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ABSTRACT
One of the most prominent ways to evaluate an equi-join is based
on hashing. We consider the problem of non-unique join attributes
on the build side. In conventional hash tables where collisions are
resolved by chaining, duplicates inevitably lead to long collision
chains. This causes a high number of expensive main memory
accesses and join predicate evaluations during the probe phase,
increasing the runtime of the overall join. A related problem occurs
when the query optimizer cannot determine the uniqueness of the
join attribute of the build side.

We present the 3D Hash Join to efficiently evaluate main-memory
hash joins in the presence of duplicate build keys and skew. The
main idea is to cluster the hash table collision chains based on
the distinct values of the build attribute. We further introduce a
technique called deferred unnesting to speed up the evaluation of
multiple joins. In an experimental comparison with an implemen-
tation of a chaining hash table, our approach achieves a speedup of
up to a factor of 3.53 for a single key/foreign key join and 5.67 for
many-to-many joins.
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1 INTRODUCTION
Evaluating joins efficiently is a key performance goal of every
relational database system. Hash joins have been around since
the 1980s and have been studied extensively since, resulting in
a multitude of different implementations [3, 6, 7, 11, 15, 18, 22].
However, the question for the best join implementation cannot be
answered in general, as experimental studies have shown that there
is no “one size fits all”, depending on factors like data skew [27].
Hence, join algorithms remain a relevant research topic.

A hash join consists of two consecutive phases: building a hash
table on the build relation, and then probing it with tuples from
the probe relation. Database lore dictates that the smaller input is
chosen as the build side. If the smaller relation is the one contain-
ing the foreign key of a key/foreign key join, duplicates occur on
the build side. For many-to-many (N:M) joins, there is no way to
avoid the non-uniqueness of the build side. A non-unique build side
inevitably leads to collision chains growing proportionally to the
frequency of the respective keys. During probe, this causes a large
number of main memory accesses and join predicate evaluations
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when traversing the collision chains, resulting in high processing
costs for probing.

A related problem occurs if the uniqueness of the join attributes
in the build relation is not known at query compilation time. This
happens if the known functional dependencies specified in the SQL
standard do not allow to derive uniqueness.

In order to address non-unique build sides, we propose a simple
but effective hash table organization, the 3D Hash Table, that groups
together equal keys, and a corresponding hash join algorithm, the
3D Hash Join. “3D” refers to the three-dimensional organization
of the hash table: (1) a hash directory, (2) main collision chains,
and (3) sub chains beneath the main collision chain nodes. We also
demonstrate the effectiveness of a new technique called deferred
unnesting.

The remainder of this work is structured as follows: Section 2
briefly describes the standard hash table organization schemes and
why duplicates are bad for them. Section 3 presents related work.
We describe our approach and its main properties in Section 4 and
evaluate it experimentally in Section 5. Section 6 concludes the
paper.

2 THE UGLINESS OF DUPLICATES
Hash tables are unordered, associative arrays that store key/value
pairs. In the context of main-memory hash joins, the keys are join
attribute values, and the values are usually pointers to tuples or
tuple identifiers (TIDs). The hash table’s hash directory is an array
of size𝑚. Each directory entry (or bucket) points to the head node
of an initially empty linked list, the collision chain. We refer to
this organization as the chaining hash table. To insert a key/value
pair (𝑘, 𝑣) into the hash table, a hash function ℎ maps 𝑘 to a bucket
𝑖 ∈ {0, . . . ,𝑚 − 1} where (𝑘, 𝑣) is inserted into the respective linked
list. List insertion is performed at the head, ensuring time com-
plexity 𝑂 (1). We say that two distinct keys 𝑘, 𝑘 ′ collide under ℎ iff
ℎ(𝑘) = ℎ(𝑘 ′). Colliding keys end up in the same bucket and, thus,
in the same collision chain. To look up a key 𝑘 , we compute the
corresponding bucket index ℎ(𝑘), and examine the nodes in the
respective collision chain. We must check the key of each node,
since there might be keys 𝑘 ′ ≠ 𝑘 present in the collision chain that
just happen to collide with 𝑘 . If there are no duplicate keys, we
can terminate the lookup after the first (and only) matching key
(early termination). Otherwise, or if 𝑘 is not present in the table, we
must traverse the collision chain until the end. This also holds if
the uniqueness cannot be inferred.

In the presence of duplicate keys and especially a skewed distri-
bution of the keys, collision chains of certain buckets containing
frequent keys become very long. The performance problem arises
during the probe phase: We must traverse those long collision
chains, which causes numerous expensive main memory accesses
and predicate evaluations for each and every collision chain node.

http://creativecommons.org/licenses/by/3.0/
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An alternative to hashing by chaining is open addressing (OA),
which unfortunately still does not solve the problem. In open ad-
dressing, all data is stored in the hash directory. Therefore, an OA
hash table can never store more than𝑚 entries. In case of a col-
lision, an alternative bucket is searched according to a probing
sequence. Robin Hood hashing [9] is an OA variant where keys
are rearranged based on the length of their probing sequence. Our
problem remains: in case of duplicates, probing sequences become
very long.

Cuckoo hashing [23] is another OA variant. Inserting a key into
an occupied bucket moves the key that is already present in that
bucket to a second hash directory using a second hash function.
The original paper suggests using two hash directories, but an
extension to𝑘 directories is possible [26]. However, the implications
of duplicate keys are rather severe.

3 RELATEDWORK
This section is divided into (1) hash table organizations for joins
(such as our own) and (2) orthogonal techniques. In general, we
assert that building the hash table on the non-unique side of a join
has never been reflected in the hash table organization itself.

3.1 Hash Table Organizations for Joins
The application of hashing for joins in database systems dates back
to disk-based systems in the 1980s [8, 11, 14, 16].

A decade later, Shatdal et al. [28] propose and evaluate a main-
memory hash join algorithm using a chaining hash table, analogous
to the disk-based GRACE hash join [16].

Manegold et al. [22] use a chaining hash table as the underlying
data structure for their radix-partitioning hash join algorithm. Kim
et al. [15] build upon this partitioning approach, but use histograms
and reordering of build tuples as their underlying data organization.
This is comparable to a chaining hash table where all buckets are
stored contiguously in memory. They mention duplicate build keys
as a challenge, but do not investigate this further.

Blanas et al. [7] propose a simple, non-partitioning hash join
algorithm with a shared chaining hash table in a multi-core envi-
ronment. Balkesen et al. [4] base their implementations on a chain-
ing hash table. The buffered non-partitioned hash join by Bandle
et al. [5] uses a global chaining hash table.

Other approaches use open addressing hash tables, e.g., Barber
et al. [6]. Lang et al. [18] use a lock-free open-addressing hash table
for their NUMA-aware hash join.

The hash join algorithm by Zukowski et al. [30] is based on
cuckoo hashing. “Problematic” keys in terms of collisions are stored
in a single (!) separate linked list. A recent approach by Li et al. [21]
also uses cuckoo hashing. However, a large number of duplicates
on the build side can either not be handled, or would require a large
number of (mostly empty) hash tables.

3.2 Orthogonal Techniques
The following techniques are orthogonal to the hash table organi-
zation and can be applied additionally.

The techniques by Shatdal et al. [28] for an efficient and cache-
conscious implementation of query processing algorithms are ge-
neric and, thus, generally applicable.

...

Hash Directory Collision Chains
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Figure 1: Layout of the 3D hash table: hash directory, main
collision chains, and sub chains

Due to the random-access behavior of hash tables, prefetching
can hide memory latencies [10, 15, 17]. Another optimization ap-
proach is filtering. For selective joins, non-qualifying tuples can
be filtered out early using Bloom filters and/or semi-join reduc-
ers [5, 24]. Partitioning is a technique that is applied to the inputs
of a join before evaluating it partition by partition. Partition sizes
are chosen such that a partition fits into the cache, which reduces
cache and TLB misses [5, 15, 22, 28]. Parallelization is concerned
with load balancing, thread allocation and synchronization. Closely
related is the notion of NUMA-awareness of implementations. A
lot of work has been done in this area [1, 5, 12, 19]. There are also
publications that benchmark and compare different approaches,
e.g., Richter et al. [26], and Schuh et al. [27].

4 THE 3D HASH JOIN
The 3D Hash Join consists of a 3D hash table as its underlying
data structure, and two physical algebra operators: join and unnest.
This section introduces them, outlines the main properties of our
approach, and points out some implementation-specific details.

4.1 3D Hash Table Design
Our 3D hash table aims to overcome the problem of long collision
chains by organizing each bucket in a hierarchical fashion: Instead
of a single, flat, linear linked list per bucket, we differentiate main
collision chains and sub chains, each with its own node type, main
nodes and sub nodes, respectively. The general layout is visualized
in Figure 1. While a chaining hash table maintains one node for
each inserted key/value pair1, we maintain one main node for each
inserted distinct key. As soon as the same key 𝑘 is inserted for the
second time, the respective value is stored in a sub node in the sub
chain branching off from the main node for 𝑘 . Hence, only main
nodes store keys and values, sub nodes only store values, as they
belong to exactly one main node with its respective key.

The main motivation for this design is to ensure short colli-
sion chains and, therefore, fewer main memory accesses and join
predicate evaluations during probe.

1Recall that a value is a tuple pointer or a tuple identifier (TID).
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Algorithm 1 3D Hash Table Insert
1: function insert(𝐻,ℎ, 𝑘, 𝑣)
2: Input: Hash table 𝐻 , hash function ℎ, key/value pair (𝑘, 𝑣)
3: dir_entry ← 𝐻 [ℎ(𝑘)]
4: if (dir_entry.empty()) ∨ (dir_entry.key = 𝑘) then
5: insertAtMainNode(dir_entry, 𝑘, 𝑣)
6: else ⊲ insert into some main collision chain node
7: main_node← dir_entry.next
8: while main_node ≠ null do
9: if main_node.key = 𝑘 then
10: insertAtMainNode(main_node, 𝑘, 𝑣)
11: return
12: end if
13: main_node← main_node.next
14: end while
15: createNewMainNode(dir_entry, 𝑘, 𝑣)
16: end if
17: end function
18: function insertAtMainNode(node, 𝑘, 𝑣)
19: Input: main collision chain node node, key/value pair (𝑘, 𝑣)
20: if node.empty() then
21: node.key ← 𝑘 ; node.value← 𝑣

22: else
23: insertIntoSubchain(node, 𝑣) ⊲ linked list insert (head)
24: end if
25: end function

Algorithm 2 3D Hash Table Lookup
1: function lookup(𝐻,ℎ, 𝑘)
2: Input: Hash table 𝐻 , hash function ℎ, key 𝑘
3: Output: Pointer to the main node corresponding to 𝑘
4: main_node← 𝐻 [ℎ(𝑘)] ⊲ directory entry
5: repeat ⊲ traverse main collision chain
6: if main_node.key = 𝑘 then break
7: main_node← main_node.next
8: until main_node = null
9: return main_node
10: end function

The insert operation for a key/value pair (𝑘, 𝑣) is slightly more
complex than for the chaining hash table since we must first de-
termine if 𝑘 is already present. The procedures are outlined in
Algorithm 1. We first check if the directory entry corresponding to
𝑘 is empty or if the key stored there matches 𝑘 . If so, we call insert-
AtMainNode that either stores 𝑘 and 𝑣 in the empty directory
entry or inserts 𝑣 into the entry’s sub chain. If the directory entry is
neither empty nor has the same key, we traverse the main collision
chain of this bucket (ln. 8) until we find a main node with the same
key and insert 𝑣 into its sub chain. If such a node is not found, 𝑘
is not yet present in the table, and we append a new main node
storing 𝑘 and 𝑣 to the main collision chain (ln. 15). The functions
insertIntoSubchain and createNewMainNode are not given
here since they are simply insertions into linked lists (sub chain
and main collision chain, respectively). Note that for all operations,
the key 𝑘 can be more complex than a scalar attribute value. We

Algorithm 3 Unnest
1: function unnest(𝑋 )
2: Input: Set 𝑋 of nested tuples of the form [𝑟, 𝐵]
3: Output: Set of unnested result tuples
4: Result ← ∅
5: for each [𝑟, 𝐵] ∈ 𝑋 do
6: for each 𝑠 ∈ 𝐵 do
7: Result ← Result ∪ {[𝑟 ◦ 𝑠]}
8: end for
9: end for
10: return Result
11: end function

can easily use a multi-attribute key as long as the hash function
accepts it as input.

The operation to look up a given key 𝑘 is outlined in Algorithm 2
and is essentially identical to the lookup operation in a chaining
hash table without duplicate keys: Using ℎ, we compute the bucket
index corresponding to 𝑘 and examine the keys in the directory
entry and the main collision chain nodes until either 𝑘 is found or
there are no more nodes to examine. In case of a successful search,
we return a pointer to the main node (!) to the caller, who can then
decide to either “unpack” all the matches by traversing the sub
chain, or just leave the search result in its packed form. We call the
packed search result a nested tuple and the process of unpacking it
unnesting, see Section 4.3.

4.2 3D Hash Join
When computing the join of two relations 𝑅 and 𝑆 with some
equality predicate 𝑝 , e.g., 𝑅.𝑥 = 𝑆.𝑦, we need to distinguish the
logical join operator Z𝑝 and its physical counterparts. We denote
the standard hash join operator using a chaining hash table by
Z
hj
𝑝 and our 3D hash join operator based on the 3D hash table

by Z3D𝑝 . The input of both physical operators are, in general, two
expressions, e.g., two relations 𝑅 and 𝑆 . As a convention, we will
always build the hash table on the right input, and probe it with
the tuples from the left input. With regard to the output, while the
standard hash join operator yields the result of 𝑅 Z𝑝 𝑆 , the 3D
hash join produces nested tuples of the form [𝑟, 𝐵], where 𝑟 is a
tuple from 𝑅 (or a pointer or a TID), and, conceptually, 𝐵 is a list of
tuples 𝑠 from the build side 𝑆 that fulfill the join predicate 𝑝 (𝑟, 𝑠).

A physical hash join operator typically consists of two consecu-
tive phases: build and probe. In the build phase, each tuple 𝑟 from
the build input is inserted into the hash table, e.g., according to
Algorithm 1 for our approach. In the probe phase, for each tuple 𝑠
from the probe input, the 3D hash join traverses the respective main
collision chain and evaluates the join predicate on each main node’s
key until a match is found or the chain ends. If a match is found, it
terminates the search and produces a single nested output tuple,
consisting of the probe tuple 𝑠 and a pointer to the main collision
chain node of the match. Therefore, the approach produces at most
one output tuple per probe tuple.
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Algorithm 4 Computing 𝑅 Z𝑝 𝑆 using the 3D hash table and an
optional unnest operation.
1: function HashJoin3D(𝑅, 𝑆, 𝑝, ℎ𝑅, ℎ𝑆 )
2: Input: probe relation 𝑅, build relation 𝑆 ,
3: equality join predicate 𝑝 ,
4: probe and build hash functions ℎ𝑅, ℎ𝑆
5: Output: the join result 𝑅 Z𝑝 𝑆

6: 𝐻 ← empty hash table
7: for all 𝑠 ∈ 𝑆 do ⊲ Build
8: key ← ExtractJoinAttributes(𝑠, 𝑝)
9: insert(𝐻,ℎ𝑆 , key, 𝑠)
10: end for
11: ResultNested ← ∅
12: for all 𝑟 ∈ 𝑅 do ⊲ Probe
13: key ← ExtractJoinAttributes(𝑟, 𝑝)
14: main_node← lookup(𝐻,ℎ𝑅, key)
15: if main_node ≠ null then
16: ResultNested ← ResultNested ∪ {[𝑟,main_node]}
17: end if
18: end for
19: Result ← unnest(ResultNested) ⊲ Unnest (can be deferred)
20: return Result
21: end function

4.3 Unnest Operator
To get the final join result, we need to unnest the nested right-hand
side 𝐵 of each nested tuple. To that end, we introduce the unnest
operator which operates on a set 𝑋 of nested tuples and “expands”
each tuple’s right-hand side: 𝜇𝐵 (𝑋 ) :=

⋃
[𝑟,𝐵 ] ∈𝑋 {𝑟 ◦ 𝑠 | 𝑠 ∈ 𝐵},

where ◦ denotes tuple concatenation. Hence, the following equiv-
alence holds: 𝑅 Zhj𝑝 𝑆 ≡ 𝜇𝐵

(
𝑅 Z3D𝑝 𝑆

)
. The unnest operation is

outlined in Algorithm 3. It does not require any further predicate
evaluations.

Note that in the physical implementation, 𝐵 is a pointer to a main
node whose sub chain is then traversed by the unnest operator,
cf. end of Section 4.1.

The reason why join and unnest are separate operations is that
it allows to defer unnesting, e.g., until after a second join. This
is possible if the predicate of the second join only refers to at-
tributes from the probe side like in

(
𝑅 Z3D

𝑅.𝑎=𝑆.𝑎
𝑆

)
Z
impl
𝑅.𝑏=𝑇 .𝑏

𝑇 ,
where impl is an arbitrary physical join implementation. Then,
unnesting can happen further up in the operator tree. This results
in better performance as the second join processes far fewer tuples
and, additionally, may eliminate some nested tuples, see Sec. 5.3.

The whole algorithm to compute 𝑅 Z𝑝 𝑆 using the 3D hash
table is shown in Algorithm 4. Note that the algorihm can, e.g.,
be implemented in a push- or a pull-based manner, where tuple
processing is typically pipelined.

4.4 Main Properties
This section summarizes the main properties of our approach.

The time complexity of an insert operation is linear in the length
of the respective main collision chain as we must first check if the

...

...

...

...

frequent key

rare key

Chaining Hash Table

3D Hash Table

next (main) node
next sub chain node

Figure 2: Comparison of rare and frequent keys in both hash
table designs. The 3D hash table clusters inserts by key, mak-
ing the main collision chains short.

Listing 1: C++ structs of main collision chain nodes and sub
nodes in the 3D hash table.
struct MainNode {

MainNode∗ _next;
SubNode∗ _subchain_head;
tuple_t∗ _tuple;
hashvalue_t _hashvalue;

};

struct SubNode {
SubNode∗ _next;
tuple_t∗ _tuple;

};

insert key is already present. Once the main node is found, insertion
into the sub chain has constant time.

Since keys in the main collision chain are unique, we can always
apply early termination and, thus, have to traverse on average only
half the main collision chain during a successful probe. Further,
the main collision chain is rather short as it only contains hash
collisions. As a consequence, we need only few memory accesses
and join predicate evaluations. This is visualized in Figure 2.

Last but not least, the 3D hash join allows for deferred unnesting.

4.5 Implementation Remarks
This section outlines deviations between the conceptual description
from the previous subsections and the actual implementation.

For the implementation of the main collision chain nodes, there
are three alternatives: additionally to the next and the sub chain
pointer, (1) store only a tuple pointer, (2) store both the key and
the tuple pointer, (3) store the hash value and the tuple pointer.
Alternative (1) has low memory consumption, but requires tuple
pointer dereferencing and memory access for each join predicate
evaluation. Alternative (2) does not have to access the tuple for
predicate evaluation, but the size of a node depends on the key,
which negatively affects caching behavior, e.g., for composite keys.
We chose alternative (3): Nodes remain compact and allow fast
comparisons. We can use the hash values for a cheap pre-test during
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Figure 3: Join Trees (C: standard hash join, N: 3D hash join)

insert (build) and lookup (probe). Only if the (full) hash values
match, the tuple is accessed to perform the actual key comparison.
Note that we previously stated that the hash functionℎmaps keys to
buckets. However, this was simplified: the hash function’s codomain
is generally larger than the number of buckets𝑚. The bucket index
for a key𝑘 is calculated byℎ(𝑘) mod𝑚. Therefore, the nodes within
one bucket can have different hash values.

Listing 1 shows the C++ structs for the main and sub nodes. As-
suming 64-bit pointers and hash values, the memory consumption
of a MainNode instance is 32 B, a SubNode instance requires 16 B.
Common cache line sizes, e.g., 64 B or 128 B, are multiples of these
numbers, which ensures proper alignment to cache line boundaries.

The hash directory is implemented as an array of main nodes.
This avoids additional cache misses for accessing the first entry of
a bucket, since no pointer dereferencing is necessary [26]. There-
fore, an empty hash table with𝑚 slots already has𝑚 main nodes
allocated. To distinguish empty from occupied nodes, we use the
least significant bit of the pointer to the head of the main collision
chain (MainNode::_next) as an indicator. This avoids “wasting” a
byte of memory for a Boolean member. Lang et al. [18] use a similar
approach but set one bit of the hash value instead.

Similar to Richter et al. [26], we use memory pools for main
and sub nodes to avoid expensive fine-grained memory allocations
on insert. More specifically, main and sub nodes are allocated in
chunks of size 1024. Since𝑚 main nodes in the hash directory are
always allocated, the total memory consumption of a 3D hash table
with𝑚 buckets built on 𝑛 entries from 𝑑 distinct values is at most

𝑚 · sizeof (MainNode)

+
⌈
𝑑−1
1024

⌉
· 1024 · sizeof (MainNode)

+
⌈
𝑛−𝑑
1024

⌉
· 1024 · sizeof (SubNode)

depending on the number of hash collisions of different distinct
values.

5 EVALUATION
We conducted an experimental evaluation of our approach and
implemented both a chaining and a 3D hash table as well as a small
push-based [13] physical algebra with operators for the standard
and the 3D hash join in C++.

In the experiments in Sec. 5.1 and 5.2, we evaluated a single join
between two row-store relations 𝑅 and 𝑆 with two 32-bit integer
attributes 𝑘 and 𝑎 each. 𝑘 is each relation’s unique key. 𝑎 serves
as the foreign key or as a general join attribute, depending on
the experiment. As a hash function, we use the 32-bit finalizer of
Murmur3 [2], cf. [26].

Table 1: Key/Foreign Key Experiment Parameters

Parameter Values Purpose

|𝑅 |, |𝑆 | 210, 211, . . . , 225 relation cardinality
𝑡 0, 1, . . . , 9 foreign key scale parameter
dist uniform, std. Zipf foreign key distribution

There are four possible ways to evaluate the join 𝑅 Z𝑝 𝑆 , which
are visualized in Figure 3. We encode the join order and implemen-
tation with three letters: the first capital letter denotes the hash join
implementation (C: standard hash join, N: 3D hash join). The two
lowercase letters describe the join order (left: probe, right: build).
For instance, “Crs” corresponds to 𝑅 Zhj𝑝 𝑆 .

All experiments were executed on machines with the following
specifications: two Intel Xeon E5-2690 v3 processors with twelve
cores each, and 256GB RAM. All code was compiled with clang 11,
optimization level -O3.

5.1 Key/Foreign Key Joins
We measured the runtime of different query execution plans in-
volving a single key/foreign key join. We identified the size of the
input relations, the number of distinct build keys, and the build
key distribution as the relevant parameters that influence hash join
performance. Our experiments cover this parameter space exten-
sively. Note that our approach dominates the standard hash join
only for certain parameter combinations. For use in practice, we
leave it to the query optimizer to choose the best alternative for a
given query. Further, we show only a subset of our results due to
the large number of parameter combinations.

5.1.1 Setup and Data Generation. 𝑅 is the key relation, 𝑆 the for-
eign key relation. The join predicate is 𝑅.𝑘 = 𝑆.𝑎. We varied the
cardinalities of the two relations between 210 and 225 in steps of
powers of 2, which covers input sizes between a couple of thousand
up to several million tuples2. The domain of the foreign key 𝑆.𝑎 is
defined as dom(𝑆.𝑎) := {0, . . . , |𝑅 |/2𝑡 − 1}, where 𝑡 ∈ {0, . . . , 9} is a
scale parameter controlling the fraction of keys that is referenced,
i.e., tuples that find join partners. For instance, 𝑡 = 1 means that
only half of the keys in 𝑅.𝑘 will be referenced by foreign keys in 𝑆.𝑎.
Values for 𝑆.𝑎 are randomly sampled from dom(𝑆.𝑎), either without
skew according to a uniform distribution, or with skew according
to a standard Zipf distribution. The number of duplicate foreign
keys is controlled by the cardinalities and parameter 𝑡 . For instance,
for |𝑅 | < |𝑆 |, the absolute frequency of each distinct value in 𝑆.𝑎 is
|𝑆 |/( |𝑅 |/2𝑡 ) on average in the uniform case.

Let dv(𝑒) denote the set of distinct values returned by some
algebra expression 𝑒 . For the hash table, we set the number of
buckets𝑚 to |dv(𝑥) |, where 𝑥 denotes the attribute on which the
hash table is built. Note that the 32-bit finalizer of Murmur3 is
collision-free on the whole attribute domain [0, 225 − 1]. Hence,
collisions are solely the result of the modulo operation.

The parameters and their ranges are summarized in Table 1. In
total, we evaluated 5120 parameter combinations and all four plans
(see Fig. 3) to allow for a detailed analysis. This should cover a large
2Large build sizes > 225 tuples should be handled by partitioning, see Sec. 3.



12th Annual Conference on Innovative Data Systems Research (CIDR ’22), January 9–12, 2022, Chaminade, USA Daniel Flachs, Magnus Müller, and Guido Moerkotte

uniform Zipf

t =
 1

t =
 8

10 15 20 25 10 15 20 25

10

15

20

25

10

15

20

25

log2(|R|)

lo
g
2
(|

S
|)

-0.5 0.0 0.5 1.0 1.5 2.0 2.4
symmetric relative
difference

Figure 4: Heatmap of relative differences between runtime
of 3D and standard hash join with early termination
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Figure 5: Heatmap of relative differences between runtime
of 3D and standard hash join without early termination

fraction of the different possibilities the query optimizer is going
to see in practice. No single join implementation is superior to all
others for all parameter combinations. Thus, it remains the query
optimizer’s task to determine which implementation to choose in
which context.

5.1.2 Results. For each parameter combination, we compare the
best join tree for the standard and the 3D hash join, respectively,
by taking the minimum of the total runtimes: 𝑡hj := min(𝑡Crs, 𝑡Csr)
and 𝑡3D := min(𝑡Nrs, 𝑡Nsr), where the subscripts refer to the join
trees from Figure 3. As a relative measure for performance, we
choose the symmetric relative difference srd

(
𝑡hj, 𝑡3D

)
, defined as

srd (𝑥,𝑦) := (𝑥 − 𝑦)/min (𝑥,𝑦) . Values above 0 indicate that the
3D hash join is faster. For values below 0, the standard hash join

is faster. The speedup/slowdown factor for a symmetric relative
difference of 𝑥 is |𝑥 | + 1.

Figure 4 shows the results for both foreign key distributions
(uniform and Zipf) and for two example values of the foreign key
scale parameter 𝑡 as a heatmap. The axes show the binary logarithm
of the cardinalities of the argument relations 𝑅 and 𝑆 . Blue-shaded
tiles indicate that our approach is superior to the standard hash join,
while red-shaded areas indicate the opposite. The darker the color,
the higher the relative difference. In white areas, both algorithms
perform equally well. Note that the color scale is not symmetric
in the sense that the darkest colors at both ends of the scale have
different absolute values. The diagonal from bottom-left to top-
right is dominated by the standard hash join, i.e., if both argument
relations have about the same cardinality, the chaining hash table
has the advantage. In the bottom-right triangle, |𝑅 | > |𝑆 | holds
and our approach outperforms the standard hash join. This effect
increases (1) in the presence of skew (right column of Fig. 4), and
(2) when increasing the number of duplicates (bottom row of Fig. 4),
as both lead to longer collision chains in the chaining hash table.
Over all parameter combinations, the relative differences range from
−0.70 to 2.53 for uniformly distributed foreign keys and from −0.40
to 2.21 in case of skew. This corresponds to maximum speedup
factors of 3.53 (uniform) and 3.21 (skew), respectively.

For the join Csr (Fig. 3b), the chaining hash table can benefit
from early termination of lookups during probe, as it was built on
the duplicate-free key of 𝑅. Figure 5 shows what happens when
early termination is disabled, which is mandatory in case of lack-
ing knowledge about key uniqueness as introduced in Section 1.
The heatmap shows that the dominance of the chaining hash ta-
ble diminishes. Now, the relative differences over all parameter
combinations range from −0.41 to 2.27 for uniformly distributed
foreign keys and from −0.20 to 3.10 in case of skew. This corre-
sponds to maximum speedup factors of 3.27 (uniform) and 4.10
(skew), respectively.

We repeated the above experiments with strings instead of inte-
gers as the join attributes’ data type to investigate more costly join
predicates: string comparisons instead of integer comparisons. We
used character arrays with a fixed length of 20 for attributes 𝑘 and
𝑎. The data generation remained the same, but all integers were
converted to their decimal string representation, padded with zeros
at the front. The results were consistent with the integer experi-
ments. Over all parameter combinations, the relative differences
range from −0.24 to 2.25 for uniformly distributed foreign keys and
−0.19 to 2.99 in case of skew, corresponding to maximum speedup
factors of 3.25 and 3.99, respectively.

5.2 Many-to-Many Joins
We conducted two experiments with a single N:M join between
two relations 𝑅 and 𝑆 , which show that our approach allows for
significant time savings compared to the standard hash join. Both
experiments use generated data and 𝑝 :≡ (𝑅.𝑎 = 𝑆.𝑎) as the join
predicate. We compared the total runtime of 𝑅 Zhj𝑝 𝑆 and 𝜇𝐵 (𝑅 Z3D𝑝
𝑆), i.e., the hash tables were built on 𝑆 and probed with tuples from
𝑅. This corresponds to the plans Crs and Nrs from Figure 3.

5.2.1 Experiment 1: Uniform Distribution. The experiment has
three parameters: the cardinalities of the two relations, and the
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Table 2: N:M Join, Experiment 1: Result Excerpt

|𝑅 | |𝑆 | 𝑑 srd 𝐿
hj
avg 𝐿

hj
max 𝐿3Davg 𝐿3Dmax

211 210 1024 0.16 (min) 1.58 5 1.58 5
216 212 1024 0.97 6.33 20 1.58 5
223 213 1024 2.04 12.66 40 1.58 5
225 214 1024 4.67 (max) 25.32 80 1.58 5
225 219 1024 2.51 810.34 2560 1.58 5

domain size 𝑑 of attribute 𝑎. The attribute values of 𝑅.𝑎 and 𝑆.𝑎 are
generated uniformly from {0, . . . , 𝑑 − 1}. We chose a domain size
of 1024, which is also the number of hash table buckets, and varied
the cardinalities between 210 and 225 with |𝑆 | < |𝑅 |. A subset of
the results can be found in Table 2, where we show the parameters
as well as the symmetric relative difference srd (𝑡Crs, 𝑡Nrs). We also
give the average and maximum collision chain lengths (𝐿avg, 𝐿max)
of non-empty hash table buckets for both implementations. Each
distinct value in 𝑆.𝑎 has a frequency of |𝑆 |/𝑑 . The collision chains
are way longer for the chaining hash table, e.g., 25.32 on average
for |𝑅 | = 225, |𝑆 | = 214, while the 3D hash table maintains a con-
stant average collision chain length of 1.58, which is exactly the
theoretically expected value; for a derivation, see Appendix A. The
3D hash join achieves a speedup factor of up to a 5.67 compared
to the standard hash join. Notably, our approach is never slower:
Over all parameter combinations, the minimum speedup factor is
1.16, the average 2.82.

5.2.2 Experiment 2: Extreme Case. For this experiment, we con-
struct a scenario to showcase that the standard hash join is not
robust. We fix some domain size 𝑑 for 𝑅.𝑎 and 𝑆.𝑎 and let the respec-
tive hash table have 𝑑 buckets. Then, we choose two distinct keys
𝑘, 𝑘 ′ such that they collide. On the build side 𝑆 , the 𝑑 distinct values
in 𝑆.𝑎 are uniformly distributed with a frequency of 𝑛 := |𝑆 |/𝑑 ,
with the exception of 𝑘 , which occurs |𝑆 |/2 + 𝑛 times. We call 𝑘
the hot build key. On the probe side 𝑅, the 𝑑 distinct values in 𝑅.𝑎

are uniformly distributed, with the exception of 𝑘 ′, which occurs
|𝑅 |/2 + |𝑅 |/𝑑 times.

After building, the chaining hash table contains one collision
chain with a length of at least |𝑆 |/2 + 2𝑛 – the bucket where 𝑘 and
𝑘 ′ are stored. Unfortunately, 𝑘 is probed only a few times while 𝑘 ′
is probed |𝑅 |/2 + |𝑅 |/𝑑 times. Hence, the probe operator has to
traverse a long collision chain frequently, only to find that most of
the entries do not match since 𝑘 ≠ 𝑘 ′. The 3D hashtable benefits
from both fewer join predicate evaluations and fewer “hops” when
traversing the collision chain (cf. Fig. 2). For |𝑅 | := 223, |𝑆 | := 212,
and 𝑑 := 1024, the standard hash join is 137 times slower than our
approach. This factor, however, can grow arbitrarily.

5.3 Deferred Unnesting for Two Joins
To support our claim from Sec. 4.3 that the deferral of unnest opera-
tions can be beneficial, we conducted the following experiment. We
now consider two key/foreign key joins between the key relation 𝑅
and the two foreign key relations 𝑆 and 𝑇 . Like before, all relations
are row-store relations with two 32-bit integer attributes 𝑘 (unique
key) and 𝑎 (foreign key). We compute the join (𝑅 Z𝑝1 𝑆) Z𝑝2 𝑇

on
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ferred Unnesting

Figure 6: Deferred Unnesting for Two Joins: Join Trees

with the join predicates 𝑝1 :≡ (𝑅.𝑘 = 𝑆.𝑎) and 𝑝2 :≡ (𝑅.𝑘 = 𝑇 .𝑎).
Hence, the query is an “inverted star join query”. In a regular star
schema, a large, central fact relation contains foreign keys that ref-
erence various smaller dimension tables. A query on a star schema
is a star join query [25, p. 689 ff.]. An “inverted star schema” is the
opposite: a central key relation is referenced by various foreign
key relations. This shape can, for instance, be found in the IMDb
dataset from the Join Order Benchmark (JOB) [20]: title with its
key id is the central key relation referenced by numerous foreign
key relations like movie_info or movie_companies. The 3D hash
join is most suitable when the build relation is smaller than the
probe relation, and the build key contains duplicate values, as in,
e.g., JOB query 13 [20]. This experiment focuses on this case.

5.3.1 Setup. 𝑅, 𝑆 , and 𝑇 are generated as follows: We choose the
cardinality of 𝑅 and set 𝑅.𝑘 to 0, . . . , |𝑅 |−1. For the generation of the
foreign keys 𝑆.𝑎 and𝑇 .𝑎, we partition the keys 𝑅.𝑘 into four disjoint
subsets according to the choice of three fractions 𝛼, 𝛽,𝛾 ∈ [0, 1]: A
subset of 𝛼 · |𝑅 | keys in 𝑅 is referenced by foreign keys in both 𝑆 and
𝑇 . We call this subset 𝑅𝛼 . A subset of 𝛽 · |𝑅 | keys in 𝑅 (called 𝑅𝛽 ) is
referenced exclusively by foreign keys in 𝑆 , while another subset of
𝛾 · |𝑅 | keys (called 𝑅𝛾 ) is referenced exclusively by foreign keys in𝑇 .
The remaining subset of (1− (𝛼 + 𝛽 +𝛾)) · |𝑅 | keys is not referenced
at all. Note that the keys in 𝑅𝛼 survive both joins, whereas the keys
in 𝑅𝛽 and 𝑅𝛾 survive one join but not the other. Further, foreign
keys are generated uniformly regarding their respective partition:
Foreign keys referencing keys in 𝑅𝛼 occur 𝑐𝛼 times, foreign keys
referencing keys in 𝑅𝛽 occur 𝑐𝛽 times, and foreign keys referencing
keys in 𝑅𝛾 occur 𝑐𝛾 times.

We compared two possible physical plans to compute the join, as
shown in Figure 6. The plan 𝑃hj uses two standard hash joins. The
plan 𝑃3D uses two 3D hash joins followed by two unnest operations.
In each case, the hash tables are built on the foreign key relations
𝑆 and 𝑇 . The number of hash table buckets is chosen equal to the
number of distinct values of 𝑆.𝑎 and 𝑇 .𝑎. Note that in 𝑃3D , the first
join Z3D𝑝1 yields nested tuples of the form [𝑟,S], where 𝑟 is a tuple
from 𝑅 and, conceptually, S is a list of matching tuples from 𝑆3.
Analogously, the second join in 𝑃3D yields nested tuples of the form
[𝑟,S,T] with an additional list T of matching tuples from 𝑇 . The

3In reality, it is a pointer to a main collision chain node in the hash table built on 𝑆.𝑎.
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Table 3: Deferred Unnesting for Two Joins: Results (Excerpt):
|𝑅 | := 222, 𝛼 := 1/222, 𝛽 := 𝛾 := 1/26

𝑐𝛽 , 𝑐𝛾 |𝑆 |, |𝑇 | srd

total build (𝑆) probe (𝑅)
1 65 537 0.20 −0.37 0.22
2 131 073 0.84 −1.01 1.01
3 196 609 2.74 −1.30 3.39
4 262 145 3.47 −1.57 4.57
5 327 681 6.61 −1.24 8.91
6 393 217 7.73 −1.66 11.12
7 458 753 9.12 −1.56 13.79
8 524 289 10.20 −1.81 16.58
9 589 825 10.63 −1.92 18.02

subsequent unnest operations 𝜇T and 𝜇S unpack the nested tuples
and yield tuples of the form [𝑟, 𝑠, 𝑡] as the final result.

The first join between 𝑅 and 𝑆 produces |𝑅 | · ((𝛼 · 𝑐𝛼 ) + (𝛽 · 𝑐𝛽 ))
output tuples in 𝑃hj , but only |𝑅 | · (𝛼 + 𝛽) in 𝑃3D . For 𝑐𝛼 , 𝑐𝛽 > 1,
this means that the second join with relation 𝑇 must process fewer
input tuples in plan 𝑃3D .

For the experiment, we choose the parameters such that the
overall join between 𝑅, 𝑆 , and 𝑇 is very selective, while each single
join between 𝑅 and 𝑆 , and 𝑅 and 𝑇 is not: We vary |𝑅 | between 210
and 225, and set 𝛼 := 1/|𝑅 |, 𝑐𝛼 := 1. 𝛽 is varied between 1/20 and
1/|𝑅 |, 𝑐𝛽 between 1 and 9. 𝛾 is set to 𝛽 , 𝑐𝛾 is set to 𝑐𝛽 . Note that
since 𝛽 = 𝛾 , |𝑆 | = |𝑇 |, 𝑐𝛽 = 𝑐𝛾 , and |𝑅 Z𝑝1 𝑆 | = |𝑅 Z𝑝2 𝑇 |, the join
order is immaterial.

5.3.2 Results. An excerpt of our results for |𝑅 | := 222 ≈ 4.2 · 106
and 𝛽 := 𝛾 := 1/26 can be found in Table 3. The number of distinct
values of 𝑆.𝑎 and 𝑇 .𝑎 is (𝛼 + 𝛽) · |𝑅 | = 65 537.

We show the symmetric relative differences (srd, cf. Sec. 5.1.2)
between the execution times of the plans 𝑃hj and 𝑃3D for the whole
plan, the build on 𝑆 , and the probe on 𝑅. The build times on 𝑇 are
similar to 𝑆 . Recall that for srd < 0, 𝑃hj performs better, and for
srd > 0, 𝑃3D is superior.

Increasing the multiplicities 𝑐𝛽 , 𝑐𝛾 leads to more duplicates and
a higher cardinality of the foreign key relations. This results in
superior overall performance of the 3D hash join: srdtotal increases
from 0.20 to 10.63; this corresponds to speedup factors ranging
from 1.20 to 11.63. This is due to a reduced number of join predicate
evaluations and a smaller number of input tuples to the second join,
resulting in better probe performance (column “srd probe (𝑅)”). At
the same time, though, the build performance decreases as builds
are more expensive for the 3D hash join due to lookups during
insert. This can be observed in column “srd build (𝑆)”.

In our experiment, we measured speedups up to a factor of 20.
Real-world data might additionally be skewed, leading to even
larger factors. Note that the factor by which the 3D hash join is
faster than the standard hash join can grow arbitrarily, depending
on the properties of the data.

6 CONCLUSION
We proposed a novel, simple, yet powerful hash table organization
that resolves collisions using hierarchical chains and clusters du-
plicate keys. The additional costs for key lookup during build and
for the unnesting operation can pay off during the probe phase in
many cases, especially in the presence of duplicates due to data
skew. In the experimental evaluation, we identified the cases in
which our approach outperforms the standard hash join. For a sin-
gle key/foreign key join, the speedup factor of our approach is up
to 3.53. For many-to-many joins, we observed a speedup factor of
up to 5.67 while never being slower than the standard hash join.
Furthermore, deferred unnesting can be beneficial if more than one
join is involved.

For future work, we plan to further enhance the implementation
of the 3D hash join using the known techniques, e.g., prefetching,
filtering, partitioning, parallelization, and NUMA-awareness.
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A PROBABILITY THEORY FOR HASHING
The following remarks are based on Stein et al. [29, p. 310 ff.].

Let𝑚 denote the size of the hash directory and 𝑛 the number of
keys inserted into the hash table. Assume that all keys are distinct.

The probability that a fixed key is hashed to a fixed slot 𝑖 is 1/𝑚,
since each slot is equally likely. Conversely, the probability that
a fixed empty slot 𝑖 remains empty after a key has been inserted
is 1 − 1

𝑚 . Further, hashing one key is independent from hashing
another. Therefore, the probability that slot 𝑖 remains empty after
𝑛 insertions is (1 − 1/𝑚)𝑛 , and the expected number of empty
slots is𝑚 · (1 − 1/𝑚)𝑛 . The expected number of non-empty slots is
𝑚 −𝑚 · (1 − 1/𝑚)𝑛 =𝑚 · (1 − (1 − 1/𝑚)𝑛).

For the experiments in this paper, the size of the hash directory
is set equal to the number of distinct keys that are inserted into the
hash table, i.e.,𝑚 := 𝑛. For this specific case, the probability that
slot 𝑖 remains empty after a large number of insertions (𝑛 → ∞)
converges to 1/𝑒 ≈ 36.8 % [29].

We can now calculate the expected average collision chain length
of non-empty slots, which is the number of insertions divided by the
expected number of non-empty slots: 𝑛

𝑚 · (1−(1− 1
𝑚
)𝑛) . This simplifies

to 1
1−1/𝑒 = 𝑒/(𝑒 − 1) ≈ 1.58 for𝑚 = 𝑛 and large 𝑛.
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