
Data Partitioning for In-Memory Systems:
Myths, Challenges, and Opportunities

Zuyu Zhang, Harshad Deshmukh, Jignesh M. Patel
Computer Sciences Department

University of Wisconsin – Madison
{zuyu, harshad, jignesh}@cs.wisc.edu

ABSTRACT
Data partitioning is an important primitive for in-memory data pro-
cessing systems, and in many cases it is the key performance bottle-
neck. This important primitive has been the focus of many studies in
the past. However, as we argue in this paper, these previous studies
have been narrow in their scope leaving many unanswered questions
that are of paramount importance in practice. Consequently, to the
best of our knowledge, there is no clear answer to the seemingly
simple question of what is an efficient partitioning strategy for in-
memory data systems. In this paper, we carefully consider this data
partitioning primitive in the context of multi-core in-memory data
settings. We look at past work in this area and note that many of
these studies miss looking at many important aspects such as the
impact of tuple size and the impact of the data formats (e.g. row-
store vs. columnar-store). We build on this initial observation and
examine a number of data partitioning strategies, leading to a better
understanding of how data partitioning methods perform on modern
multi-core large memory systems. We note a few interesting obser-
vations, including how relatively simple methods work quite well in
practice across a broad spectrum of data parameters. To help future
researchers, we propose a partitioning benchmark so that work in
this area can take a broader and more realistic perspective when
working on data partitioning methods. Overall, the key contribution
of this paper is to separate the wheat from the chaff in previous
research in this area, analyze the relative performance of various
methods on a broad set of data parameters, and help provide a more
systematic evaluation framework for future work in this area.

1. INTRODUCTION
Data partitioning or data shuffling is an important operator in

analytic data processing systems. During query processing, this
operation is sometimes called explicitly and sometimes called im-
plicitly by other data processing operations such as join, aggregation,
and sort operations. For example, partitioning can speed up join
and aggregation operations as it trims unnecessary computation on
tuples [4, 8, 16, 17, 20, 24, 26]. Partitioning is a prerequisite step in
sort algorithms like radix sort [4, 10, 16, 23, 28]. Moreover, parti-
tioning is often called explicitly as an operator in data platforms to

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

exploit the benefits of partitioned parallelism [12, 14].
Given the importance of the partitioning operation, it is not sur-

prising that this important primitive has been the focus of many stud-
ies in the past. The lineage of some of the key methods in this area
is shown in Figure 1, and a detailed and comprehensive summary of
this body of work is shown in Table 1. The bulk of this prior work fo-
cuses on improving partitioning performance using techniques such
as cache-friendly algorithms [8, 17, 18, 26], leveraging hardware
parallelism primitives (SIMD [9, 19], multi-core [3, 7, 16, 23, 28],
many-core [6]), exploiting hardware features (non-temporal stream-
ing store [25, 28]), custom software-based techniques (software
prefetching [25], software-managed buffer [23, 25]), new data orga-
nizations (micro layout optimization [25]), and hardware accelera-
tors (FPGA [15], GPU [23, 27]).

When we scrutinize this previous work, we quickly learn that
many important aspects are simply missing from these studies, dra-
matically impacting the utility of these results in practice. For
example, to the best of our knowledge, the impact of tuple size and
the impact of the data formats (e.g. row-store vs. columnar-store)
has not been considered in a systematic way in these previous works.
Take the data format issue as another example. Do we know the
performance impact of partitioning a dataset when we change the
format of the dataset from a row-store to a columnar-store? Other
related questions that are paramount to answer when considering
implementing an efficient partitioning methods are: What methods
work well when the tuple size is “small” and what methods work
well when the tuple size is “large”? Are some partitioning methods
“versatile” so that they can cover a wide range of data parameters
and provide relatively good performance?

We set out to answer some of these questions, and in this paper
detail our findings. First, we note the limitation in the prior research
in this area, and take a small step in addressing this limitation by
presenting an analysis of many previous methods. We point to the
strengths and weakness of these methods.

Second, we propose that any work in partitioning should at least
consider three data parameters: tuple size, key size, and data format.
We propose a benchmark, simply called the Partitioning Benchmark,
to capture these key parameters.

Third, we use the newly-proposed Partitioning Benchmark to
examine some of the issues outlined above. A few key highlights of
our results are: a) Columnar-stores and row-stores often have similar
performance; b) A simple “textbook” radix-implementation with
prefetching works quite well across a broad range of parameters; c)
Increasing the number of partitions quickly leads to a big increase
in partitioning costs. The last point has potential implications for
techniques like over-partitioning, which are considered to be robust
ways to deal with data skew.

The remainder of this paper is organized as follows. In the next

1

Prefetch
(TBK-P)

Textbook
(TBK)

Multi-pass
(M)

Software-Managed
Buffer (SMB)

SIMD
(SIMD)

Streaming Store
(SMB-SS)

Micro Row Layout
(SMB-SS-MRL)

Figure 1: Radix Partition Strategies

section, we look at the parameters that have been used in previous
work and compare those to the ones in an end-to-end benchmark,
TPC-H. In Section 3 we propose the Partitioning Benchmark. Sec-
tion 4 describes a few popular radix partitioning-based techniques,
and Section 5 contains the experimental results. Section 6 briefly
discusses previous work on partitioning. We present our concluding
remarks in Section 7.

2. PARAMETER SPACE
The data-related parameters that can affect the performance of

data partitioning are large, and in our work we focus on a limited
set of key parameters. These parameters are: tuple size, key size,
storage format, and number of partitions.

2.1 Tuple size, Key size, and Data format
Let us consider the parameter tuple size first. For our purpose we

consider a tuple to have a key and a payload. The internal structure
of the payload is not important, and we are only concerned with its
size. The key size though is important as some methods only work
with certain key sizes. The tuple size represents how many bytes
of data must be moved for each input tuple across the partitioning
operation, but the input data format (we consider row-store and
columnar-store) can also impact the cost of moving the data.

As shown in Table 1, most prior work consider fixed size (8 or 16
bytes) tuples with numeric columns, and limited payload sizes.

However, queries and datasets are much more complicated in
practice. As a comparison point, consider the TPC-H benchmark [2].
Figure 2 shows three values for a selected set of queries in which
the Lineitem table is involved. The first measure is the projected
attributes from the Lineitem table, which represents the “effective
tuple size” for that query. Conceptually this measure represents the
size of the tuple on which that query operates. The other measures
are the size of the keys in the GROUP BY and the ORDER BY
clauses, and are the“key size” that a partitioning operation has to
work with.

The solid lines show the common tuple sizes considered by related
work (4, 8, and 16 bytes). Figure 2 highlights a gap between what
has been considered in evaluating partitioning methods in prior
work and what is needed by TPC-H queries. As we will show later,
these sizes have a large impact on performance and applicability of
partitioning methods.

Next, let us look at another dimension, which is the storage format
of input tables. Many previous works represent the columnar-store
as a Binary Association Table (BAT) [8, 17, 18], where each column
consists of the values and the tuple id. Thus, only the key column
is partitioned, and the other columns are untouched. Partitioning
is considered “done” when a partition file is produced with tuple
ids for the “value” component of the output. However, this leaves
the open question of what happens if one needs the actual values in

01 03 04 05 07 08 09 10 12 15 18 21

TPC-H Query

0

20

40

60

B
y
te

s

R4
R8

R16

Number of bytes used for partitioning in TPC-H queries

Group-by

Order-by

Lineitem

Figure 2: Width of tuple required for partitioning to execute
various TPC-H queries. The lines at 4, 8, and 16 bytes indicates
the tuple width considered by related work. For this analysis,
we assume that the Decimal, Date, and year columns occupy 8,
8, and 4 bytes, respectively, while a variable-length attribute
uses its maximal length.

the output (as one often does when considering end-to-end query
performance).

Now, consider a storage format in which actual data values are
present (rather than tuple ids). Figure 3 shows the end-to-end parti-
tion time using a standard radix partitioning approach (described in
detail later in Section 4.1) with 32 partitions, with data in both the
row-store and the columnar-store formats, when running in a single
thread. Although the columnar-store is generally faster than the
row-store in the Histogram computation phase, the Output phase is
much slower due to more TLB misses. For the col-4-16 case, the
large payloads (16 bytes) result in additional cache misses making
that a more expensive format (compared to row-4-16) to partition.
Thus, considering only BAT files misses the case when (even in a
columnar database) actual payloads have to be outputted.

row-4-4 col-4-4 row-4-16 col-4-16 row-8-8 col-8-8
0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(s
)

Histogram
Offset
Output

Figure 3: Storage format impact on Radix Partitioning 1 billion
tuples with 32 partitions using just 1 thread. The dataset names
are coded as format-keysize-payloadsize; for example,
col-4-16 is a dataset with two columns, 4 and 16 bytes, stored
in a columnar storage format. The three key phases of radix
partitioning are shown, the initial histogram creation phase,
creating offsets, and the final output. The second phase takes
negligible amount of time.

3. PARTITION BENCHMARK

2

Paper Approaches Radix bits tuple size† Number of Threads
Boncz et al. [8], Mane-
gold et al. [17, 18]

M 1-23 4/4 1

Cieslewicz et al. [11] M 1-18 8/8 1, 2, 4, 8, 16, & 32
Kim et al. [16] M, SIMD 6-20 4/4 4, 8
Satish et al. [23] M, SMB 8 4, 8, 16, 4/4 8
Wassenberg et al. [28] SMB-SS 8 4, 4/4 1-8
Blanas et al. [7] M 4, 6, 8-13, 15, 17 8/8 6/12 on Intel Nehalem, 8/64 on Sun UltraSPARC T2
Albutiu et al. [3] TBK 5-11 8/8 2, 4, 8, 16, 32, 64
Balkesen et al. [5] M 12-16 4/4, 8/8 1-8
Balkesen et al. [4] SMB-SS 2-11 4/4 1, 2, 4, 8, 16, 32, 64
Polychroniou et al. [20] SIMD, SMB-SS 2-13 4-4, 8-8 1-16
Schuhknecht et al. [25] TBK, TBK-P, SMB,

SMB-SS, SMB-SS-MRL
5-14 4/4, 8/8 1

Cho et al. [10] TBK 5-12 8/8, 10/90 1-32
Polychroniou et al. [19] TBK, SMB, SIMD 3-13 4, 4-4 1, 3, 7, 15, 30, 61, 122, 244
Schuh et al. [24] M, SMB-SS 8-16 4/4 4, 8, 16, 32, 60, 120
Kara et al. [15] SMB-SS 8-13 4/4 1, 2, 4, 8, 10
Stehle et al. [27] M 8 4, 8, 4/4, 8/8 12
Barthels et al. [6] M N/A 8/8 128, 256, 512, 1024, 2048, 4096 cores
†Tuple size notations: key column only (e.g., 4), key/payload sizes in the row-store (e.g., 4/4), key-payload size in the columnar-store (e.g., 4-4).

Table 1: Previous work on radix-based data partitioning methods. The tags for the key approaches are introduced in Figure 1.

We propose a partitioning benchmark to encourage a more holistic
evaluation of data partitioning methods. The benchmark has four
key parameters: 1) the tuple size, 2) the key size, 3) the storage
format, and 4) the number of partitions. Note that these parameters
are independent of each other and are important characteristics of
the physical organization of data in a table. The default benchmark
has 1 billion tuples, which is the only case we consider in this paper.

There are two key sizes in the benchmark (8 and 10 bytes),
three payload sizes (8, 90, and 92 bytes), and two data for-
mats (row-store and columnar-store). We aim to balance
the complexity of the benchmark and the factors that impact
partitioning methods. Thus, to run the entire benchmark one
only uses the 5 combinations that are shown in Table 2. The
names for each of the 5 datasets in the benchmark is simply
the storageformat-keysize-payloadsize string. For
example, row-10-90 refers to the (100 GB) dataset in row-store
with 10-byte keys and 90-byte payloads. For 100-byte tuples, both
the keys and payloads are simply treated as character arrays, as
in the Sort Benchmark [1, 13]. In fact, we use a modified version
of the Sort Benchmark as the data generator for the Partition
Benchmark. The keys generated follow both a uniform and a skew
distribution.

In Table 1, we also show the key and payload sizes that have
been used in previously proposed partitioning strategies. As one can
quickly observe, many of the previous methods have used limited
datasets to draw conclusions about partitioning performance.

The last component of the benchmark is reporting number for a
varying number of partitions. For this parameter, we aim to cover a
broad spectrum of hardware characters, including the TLB capacity,
and L1/L2/L3 cache sizes. The benchmark requires reporting results
for 8, 64, 512, 4K, and 32K partitions.

4. RADIX PARTITIONING TECHNIQUES
Radix partitioning is a starting point for partitioning in a mod-

ern processor with TLB, and we use this as the initial “textbook”
implementation, called TBK in Figure 1. In this section, we also

storage
format

key size payload
size

TBK
(-P/M)

SMB
(-SS
/-MRL)

SIMD

row 10 90 X X
8 8 X X X

column
10 90 X X
8 92 X X X†

8 8 X X X
†Only applicable to the key column.

Table 2: Partition Strategies in the Partition Benchmark

describe key previous implementation techniques of radix partition-
ing that improve on the canonical version, including prefetching,
multi-pass, software-managed buffer, and non-temporal streaming
store. (These methods are also shown in Figure 1.) We also discuss
whether these techniques apply to the columnar-store and different
tuple sizes cases. In the interest of space, we omit the SIMD ap-
proach, and refer the interested readers to the work by Polychroniou
et al. [19, 20].

4.1 Textbook Radix Partitioning Algorithm
The basic not-in-place radix partitioning, which we abbreviate

as TBK, operates in three phases as shown in Algorithm 1. By
not-in-place, we mean that we do not modify the inputs, but instead
have dedicated space for the partitioned output. All the partitions in
the output are stored continuously.

In the first Histogram phase, a histogram is computed for all
the partitions. The Offset phase then calculates the starting index
position value in the output (per partition) by computing the prefix
sum of the histogram. Finally, the Output phase writes the input
tuples to the corresponding partitions in the output at the index
calculated previously. Each partition keeps track of its index for
the next tuple location. Note that the second pass dominates the
overall execution time as it incurs “random” writes. (Even in the
in-memory settings, the random write patterns are important, as we
discuss below.)

3

Algorithm 1 The Textbook Radix Partitioning Algorithm
1: procedure RADIXPARTITION(input, output, radix_bit)
2: for i = 0 to num_tuples - 1 do
3: ++histogram[getRadixPartitionId(input[i], radix_bit)]
4: end for
5: offset← 0
6: for i = 0 to num_partitions - 1 do
7: dest[i] = offset
8: offset += histogram[i]
9: end for

10: for i = 0 to num_tuples - 1 do
11: partition_id← getRadixPartitionId(input[i], radix_bit)
12: output[dest[partition_id]] = input[i]
13: ++dest[partition_id]
14: end for
15: end procedure
16: procedure GETRADIXPARTITIONID(key, radix_bit)
17: mask← (1 « radix_bit) - 1
18: return (key & mask) . LSB version
19: end procedure

The radix partition has at least two ways to compute the partition
id: use the most significant bits (MSB) or the least significant bits
(LSB). Algorithm 1 shows the LSB implementation that uses the
lowest radix_bit bits in the key column. Our partition function
is based on the radix-cluster algorithm proposed by Manegold et
al. [18]. We partition tuples based on the rightmost p bits of the
key column to 2p partitions. Richter et al. [22] summaries more
advanced hash schemes for different data distributions.

The random writes in the Output phase have two performance
issues: TLB misses and cache misses. In general, each partition
in the output resides in its own memory page, and thus needs to
use/occupy one TLB entry for the virtual address translation. If
the number of partition is greater than the number of TLB entries
(typically 64 on modern Intel processors), then the output phase will
encounter a large number of TLB misses, impacting performance.
(Future hardware that does not need TLBs and uses direct mapping
will likely have a far larger tolerance to the partitioning parameter.)

With radix partitioning another technique that can help improve
performance is using software prefetching hints, where by the pro-
grammer deliberately introduces prefetching instructions for antic-
ipated write locations. This technique can result in better cache
performance, as the the processor may fetch the memory address
into the cache, and thus reduce the compulsory cache misses. This
is a general optimization, and works across any tuple size.

4.2 Multi-pass (M)
Boncz et al. [8] observed the TLB thrashing problem, and pro-

posed a multi-pass partition algorithm called “radix-cluster”, where
TBK (cf. Section 4.1) is invoked on each pass. In each pass the
input is divided into B partitions, where B is less than the number
of L1 TLB entries. For example, to partition a dataset into 213 parti-
tions, on a machine with 64 L1 TLB entries, 3 passes are used: the
first pass partitions the data using the leftmost first 5 bits (32-way
partitioning), the second uses the next 5 bits, and the last uses the
next 3 bits.

4.3 Software-Managed Buffers (SMB)
Software-managed buffer [23] was proposed as a technique to

improve both TLB and cache thrashing. It assigns each partition
a fixed size region (at least one cache line size) to combine the
output(s). Each partition in the buffer maintains a “fill-up” status.

When a partition region fills up, the tuples in the region are written
to the actual output destination.

This approach introduces additional overheads, since it writes the
output tuples twice. Even worse, for the second write, the cache
could require the processor to fetch the corresponding cache line of
the output location (for the write).

4.4 Streaming Stores (SMB-SS)
Non-temporal streaming store was proposed [20, 25] to avoid

the cache pollution resulting from the second write that is incurred
by the software-managed buffer technique. It does this by using
a special instruction that leverages dedicated “write-combining”
hardware registers to bypass the cache and directly transfer to the
memory destinations. This approach, however, requires that the
output being written must align to a fixed size (e.g., 16 or 32 bytes
on Intel processors). Thus, the start index of each partition in the
output must be padded to this fixed size. In other words, this method
requires a buffer size that is larger than the buffer size that SMB uses
when tuples do not pack nicely inside a single cache line (e.g., a 10-
byte column) or are large (e.g., 90-byte column in the benchmark).

Schuhknecht et al. [25] proposed a micro row layout optimization
(SMB-SS-MRL) to optimize using the cache space, and to possibly
reduce the number of cache accesses. Recall that when using the
SMB approach, two states are maintained for each partition: the
output destination for the next tuple to write, and the fill-up state
of the buffer. Instead of storing these two pieces of information
separately, the optimization stores them in the last entry of the buffer
for each partition. Thus, in general it needs to access the cache once
(and twice at most, but rarely).

4.5 Parallel Radix Partitioning
While the discussion above did not consider multi-threaded ex-

ecution, all these methods can be run in multi-treaded mode. One
simply divides the input into subsets/sub-arrays, and assigns each
sub-array to a different thread. After all threads finish computing
the histogram on its own sub-array, we calculate the global offset of
the output buffer for all partitions and threads. Finally, in the output
phase, each thread writes the output to its own pre-computed region
with no contention. In the output phase, all optimizations described
above apply.

For the multi-pass (M) approach the first pass does the same
described above. For the remaining passes, each thread takes as
input one partitioned segment from the previous, and repartitions it
into sub-partitions using different bits as the previous one.

4.6 Implications for Columnar-Store
When the input data is in a columnar-store format, some of the

techniques above do not apply. When partitioning data in row-
store format, the tuple size is a key parameter. With a columnar-
store foramt, however, the size of each of the columns also plays a
critical role. The SIMD approach can only process data using the
scatter instructions that can work efficiently only when the column
width/size fits in the SIMD vector registers, which are 128-, 256-,
or 512-bit wide. For column that are 10-, 90-, or 92-bytes wide (see
in Table 2), it is not easy to load the tuples efficiently. On the other
hand, the SMB-SS approach requires that the buffer size per partition
aligns with the streaming write width (e.g., 128-, 256-, or 512-bit).
For a column whose size can be divided by the streaming write
width, choosing the streaming write width as the miminal buffer size
per partition is optimal for cache locality. Otherwise, we need to
pack multiple tuples into a buffer whose size is multiple times that
of the streaming write width (For example, when using the 256-bit
streaming store instruction, _mm256_stream_si256, and the

4

0 8 64 512 4,096 32,768
Numbers of Partitions

0

10

20

30

40

50

60

70
Ex

ec
ut

io
n

Ti
m

e
(s

)
TBK-row-8-8
TBK-col-8-8
TBK-P-row-8-8
TBK-P-col-8-8
SMB-row-8-8
SMB-col-8-8

SMB-SS-row-8-8
SMB-SS-col-8-8
SMB-SS-MRL-row-8-8
SMB-SS-MRL-col-8-8
M-row-8-8
M-col-8-8

0 8 64 512 4,096 32,768
Numbers of Partitions

0

50

100

150

200

250

300

350

400

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-10-90
TBK-col-10-90
TBK-col-8-92
TBK-P-row-10-90
TBK-P-col-10-90
TBK-P-col-8-92

SMB-SS-row-10-90
SMB-SS-col-10-90
SMB-SS-col-8-92
M-row-10-90
M-col-10-90
M-col-8-92

Figure 4: Partitioning 1 billion 16-byte tuples using a single
thread.

Figure 5: Partitioning 1 billion 100-byte tuples using a single
thread.

col-10-90 format, we have to group 16 tuples per partition as
the minimal buffer size, while col-8-92 just needs to group 8).
Note that the larger the buffer size, the poor the cache locality. Thus,
we should choose the minimal buffer size for best performance.

5. EVALUATION
In this section, we present results comparing various partitioning

methods. We focus our study on the following methods: textbook
radix partitioning with and without prefetching (cf. Section 4.1),
with software-managed buffer (cf. Section 4.3), with streaming
store (cf. Section 4.4), with streaming store and a micro layout
optimization (cf. Section 4.4), and with multi-pass (cf. Section 4.2).

We have implemented these in a stand-alone C++ program, and
use the Partition Benchmark datasets (cf. Section 3).

Our experiments were conduct on a “bare-metal” CloudLab
server [21]. The machine has 384 GB of main memory and two 2.6
GHz Intel Xeon Gold (Skylake) processors, each with 16 physical
cores. Each core has a dedicated 32 KB 8-way L1 instruction cache,
a dedicated 32 KB 8-way L1 data cache, a dedicated 1 MB 16-way
set L2 unified cache, and it shares a 22 MB 11-way L3 cache with
other cores on the same processor. In 4KB page mode, each core
has 64 entries in a 4-way L1 TLB. (There is a separate TLB for
data and instructions). The measured memory bandwidth for 16
threads is 96.2 GB/s. The machine runs Ubuntu 18.04 LTS, and
we compiled our programs using Clang 6.0 with -O3 flag. We ran
each experiment five times, and present the average of the last four.
The difference in the runtime for each experiment was typically less
than 10%.

5.1 Single-threaded Execution
Figure 4 compares the six partitioning approaches on the two

8-8 datasets (one dataset is in a row-store format and the other in a
columnar-store format). (Thoughout this paper we use a compact
representation to show performance results, as exemplified by this
figure. In each figure, we use a different color for each partitioning
algorithm, and we use a different icon shape to distinguish between
the row-store and the column-store cases. The x-axis is partitioned
into buckets as separated by vertical lines, and in each bucket, we
show the results for each algorithm and for each storage format.)

From Figure 4, we observe that the storage formats do not have
a large impact on performance. However, we note that are certain
“cliff” points around the TLB sizes and there is a difference in
behavior when the number of partitions is above or below that

point. This can be seen in Figure 3 (shown earlier), where the
storage formats have a large impact with 32 partitions. But, when
the number of partitions is above the number of TLB entries, the
storage formats have a small impact as shown in Figure 4, except
for the multi-pass (M) approach. (We note that in our dataset the
payload is treated as a single column, and if that were to be treated
as multiple columns, then we expect the performance of partitioning
columnar-stores will decrease.)

Overall from Figure 4, we also note that the TBK-P (textbook
radix-partitioning with prefetching) performs well, except in the
region where the number of partitions is just above the number of
TLB entries and below the number of L1 cache lines (i.e. between
64 and 512). In this region for large tuples the SMB-SS methods
generally outperforms TBK-P by about 20%. For 16-byte tuples in
the row-store format, the multi-pass (M) approach works well when
the number of partitions is large (i.e., between 4K and 32K).

This experiment also reveals that there appear to be three zones of
performance based on the number of partitions, below the number
of TLB entries, above the number of L1 cache lines, and in between
those two. This behavior is important in picking the number par-
titions, especially if there is flexibility in choosing the number of
partitions. From Figure 4, we also see that increasing the number
of partitions dramatically increases the cost to partition the data,
but the multi-pass (M) approach has an interesting behavior for the
row-store case as its performance stays the same across a broad
range of partitions. For example in Figure 4 the M-row (the grey
circular dot) performance is the same for 64 and 512 partitions, 4K
and 32K partitions, respectively.

Next, we switch to using 100 byte records. Note in this case the
SIMD partitioning methods mostly cannot be used. The TBK and
SMB-based methods however are quite versatile and can deal with
this dataset too. These results are shown in Figure 5. Compared to
Figure 4, we note that overall partitioning is about 5X slower on this
dataset which is about 6X larger. The SMB-SS method performs
well for a medium numbers of partitions when the total buffer size
mostly fits in the L2 cache. On the other hand, once the buffer size
reaches the L3 cache size, the simply TBK-P is better performant
than SMB-SS. Surprisingly, contrast to the 16-byte tuples case, the
multi-pass (M) approach does not perform well in 100-byte ones,
and we believe the poor cache behavior contributes to that, and the
columnar-store is even worse.

5.2 Multi-threaded Single-socket Execution
Next, we expand our evaluation to the multi-threaded case. We

5

0 8 64 512 4,096 32,768
Numbers of Partitions

0

2

4

6

8

10

12

14

16

18
Ex

ec
ut

io
n

Ti
m

e
(s

)
TBK-row-8-8
TBK-col-8-8
TBK-P-row-8-8
TBK-P-col-8-8
SMB-row-8-8
SMB-col-8-8

SMB-SS-row-8-8
SMB-SS-col-8-8
SMB-SS-MRL-row-8-8
SMB-SS-MRL-col-8-8
M-row-8-8
M-col-8-8

0 8 64 512 4,096 32,768
Numbers of Partitions

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-10-90
TBK-col-10-90
TBK-col-8-92
TBK-P-row-10-90
TBK-P-col-10-90
TBK-P-col-8-92

SMB-SS-row-10-90
SMB-SS-col-10-90
SMB-SS-col-8-92
M-row-10-90
M-col-10-90
M-col-8-92

Figure 6: Partitioning 1 billion 16-byte (8-8) tuples using 4
threads. Figure 7: Partitioning 1 billion 100-byte tuples using 4 threads.

0 8 64 512 4,096 32,768
Numbers of Partitions

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-8-8
TBK-col-8-8
TBK-P-row-8-8
TBK-P-col-8-8
SMB-row-8-8
SMB-col-8-8

SMB-SS-row-8-8
SMB-SS-col-8-8
SMB-SS-MRL-row-8-8
SMB-SS-MRL-col-8-8
M-row-8-8
M-col-8-8

0 8 64 512 4,096 32,768
Numbers of Partitions

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-10-90
TBK-col-10-90
TBK-col-8-92
TBK-P-row-10-90
TBK-P-col-10-90
TBK-P-col-8-92

SMB-SS-row-10-90
SMB-SS-col-10-90
SMB-SS-col-8-92
M-row-10-90
M-col-10-90
M-col-8-92

Figure 8: Partitioning 1 billion 16-byte (8-8) tuples using 16
threads. Figure 9: Partitioning 1 billion 100-byte tuples using 16 threads.

have run the experiments with 4 (cf. Figures 6 and 7) and 16 threads
(cf. Figures 8 and 9).

Overall, the observations from the single-threaded experiments
hold. We also note that 1 to 4 threads performance scales nicely
across all methods by about 4X (these results are omitted in the
interest of space), but from 1 to 16 the overall performance scales
by about 12X, as the memory bus saturates in most cases.

For the 100-byte columnar-store, we find in some case (e.g., 4K
partitions with 4-thread) the col-10-90 format is much slower
compared to the col-8-92 counterpart. As described before (cf.
Section 4.6), the former needs to pack twice as many tuples as the
latter. We note that for the 256-bit version of streaming writes, in
both the 10-byte and the 90-byte column cases, we need to group
16 tuples to align the boundary of the streaming write width, while
the 8-byte and 92-byte needs to group just 8 tuples, and thus may
encounter many more unaligned output addresses that can not lever-
age the streaming writes. This situation gets worse as the number of
threads increase.

5.3 Data Skew
In this section, we present the results with skewed data. The

skewed datasets for 16-byte tuples (cf. Figure 10, 12, and 14)
were generated according to the Zipf distribution (α = 1.0), while

the dataset with 100-byte tuples (cf. Figure 11, 13, and 15) was
generated according to the skew settings in the Sort Benchmark,
where 3 out of 4 tuples are skewed.

Compared with the uniform dataset case, we observe that radix
partition is resilient to data skew, due to its technique of using prefix
sum calculations to determine the output destinations. The behavior
when using single-thread (Figure 10 and Figure 11) is similar for the
4 threads (Figure 12 and Figure 13) and 16 threads cases (Figure 14
and Figure 15).

5.4 Discussion
Table 3 describes the recommended partition strategies, depend-

ing on the number of partitions. When the number of partitions is
less than that of TLB entries, the textbook approach with prefetching
is a good choice. If we have at least one L1 cache line for each
partition, i.e. the number of partitions is between the number of
TLB entries and the number of L1 cache lines, then the streaming
store approach is often the best performer (by about 20% over the
textbook method). When the number of partitions is more than the
number of L1 cache lines, TBK-P starts to become the algorithm of
choice in general, except when partitioning dataset that are in the
row-store format and have “small” tuple sizes (16 bytes or smaller).
This exceptional cases is better handled using the multi-pass (M)

6

0 8 64 512 4,096 32,768
Numbers of Partitions

0

10

20

30

40

50

60

70
Ex

ec
ut

io
n

Ti
m

e
(s

)
TBK-row-8-8
TBK-col-8-8
TBK-P-row-8-8
TBK-P-col-8-8
SMB-row-8-8
SMB-col-8-8

SMB-SS-row-8-8
SMB-SS-col-8-8
SMB-SS-MRL-row-8-8
SMB-SS-MRL-col-8-8
M-row-8-8
M-col-8-8

0 8 64 512 4,096 32,768
Numbers of Partitions

0

50

100

150

200

250

300

350

400

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-10-90
TBK-col-10-90
TBK-col-8-92
TBK-P-row-10-90
TBK-P-col-10-90
TBK-P-col-8-92

SMB-SS-row-10-90
SMB-SS-col-10-90
SMB-SS-col-8-92
M-row-10-90
M-col-10-90
M-col-8-92

Figure 10: Partitioning 1 billion 16-byte tuples with skew using
a single thread.

Figure 11: Partitioning 1 billion 100-byte tuples with skew using
a single thread.

0 8 64 512 4,096 32,768
Numbers of Partitions

0

2

4

6

8

10

12

14

16

18

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-8-8
TBK-col-8-8
TBK-P-row-8-8
TBK-P-col-8-8
SMB-row-8-8
SMB-col-8-8

SMB-SS-row-8-8
SMB-SS-col-8-8
SMB-SS-MRL-row-8-8
SMB-SS-MRL-col-8-8
M-row-8-8
M-col-8-8

0 8 64 512 4,096 32,768
Numbers of Partitions

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-10-90
TBK-col-10-90
TBK-col-8-92
TBK-P-row-10-90
TBK-P-col-10-90
TBK-P-col-8-92

SMB-SS-row-10-90
SMB-SS-col-10-90
SMB-SS-col-8-92
M-row-10-90
M-col-10-90
M-col-8-92

Figure 12: Partitioning 1 billion 16-byte (8-8) tuples with skew
using 4 threads.

Figure 13: Partitioning 1 billion 100-byte tuples with skew using
4 threads.

method. Thus, for the algorithms that we compare in this paper, the
simple TBK-P appears to be the algorithm of choice if a database
implementer had to pick just one methods to implement.

partitions TBK-P SMB-SS M
<= 64 (# TLB entries) X
<= 512 (L1 cache lines) X
> 512 X X†

†Choose for small (no larger than 16 bytes) tuples in the row-store format.

Table 3: Partitioning Strategy (for the Intel Xeon Skylake pro-
cessors).

We also suspect that there is another performance “cliff” point
around the number of caches lines in the L2 cache (16K), and the
use of a SIMD method may be worth investigating. But, we leave
that investigation as part of future work.

6. RELATED WORK
Data partitioning as an important step for parallel data process-

ing, and has been well studied in the community. Boncz et al. [8]
identified the TLB thrashing problem, and proposed multi-pass
radix-cluster algorithms where in each pass the number of parti-

tions is bound by the TLB capacity. Satish et al. [23] optimizes
the partition algorithm by introducing software-managed buffers.
Kim et al. [16] leverages SIMD for partitioning data. Polychroniou
et al. [20] conduct a comprehensive analysis on data partitioning
in multiple dimensions, including multiple partitioning approaches
(i.e., hash, radix, and range) memory hierarchy (in-cache or not),
memory usage (in-place or not), and NUMA awareness. They later
proposed the SIMD approach for partitioning tuples in the columnar-
store [19]. Schuhknecht et al. [25] compared various implementa-
tions of radix partitioning using row-store formats when using a
single thread, including software prefetching, software-managed
buffer, non-temporal streaming store, and proposed the micro layout
optimization. Kara et al. [15] proposed fast FPGA accelerated parti-
tioning techniques. The applicability of these and other methods is
shown in Table 1. No previous work takes a comprehensive look at
data partitioning.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we examine the crucial data partitioning primitive

and highlight the need to take a broader perspective considering a
range of data characteristics when designing and evaluating algo-
rithms for this operation. A high-level summary of which methods

7

0 8 64 512 4,096 32,768
Numbers of Partitions

0

1

2

3

4

5

6
Ex

ec
ut

io
n

Ti
m

e
(s

)
TBK-row-8-8
TBK-col-8-8
TBK-P-row-8-8
TBK-P-col-8-8
SMB-row-8-8
SMB-col-8-8

SMB-SS-row-8-8
SMB-SS-col-8-8
SMB-SS-MRL-row-8-8
SMB-SS-MRL-col-8-8
M-row-8-8
M-col-8-8

0 8 64 512 4,096 32,768
Numbers of Partitions

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
)

TBK-row-10-90
TBK-col-10-90
TBK-col-8-92
TBK-P-row-10-90
TBK-P-col-10-90
TBK-P-col-8-92

SMB-SS-row-10-90
SMB-SS-col-10-90
SMB-SS-col-8-92
M-row-10-90
M-col-10-90
M-col-8-92

Figure 14: Partitioning 1 billion 16-byte (8-8) tuples with skew
using 16 threads.

Figure 15: Partitioning 1 billion 100-byte tuples with skew using
16 threads.

work well overall is shown in Table 3, which surprisingly shows that
a simple textbook implementation and the software-managed buffer
one are quite versatile. We also propose the Partitioning Benchmark
for broader research use in this area. As part of future work, we
plan to extend our study to multi-socket settings, and also consider
the impact of future hardware with dramatically different TLB and
cache architectures.

Acknowledgments
This work was supported in part by CRISP, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA and by a
gift donation from Google.

References
[1] Sort benchmark - Homepage. http://sortbenchmark.org/.
[2] TPC-H - Homepage. http://www.tpc.org/tpch/.
[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-

merge joins in main memory multi-core database systems. Proc. VLDB
Endow., 5(10):1064–1075, June 2012.

[4] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-
memory joins: Sort vs. hash revisited. Proc. VLDB Endow., 7(1):85–96,
Sept. 2013.

[5] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-memory
hash joins on multi-core cpus: Tuning to the underlying hardware.
ICDE, pages 362–373, April 2013.

[6] C. Barthels, I. Müller, T. Schneider, G. Alonso, and T. Hoefler. Dis-
tributed join algorithms on thousands of cores. Proc. VLDB Endow.,
10(5):517–528, Jan. 2017.

[7] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main
memory hash join algorithms for multi-core cpus. SIGMOD, pages
37–48, New York, NY, USA, 2011. ACM.

[8] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture
optimized for the new bottleneck: Memory access. VLDB, pages
54–65, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

[9] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K.
Chen, A. Baransi, S. Kumar, and P. Dubey. Efficient implementation
of sorting on multi-core simd cpu architecture. Proc. VLDB Endow.,
1(2):1313–1324, Aug. 2008.

[10] M. Cho, D. Brand, R. Bordawekar, U. Finkler, V. Kulandaisamy, and
R. Puri. Paradis: An efficient parallel algorithm for in-place radix sort.
Proc. VLDB Endow., 8(12):1518–1529, Aug. 2015.

[11] J. Cieslewicz and K. A. Ross. Data partitioning on chip multiprocessors.
DaMoN, pages 25–34, New York, NY, USA, 2008. ACM.

[12] D. J. DeWitt and J. Gray. Parallel database systems: The future of
database processing or a passing fad? SIGMOD Record, 19(4):104–
112, 1990.

[13] A. et al. A measure of transaction processing power. Datamation,
31(7):112–118, Apr. 1985.

[14] G. Graefe, R. L. Cole, D. L. Davison, W. J. McKenna, and R. H.
Wolniewicz. Extensible query optimization and parallel execution
in volcano. In Query Processing for Advanced Database Systems,
Dagstuhl, pages 305–335. Morgan Kaufmann, 1991.

[15] K. Kara, J. Giceva, and G. Alonso. Fpga-based data partitioning.
SIGMOD, pages 433–445, New York, NY, USA, 2017. ACM.

[16] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey. Sort vs. hash revisited: Fast
join implementation on modern multi-core cpus. Proc. VLDB Endow.,
2(2):1378–1389, Aug. 2009.

[17] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory
join on modern hardware. IEEE Transactions on Knowledge and Data
Engineering, 14(4):709–730, July 2002.

[18] S. Manegold, P. A. Boncz, and M. L. Kersten. What happens during
a join? dissecting cpu and memory optimization effects. VLDB,
pages 339–350, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[19] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking simd
vectorization for in-memory databases. SIGMOD, pages 1493–1508,
New York, NY, USA, 2015. ACM.

[20] O. Polychroniou and K. A. Ross. A comprehensive study of main-
memory partitioning and its application to large-scale comparison- and
radix-sort. SIGMOD, pages 755–766, New York, NY, USA, 2014.
ACM.

[21] R. Ricci, E. Eide, and C. Team. Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications. ;
login:: the magazine of USENIX & SAGE, 39(6):36–38, 2014.

[22] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis
of hashing methods and its implications on query processing. Proc.
VLDB Endow., 9(3):96–107, Nov. 2015.

[23] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and
P. Dubey. Fast sort on cpus and gpus: A case for bandwidth oblivious
simd sort. SIGMOD, pages 351–362, New York, NY, USA, 2010.
ACM.

[24] S. Schuh, X. Chen, and J. Dittrich. An experimental comparison
of thirteen relational equi-joins in main memory. SIGMOD, pages
1961–1976, New York, NY, USA, 2016. ACM.

[25] F. M. Schuhknecht, P. Khanchandani, and J. Dittrich. On the surprising
difficulty of simple things: The case of radix partitioning. Proc. VLDB
Endow., 8(9):934–937, May 2015.

[26] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious algorithms
for relational query processing. VLDB, pages 510–521, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[27] E. Stehle and H.-A. Jacobsen. A memory bandwidth-efficient hybrid
radix sort on gpus. SIGMOD, pages 417–432, New York, NY, USA,
2017. ACM.

[28] J. Wassenberg and P. Sanders. Engineering a multi-core radix sort.
Euro-Par, pages 160–169, Berlin, Heidelberg, 2011. Springer-Verlag.

8

http://sortbenchmark.org/
http://www.tpc.org/tpch/

	Introduction
	Parameter Space
	Tuple size, Key size, and Data format

	Partition Benchmark
	Radix Partitioning Techniques
	Textbook Radix Partitioning Algorithm
	Multi-pass (M)
	Software-Managed Buffers (SMB)
	Streaming Stores (SMB-SS)
	Parallel Radix Partitioning
	Implications for Columnar-Store

	Evaluation
	Single-threaded Execution
	Multi-threaded Single-socket Execution
	Data Skew
	Discussion

	Related Work
	Conclusions and Future Work

