Louisa Lambrecht, Altan Birler, Torsten Grust, and Thomas Neumann

– b ∈ {1, ... , n} to direct these rows to branch b in the next
iteration (if none of the branches emits such rows, evaluation
of WITH TRAMPOLINE is complete).

The following pages shed light on WITH TRAMPOLINE, its seman-
tics, applications, and implementation aspects. We will show how
trampolines
• directly express looping programs in SQL which admits the con-
cise purely SQL-based formulation of textbook-style algorithms,

• generalize WITH RECURSIVE, suggesting that trampolining is not
alien and fits well with existing SQL theory and practice (see Sec-
tion 2),

• naturally support exemplars of complex iterative computation in
SQL, leading to queries that are readable as well as efficient to
evaluate (Section 3), and

• lend themselves to an efficient parallel implementation inside
modern database kernels (we have integrated WITH TRAMPOLINE
into Umbra [19], see Section 4).

2 A SPOTLIGHT ON WITH TRAMPOLINE
There are several ways to suitably understand the computation
performed by WITH TRAMPOLINE:
(1) Its set-oriented operational semantics generalizes the be-

havior of WITH RECURSIVE (we elaborate on this in Section 2.1).
(2) A trampoline query may act like a state machine: Each state

is represented by a branch t whose query qt performs state-
specific computation and determines the successor states (Sec-
tion 3.1 takes this particular view of WITH TRAMPOLINE).

(3) WITH TRAMPOLINE can simulate virtual machines (VMs) or
threaded interpreters: branch t represents the VM instruc-
tion at program location t. Branch query qt performs that in-
struction, possibly emits results, and directs the computation
to the following instruction(s).

The latter VM-like view of WITH TRAMPOLINE admits the straight-
forward transcription of imperative programs into SQL. Figure 2
shows how this could look like for a textbook-style greatest common
divisor algorithm gcd(x,y). From the statements of the program
in Figure 2a (or, equivalently, from the nodes of its control flow
graph in Figure 2b) we directly derive the branches of the trampoline
query in Figure 2c. The branch queries return rows (pc, x, y, a, b, t)
in which columns a, b, and t hold the current bindings of the pro-
gram’s variables. Column pc decides which branch will execute
next and thus acts like a program counter: for example, column
expression 1 AS pc in the SELECT clause of BRANCH 3 directs ex-
ecution back to BRANCH 1, effectively implementing the looping
control flow edge in Figure 2b. Likewise, the CASE conditional
in BRANCH 1 implements the branching control flow in the CFG
of Figure 2b.

Note how one evaluation of the WITH TRAMPOLINE query simulates
𝑛 runs of the VM if table args(x,y) holds 𝑛 input rows: Each
row in table gcd defines the state of one of these VMs which can
independently proceed (pc ∈ {1, 2, 3}) or emit output and halt
(pc = 0) as indicated by their local variable bindings.

The control flow of gcd is characterized by a single loop. The direct
transcription of imperative code into a trampoline query, how-
ever, does apply to looping and branching control flow of arbitrary

a� x
b�y
while b ≠ 0

t�b
b�amod b
a�t

return a

(a) Program.

a �x
b �y

b ≠0?

t �b
b �a modb

a �t

returna

yes

no

(b) CFG.

WITH TRAMPOLINE
gcd(pc,x,y,a,b,t) BRANCH (pc) AS (
SELECT 1 AS pc, x, y,

x AS a, y AS b, NULL AS t
FROM args AS args(x,y)

BRANCH 1:
SELECT CASE WHEN b <> 0 THEN 2

ELSE 0
END AS pc, x, y,
a, b, t

FROM gcd
BRANCH 2:
SELECT 3 AS pc, x, y,

a, a % b AS b, b AS t
FROM gcd

BRANCH 3:
SELECT 1 AS pc, x, y,

t AS a, b, t
FROM gcd

)
SELECT x, y, a
FROM gcd;

(c) Trampoline-style SQL query.

Figure 2: Greatest common divisor: from program to query.

complexity. Indeed, such translations of imperative programs into
parallel SQL-based evaluators [3, 18] has been one principal motiva-
tion behind the design of WITH TRAMPOLINE. It may be well worth
revisiting this older work now that trampoline-style queries are
available in SQL.

2.1 Set-Oriented Operational Semantics
Despite their disparate roots in query and programming languages,
respectively, the operational semantics of WITH RECURSIVE and
WITH TRAMPOLINE align in interesting ways. Figure 3 puts both
side by side.

WITH RECURSIVE (Figure 3a). Starting with the rows placed by q0
into working table w, WITH RECURSIVE evaluates q∞ over w to yield
the intermediate table i. The rows in i are added to the overall result
table u (the union table) and are also made available in working
table w to prepare the next iteration of q∞. Computation stops, once
i contributes no further rows [1, 4, 6].

WITH RECURSIVE
T(c1,...,c𝑚) AS (

q0
UNION ALL

q∞(T)
)
TABLE T;

1 w � q0
2 u � w

3 repeat

7 i � q∞(w)
8 u � u ⊎ i
9 w � i
10 until w ≠ ∅
11 return u

(a) WITH RECURSIVE.

WITH TRAMPOLINE
T(b,c1,...,c𝑚) BRANCH(b) AS (

q0
BRANCH 1: q1(T)

···
BRANCH n: qn(T)

)
TABLE T;

1 W � {q0}
2 U � W[b = 0]
3 repeat
4 I � ∅
5 for t ∈ {1, ... , n}
6 for w ∈ W[b = t]
7 I � I ⊎ {qt(w) }
8 U � U ⊎ I[b = 0]
9 W � I[b ≠ 0]
10 until

⊎
W ≠ ∅

11 return
⊎

U

(b) WITH TRAMPOLINE.

Figure 3: Side-by-side comparison of the loop-based, opera-
tional semantics for WITH RECURSIVE and WITH TRAMPOLINE.

Trampoline-Style Queries for SQL CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

WITH TRAMPOLINE (Figure 3b). The leap to WITH TRAMPOLINE tra-
des working table w for a set of working tables W (likewise for the
intermediate table i and union table u which now become sets
of tables I and U, respectively). WITH TRAMPOLINE starts out with
a singleton working table set W = {q0} and then repeatedly runs
the dispatcher in Lines 5–7 to evaluate the branch queries qt (t ∈
{1, ... , n}). Branch query qt is evaluated over all working tables in W
but only processes the subset of rows directed to its branch t (we
define R[p] to evaluate predicate p over all tables in R as

R[p] ≡ {𝑠 | r ∈ R, 𝑠 ≔ 𝜎 [p] (r), 𝑠 ≠ ∅}
and thus can identify the working table subsets relevant for qt via
W[b = t]). These independent evaluations of the branch queries
yield a set of intermediate tables I. The subsets I[b ≠ 0] of these
intermediate tables directed to the next iteration are made available
as the new working table set W. The table subsets I[b = 0] holding
result rows instead are added to U which we ultimately flatten
(Line 11) to return one final result table.
The operational semantics do not yet define an efficient evaluation
strategy for WITH TRAMPOLINE, but (1) the iteration over the n
branches (see Line 5) as well as (2) the independent evaluation of
the qt over the separate working tables (Lines 6–7) are obvious
sources of parallelism. We explore this is in Section 4 below.
WITH TRAMPOLINE generalizes WITH RECURSIVE.Trampoline-style
CTEs generalize regular recursive CTEs: the trampoline query
of Figure 4 computes the same result as the WITH RECURSIVE CTE
shown in Figure 3a. In Figure 4, T01 denotes a table with single
column b holding two rows with values 0 and 1. Every iteration
of this trampoline query evaluates q∞ whose rows are added to
the union table (b = 0) as well as the working table (b = 1),

WITH TRAMPOLINE
T(b,c1,...,c𝑚) BRANCH(b) AS (

SELECT T01.b, q0.*
FROM q0, T01

BRANCH 1: SELECT T01.b, q∞.*
FROM q∞(T), T01

)
SELECT c1,...,c𝑚
FROM T;

Figure 4: WITH TRAMPOLINE
can mimic WITH RECURSIVE.

the latter of which will be
fed back to q∞ in the sub-
sequent iteration. In terms
of the operational semantics
of Figure 3b, since we iter-
ate a single branch, I and W
remain singleton table sets.
While we do not propose
to replace WITH RECURSIVE,
this semantic affinity of both
iterative constructs suggests
that (a) WITH TRAMPOLINE is
not as alien as its PL roots

may suggest and (b) that existing database kernel infrastructure
can be carried over or adapted to support trampline queries.

3 WHAT WITH TRAMPOLINE CAN DO FOR YOU
WITH TRAMPOLINE is a versatile iteration construct with a wide
range of applications. Below we discuss two scenarios that aim to
highlight the efficiency, expressiveness, and elegance of trampoline-
style SQL queries.

3.1 Row Pattern Matching
There is an immediate correspondence between finite state ma-
chines (FSMs) and trampoline-style queries in which each FSM state
maps to its dedicated branch in the WITH TRAMPOLINE CTE. Here,

seq timestamp price ··· definition
1 2019-01-02 08:15:06 1609 ··· NULL
2 2019-01-02 12:10:07 1569 ··· BOTTOM ()
3 2019-01-02 12:18:06 1579 ··· UP ()
4 2019-01-02 14:36:07 1583 ··· UP ()
··· ··· ··· ··· ···

gas_prices

Figure 5: Tabular input for row pattern matching: gas prices
over time (rows ordered by seq, tagged by definition).

we build on this correspondence to perform row pattern match-
ing in the style of MATCH_RECOGNIZE, a still widely unsupported
construct that has recently been added to the SQL standard [17].
The resulting trampoline query massively parallelizes the pattern
matching process and executes significantly faster than dedicated
implementations of MATCH_RECOGNIZE.
Row pattern matching with MATCH_RECOGNIZE. Row pattern
matching evaluates regular expressions over the rows of an or-
dered input table. Table gas_prices of Figure 5, in which col-
umn seq orders rows based on timestamp, would be typical in-
put.2 Column definition tags rows to identify current down-
ward/upward trends (DOWN/UP) or local minima (BOTTOM) in gas
prices. Below, we abbreviate these row tags—or definitions in the
parlance of MATCH_RECOGNIZE—by , , and . Given this ordered
and tagged input table, regular expression re = (*) (*) over
column definition identifies sequences of rows that represent
temporary gas price drops . Beyond such regular row patterns,
MATCH_RECOGNIZE can refine pattern matches based on measures
that are recorded while rows are processed. We disregard measures
here to maintain focus.
Simulating FSMs using WITH TRAMPOLINE. Figure 6 casts regular
expression re into a four-state FSM. We can directly map this state

0

1

2

3

START

BOTTOM

TERM

DOWN

UP

Figure 6: FSM
to detect .

machine into a WITH TRAMPOLINE query in
which (1) initial query q0 implements the
FSM’s start state 0 and (2) branch query qt
realizes state t, t ∈ {1, 2, 3}. Branches 1
and 3 of the resulting trampoline query are
reproduced in Figure 7. The CTE computes ta-
ble fsm(state,seq,⟨measures⟩) in which
column state encodes the current FSM
state. Branch queries typically perform state-
specific computation—maintain measures,
for example—and then consume the next row
from the input table: query q1 in branch 1
inspects the row tag g.definition ∈
{' ', ' '} to emit rows with state ∈ {1, 2}
in order to transition to the correct subse-
quent state. (Aside: q1uses CASE...WHEN to realize this forking tran-
sition in FSM state 1. We could alternatively employ the SQL expres-
sion 1+(g.definition=' ')::int AS state—such “computed
GOTOs” are generally useful idioms in WITH TRAMPOLINE queries.)
Massively parallel FSM runs. This trampoline-based simulation
of FSMs can implement high-throughput row pattern matchers. To
make this point, we feed a gas_prices table of 307 million rows

2Table gas_prices has been derived from the Tankerkönig data set available at
https://creativecommons.tankerkoenig.de/.

https://creativecommons.tankerkoenig.de/

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Louisa Lambrecht, Altan Birler, Torsten Grust, and Thomas Neumann

1 WITH TRAMPOLINE
2 fsm(state,seq,⟨measures⟩) BRANCH (state) AS (
3 ···
4 BRANCH 1: -- q1: branches to state 1 or 2
5 SELECT CASE g.definition WHEN ' ' THEN 1 -- DOWN: to state 1
6 WHEN ' ' THEN 2 -- BOTTOM: to state 2
7 END AS state, g.seq, ⟨maintain measures⟩
8 FROM fsm JOIN gas_prices g ON fsm.seq+1 = g.seq
9 WHERE g.definition IN (' ', ' ')
10 ···
11 BRANCH 3: -- q3: accepting state, emit match
12 SELECT 0 AS state, seq, ⟨finalize measures⟩
13 FROM fsm
14)
15 SELECT seq AS match, ⟨measures⟩ -- output row pattern matches
16 FROM fsm;

Figure 7: WITH TRAMPOLINE query implementing the FSM
of Figure 6 (excerpt, only branches/states 1 and 3 shown).

1 6 24 96 384

5

20

60

of available threads

ru
n
tim

e
(se

co
nd

s)

(a) Trampoline run time for
30million rowpatternmatches.

17.9 76.7 307

1

5

20

input table cardinality (in million rows)

(b) Full run time for varying in-
put cardinalities (at 96 threads).

Figure 8: Run times for trampoline-based MATCH_RECOGNIZE.

into a WITH TRAMPOLINE query that detects the pattern of Fig-
ure 6. Once initial query q0has identified the rows whose START ()
tag indicate the start of a potential pattern match, about 30 million
rows remain in table fsm and enter the iterative data flow. Each
such row defines one FSM run and, effectively, the trampoline thus
pursues 30 million FSM runs in parallel. Runs independently transi-
tion between states based on the rows read from the gas_prices
table; runs are dropped as soon as they are found to be rejected by
the FSM: the length of a match determines how many iterations a
row is kept in table fsm. For our example, the trampoline performs
an average (maximum) number of 3.8 (29) iterations per match.

This massively parallel FSM simulation benefits if the host of-
fers multiple execution threads (see Figure 8a which shows run
times recorded on a computer with two AMD EPYC™ 7402 CPUs
with 24 cores/48 threads per CPU): using 96 threads, the trampo-
line completes the 30 million FSM runs within 3.17 seconds (at
an input consumption rate of 9 580 585 rows/second). Given this
row pattern matching core based on WITH TRAMPOLINE, Umbra can
run the full MATCH_RECOGNIZE query (including row tagging and
derivation of measures) over an input table of 307 million rows in
about 20 seconds (Figure 8b). In comparison, Trino’s [11] dedicated
implementation of MATCH_RECOGNIZE requires 566 seconds (25×
longer) on the same host.

3.2 Cascading Deletes
Database systems have to preserve referential integrity: when a
row is deleted, all rows that reference it with a CASCADE foreign
key constraint must be deleted as well. The graph formed by such

foreign key relationships can be quite complex and possibly contain
cycles, implying the need for iterative deletion processing. Consider
the tables (nodes) and foreign key relationships (edges) in Figure 9
for the LDBC Social Network Benchmark [9]. This benchmark
simulates a social network of people, forums, and messages. When
a message is deleted, all replies to that message, and replies to those
replies must be deleted recursively. Likewise, when a person is
deleted, forums moderated by the person, messages within those
forums, and messages directly created by that person must all be
deleted.
Deletion of rows happens in two phases to prevent the “Halloween
Problem” [20]. First, the rows to be deleted are collected. Second,
the rows are physically deleted after all affected rows are collected,
preventing the physical deletions from interfering with the scans
producing the rows. The first phase is the most challenging part
of cascading deletion. While most database engines rely on a spe-
cialized implementation for row collection, the WITH TRAMPOLINE
construct provides an elegant and efficient alternative. For every
row deleted from a table, we need to join with referencing tables
and delete the matching rows. To facilitate this, we define a branch
query per table and relationship, where table branches forward rows
to connected relationship branches. Relationship branches, in turn,
perform joins to determine rows in connected tables. The structure
of the WITH TRAMPOLINE query thus is statically determined by the
current database schema: whenever a user requests to delete rows
from a table, the corresponding WITH TRAMPOLINE query can be
automatically generated and executed by the database.

Figure 10 shows the skeleton of a WITH TRAMPOLINE construct
that collects the row IDs (columns rid) of all affected rowswhen the
person with ID 56 is deleted. In a post-processing step, the row IDs
collected by the table branchesmay then be used to physically delete
the actual rows in a bulk fashion. Note that a table branchmay need
to forward rows to multiple relationship branches if the table has
multiple foreign key relationships. This is the case for the Person
table, which is connected to the Forum and Message tables over
the moderates and creates relationships. In our implementation,
forwarding rows to multiple branches is achieved by using an
implicit cross product with the target branches as seen in Line 7
of Figure 10.
There are multiple potential advantages to using the WITH TRAMPO-
LINE construct for cascading deletes over a special implementation
relying solely on index traversal:
• Large and complex cascading deletes can be handled efficiently
with a scalable implementation of trampolines as described in
Section 4.

• Using a generic query with trampoline and join operators allows
a system to utilize its query optimizer to do proper physical
operator selection, leading to more efficient execution for a larger

Person Forum

Message

moderates

containscreates

replies to

Figure 9: Simplified schema of the LDBC Social Network
with cyclic foreign key constraints.

Trampoline-Style Queries for SQL CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

1 WITH TRAMPOLINE
2 TBD(b, rid) BRANCH(b) AS (
3 -- initialize: delete Person with row id 56
4 SELECT 'Person' AS b, 56 AS rid
5 BRANCH 'Person':
6 SELECT e AS b, TBD.rid
7 FROM TBD, (VALUES (0), ('moderates'), ('creates')) AS edge(e)
8 BRANCH 'Forum':
9 SELECT e AS b, TBD.rid
10 FROM TBD, (VALUES (0), ('contains')) AS edge(e)
11 BRANCH 'Message':
12 SELECT e AS b, TBD.rid
13 FROM TBD, (VALUES (0), ('replies␣to')) AS edge(e)
14 BRANCH 'moderates': -- Person -> Forum
15 SELECT 'Forum' AS b, f.rid
16 FROM TBD JOIN Forum f ON f.moderator_rid = TBD.rid
17 BRANCH 'creates': -- Person -> Message
18 SELECT 'Message' AS b, m.rid
19 FROM TBD JOIN Message m ON m.creator_rid = TBD.rid
20 BRANCH 'contains': -- Forum -> Message
21 SELECT 'Message' AS b, m.rid
22 FROM TBD JOIN Message m ON m.container_rid = TBD.rid
23 BRANCH 'replies␣to': -- Message -> Message
24 SELECT 'Message' AS b, m.rid
25 FROM TBD JOIN Message m ON m.reply_to_rid = TBD.rid
26)
27 -- Now perform bulk deletion
28 -- TBD.b holds the source branch (the table to delete from)
29 PERFORM delete_row(TBD.b, TBD.rid)
30 FROM TBD;

Figure 10: Trampoline-based deletion for the person with
row ID 56, cascading to the corresponding forums and mes-
sages. Here, branches are identified by the values of an ENUM
type rather than integers. Rows to be deleted are forwarded
to the branches 'Person', 'Forum', and 'Message', which in
turn output the rows. All outputted rows are then deleted in
a post-processing step using the delete_row function.

class of delete queries. For example, in the LDBC dataset, the
deletion of a single person could result in the deletion of millions
ofmessages. Still, onewould expect most deletions to be relatively
small, e.g., deleting a single message or a single person with few
messages and replies. This implies that the selection of physical
operators can be crucial for the performance of deletes.

• An alternative duplicate-eliminating set-based semantics for
trampolines can be utilized to prevent rows from being collected
for deletion multiple times. Recursive CTEs can be executed
with UNION or UNION ALL semantics, where UNION automati-
cally removes and avoids redundant processing of duplicate rows.
Nonetheless, the semantics of recursion in SQL is all or nothing,
i.e., either duplicates must be removed for the entire recursion
(which can be costly) or not at all. WITH TRAMPOLINE can be
extended for a more fine-grained control over the removal of
duplicates: individual branches could be marked as duplicate-
eliminating without impact on the rest of the trampoline.

4 IMPLEMENTING PARALLEL TRAMPOLINING
While the semantics of WITH TRAMPOLINE is not too complex, pro-
viding an efficient implementation in terms of a query engine op-
erator is challenging. The variety of possible use cases is huge:
some queries have many branch queries actively producing rows,
some just a few. Some branch queries produce only a few rows
per invocation, others produce thousands of rows. Sometimes most

. . .

. . .

. . .

.block 1

block 2
. . .

branch 1 branch 2
wave 1

wave 2

thread 1 thread 2Branches :: branch[]
NewWaveId :: int
CurrentBranch :: int
WaveId :: int

Figure 11: Data structures used by Umbra’s trampoline.

rows target the same branch, sometimes rows are spread across all
branches. Combined with multi-threading, this makes a scalable
implementation challenging. Below, we sketch the implementation
of the trampoline operator that has been integrated into the Umbra
relational database system [19].
Conceptually, we want to process all rows that are in flight in the
trampoline operator in parallel. However, there are two constraints
to that. First, we want to avoid updating shared data structures as
much as possible for performance reasons. And second, the query
semantics do not allow for arbitrary parallelization: as shown in
Figure 3, the operator conceptually evaluates the branch queries
qt on a collection of individual working tables w ∈ W[b = t].
If branch query qt is non-linear [8] (e.g., because it contains a
GROUP BY), we must evaluate the query over each working table w
in separation. In the implementation we call that a wave: a wave
consists of all rows returned by a branch that have to be evaluated
together. Within a wave, rows are collected in thread-local regions,
which allows threads to add rows to a wave without any kind of
locking. This architecture is shown in Figure 11: Each trampoline
branch contains a list of waves, each wave consists of a list of
thread-local data structures, and each of these contains lists of rows
that are organized in blocks of up to a thousand rows. We use this
block mechanism to ensure good thread utilization; in a query, a
single thread might produce thousands of rows for a given branch,
while all other threads end up producing rows for other branches.
When reading these rows again in the next trampoline iteration,
we can use the block organization to distribute rows across threads
via work stealing.

Importantly, we do not have to maintain wave boundaries if all
branch queries are linear [8]. For a linear branch query, we have

qt (w1) ∪ ··· ∪ qt (w𝑛) = qt (w1 ∪ ··· ∪ w𝑛) .

(All branch queries shown in this paper happen to be linear.) Merg-
ing the w𝑖 in this fashion is highly desirable as it allows much
stronger parallelism while evaluating qt . The system thus will try
to fuse waves if possible. Umbra tracks the linearity of query oper-
ators and can detect when the path from the trampoline operator’s
source (which reads the current wave) to the trampoline sink (which
assigns rows to their target branch in the next iteration) exclusively
consists of operators that are linear in the input containing the
trampoline source.
Trampoline sink and source in the consume/produce model.
As meta-information the trampoline operator maintains (1) the
CurrentBranch currently being read, (2) the WaveId, a monotonic
growing number describing the current wave that is read from
the current branch, and (3) the NewWaveId, which is the wave id

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Louisa Lambrecht, Altan Birler, Torsten Grust, and Thomas Neumann

1 fun consumeTrampolineSink(row):
2 br = Branches[row.targetBranch]
3 # check if we are inserting into a different wave
4 w = last wave in br
5 if w.waveId != NewWaveId:
6 # check if the waves can be merged
7 if CurrentBranch != row.targetBranch and
8 allBranchesLinear and w.waveId > WaveId:
9 w.waveId = NewWaveId
10 else
11 # create correct wave in target branch
12 w = create new wave NewWaveId in br
13 # locate per-thread data within wave
14 t = create or access per-thread data in w
15 # store row in current block
16 b = last block in t
17 if b is full:
18 b = allocate new block in t
19 store row in b

Figure 12: Pseudo code of the trampoline sink.

of the result wave. With that information, the pseudo code for the
trampoline sink part of the operator is shown in Figure 12.

The routine first retrieves the selected target branch from the
current row and then uses an atomic read to check if the latest wave
on that branch is our target wave. If not, it first checks whether it is
safe to merge the existing wave with the newwave. If yes, it updates
the wave id, otherwise it creates a new wave. Within the wave a
thread-local data structure is created or accessed, which renders
all further operations lock free. The current row is appended to
the thread-local structure, creating new blocks as needed to avoid
overly large blocks.

The source side of the trampoline operator picks blocks from
the current wave until the wave is exhausted, and then switches to
the next wave. The pseudo code is reproduced in Figure 13.

We first producemore row blocks from the current wave until the
wave is exhausted, each thread picking blocks on demand. When no
more blocks are available, the branch is finalized, which means that
all operators on the current branch between the trampoline source
and the trampoline sink are executed as needed (e.g., a GROUP BY
result might be computed and then propagated further up). Once
we have to switch waves, the routine prefers processing a new
wave from the same branch over switching branches in order to
maximize query code locality. If no more waves exist, the code
switches to the first branch that has an active wave and stops if no
such branch exists. Note that the code that picks the next branch
has to be written carefully, as a query might have thousands of
branches and a naive scan over all branches would be inefficient. It
is advisable to implement some form of priority queue to quickly
identify the branches with pending waves.

5 EARLIER AND FUTUREWORK
As we write this, we are looking back at 25 years of iterative compu-
tation in SQL: WITH RECURSIVE was introduced in SQL:1999 [16],
following proposals that date back to the mid-1990s [6]. Still, recur-
sive CTEs are probably best described as the “black sheep” of SQL,
with a rather exotic semantics, ad-hoc syntactic restrictions, and
often disappointing runtime performance. This led developers to
resent the construct [5] and, instead, perform iteration outside the
database engine core, accepting the inherent cost of data movement
and (de-)serialization. Given a steep rise of workloads that are data-

1 fun produceTrampolineSource():
2 br = Branches[CurrentBranch]
3 # read the current wave
4 w = br.waves[WaveId]
5 if w has more blocks:
6 return next block from w
7 # wave finished, execute operators above the source
8 finalize current branch br
9 NewWaveId += 1
10 drop wave from current branch br
11 # prefer more waves from the same branch
12 if br has more waves:
13 WaveId = min waveId in br
14 return produceTrampolineSource()
15 # the current branch has no more data, switch branches
16 CurrentBranch = min branch with waves
17 if Branches[CurrentBranch] has waves:
18 return produceTrampolineSource()
19 return nil

Figure 13: Pseudo code of the trampoline source.

as well as computation-heavy [2], we argue that in-core iteration
in SQL deserves closer scrutiny again.

Variations of the vanilla WITH RECURSIVE recipe have already been
explored with WITH ITERATIVE, a variant that entirely foregoes
the maintenance of—a possibly sizable—union table u (see Fig-
ure 3a) and instead returns the final intermediate table i. These non-
accumulating semantics led to significant runtime and space sav-
ings for in-database implementations of clustering, for example [13].
Two further variants of WITH ITERATIVE, coined TTL and KEY, in-
stead exercise fine-grained control over the limited retention or
replacement of rows in the union table [4]. WITH ITERATIVE KEY,
in particular, paves an alternative way towards the expression and
execution of imperative algorithms directly in SQL (recall our dis-
cussion of gcd and Figure 2). Likewise, DBSpinner [7] discusses
iterative CTEs that maintain rows in the union table using an up-
sert-based semantics.

RaSQL [10] and Datalog◦ [12] stick with the original principles
of recursion in SQL, but specifically address how iteration can
efficiently interplay with grouping and aggregation (a notorious
stumbling stone since 1999).

WITH TRAMPOLINE’s focus on a single loop that repeatedly dis-
patches rows has been inspired by the original work on trampolined
style [15]. There, trampolines were also used to express interleaved
threads, parallelism at different granularities, or interruptible and
resumable computation. We are positive that adaptions of these
carry over to trampoline-style SQL, offering a rich toolbox for the
expression of complex computation inside the database engine.

Where we hop next. Beyond a re-evaluation of compilation tech-
niques [3] that map complex imperative programs into iterative
SQL queries (recall Section 2), our study of the WITH TRAMPOLINE
clause itself as well as its efficient implementation is still underway.
Regarding semantics, we explore per-branch duplicate elimination
(in the style of DISTINCT ON) which enables selected branches to
memoize earlier intermediate results (Section 3.2). Regarding im-
plementation, we consider scheduling strategies that dynamically
pick a new current branch based on the count of its in-flight rows

Trampoline-Style Queries for SQL CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

(if all branches are linear, large row counts facilitate parallelism—
otherwise, branches of low cardinality may be preferable). In addi-
tion, we currently have DuckDB [14] on our workbenches and will
integrate trampolining based on the ideas sketched in Section 4.
Acknowledgments. The Tübingen team has been supported by
the DFG under grant no. GR 2036/6-1.

REFERENCES
[1] F. Bancilhon. 1986. Naive Evaluation of Recursively Defined Relations. In On

Knowledge Base Management Systems. Springer, 165–178.
[2] M. Boehm, A. Kumar, and J. Yang. 2019. Data Management in Machine Learning

Systems. Morgan & Claypool.
[3] D. Hirn and T. Grust. 2021. One WITH RECURSIVE is Worth Many GOTOs. In

Proc. SIGMOD.
[4] D. Hirn and T. Grust. 2023. A Fix for the Fixation on Fixpoints. In Proc. CIDR.
[5] C. Duta. 2022. Another Way to Implement Complex Computations: Functional-

Style SQL UDFs. In Proc. HILDA.
[6] S.J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh. 1996. Expressive Recursive

Queries in SQL. Joint Technical Committee ISO/IEC JTC 1/SC 21WG 3, Document
X3H2-96-075r1.

[7] S. Floratos, A. Ghazal, J. Sun, J. Chen, and X. Zhang. 2021. DBSpinner: Making a
Case for Iterative Processing in Databases. In Proc. ICDE.

[8] G. Moerkotte. 2020. Building Query Compilers. http://pi3.informatik.
uni-mannheim.de/~moer/querycompiler.pdf.

[9] G. Szárnyas, J. Waudby, B. A. Steer, D. Szakállas, A. Birler, M. Wu, Y. Zhang, P.
A. Boncz. 2022. The LDBC Social Network Benchmark: Business Intelligence
Workload. Proc. VLDB (2022).

[10] J. Gu, Y.H. Watanabe, W.A. Mazza, A. Shkapsky, M. Yang, L. Ding, and C. Zaniolo.
2019. RaSQL: Greater Power and Performance for Big Data Analytics with
Recursive-Aggregate-SQL on Spark. In Proc. SIGMOD.

[11] K. Findeisen. 2021. Row pattern recognition with MATCH_RECOGNIZE. https:
//trino.io/blog/2021/05/19/row_pattern_matching.html.

[12] M.A. Khamis, H.Q. Ngo, R. Pichler, D. Suciu, and Y.R. Wang. 2022. Datalog in
Wonderland. ACM SIGMOD Record 51, 2 (2022).

[13] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann, A. Kemper,
and T. Neumann. 2017. SQL- and Operator-Centric Data Analytics in Relational
Main-Memory Databases. In Proc. EDBT.

[14] M. Raasveldt and H. Mühleisen. 2020. Data Management for Data Science:
Towards Embedded Analytics. In Proc. CIDR.

[15] S.E. Ganz and D.P. Friedman and M. Wand. 1999. Trampolined Style. In Proc.
ICFP.

[16] SQL:1999 [n.d.]. SQL:1999 Standard. Database Languages–SQL–Part 2: Foundation.
ISO/IEC 9075-2:1999.

[17] SQL:2016 [n.d.]. SQL:2016 Standard. Database Languages–SQL–Part 5: Row Pattern
Recognition in SQL. ISO/IEC 9075-5:2016.

[18] T. Fischer. 2023. To Iterate Is Human, to Recurse Is Divine — Mapping Iterative
Python to Recursive SQL. In Proc. BTW.

[19] T. Neumann andM.J. Freitag. 2020. Umbra: A Disk-Based Systemwith In-Memory
Performance. In Proc. CIDR.

[20] Tandem Database Group. 1987. NonStop SQL: A Distributed, High-Performance,
High-Availability Implementation of SQL. In Proc. HPTC.

http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://trino.io/blog/2021/05/19/row_pattern_matching.html
https://trino.io/blog/2021/05/19/row_pattern_matching.html

	Abstract
	1 From Fixpoints to Trampolines
	2 A Spotlight on 1.1WITHTRAMPOLINE
	2.1 Set-Oriented Operational Semantics

	3 What WITHTRAMPOLINE Can Do for You
	3.1 Row Pattern Matching
	3.2 Cascading Deletes

	4 Implementing Parallel Trampolining
	5 Earlier and Future Work
	References

