
Elastic In-Memory Transaction Processing for Multi-Tenant
Database Systems

Seyedeh Sharareh Mirzargar
seyedeh.mirzargar@epfl.ch

ABSTRACT
Traditional database systems try to maintain high through-
put in the presence of load spikes by manually reconfigur-
ing the database system or by overprovisioning the hard-
ware. Recent research focuses on providing elasticity for
distributed scale-out OLTP engines. For example, E-Store
[1] provides an end-to-end design for shared-nothing scale-
out OLTP engines. SQLVM [2] provides absolute resource
assurance for relational database-as-a-service providers and
mostly focus on providing performance isolation rather than
fine-grained elasticity.

All current approaches achieve elasticity by adding some
number of identical commodity servers to the database clus-
ter. This fits a transaction computing model that has single-
threaded execution engine per partition and a fixed number
of partitions per node. However, it fails for environments
in which partitions can be accessed by a variable number of
threads and nodes host variable numbers of partitions.

It is possible to provide elasticity for OLTP engines by
keeping the number of servers the same and increasing the
size of the servers by adding additional DRAM or CPU
cores. Public cloud vendors like Amazon AWS have made
it easy to scale up by simply choosing a different instance
type [3]. Achieving elasticity in a scale-up environment is a
different problem compared to scale-out systems. Data par-
titioning and migration play a crucial role in the scale-out
scenario but they are irrelevant to a scale-up setting in which
all the data is stored in globally-accessible shared memory.
Moreover, resources are allocated in a fine-granularity (e.g.
core) in a scale-up environment in contrast to the scale-out
environment where resources are allocated at the granularity
of a whole computing node.

In order to exploit such fine-grained flexibility, an OLTP
engine should be able to react to dynamic changes in the
underlying processor topology. It should be able to dynam-
ically manage its thread pool. When cores are added to the
OLTP engine, it should be able to start running new threads
and when we release cores from it, threads should stop ac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIDR ’13 January 13–16, 2019, California, USA
c© 2018 ACM. ISBN . . . $15.00

DOI:

cessing those cores. Data placement is crucial in a scale-up
setting. Cross socket accesses have higher latency compared
to accessing data that is resident in the local socket. An-
other interesting research direction is identifying the right
amount of resources that we need to provision and also how
we should change the hardware topology to get the best
performance improvement.

CCS Concepts
•Computer systems organization → Cloud comput-
ing;

Keywords
OLTP,Main Memory, Multi-Tenancy

1. REFERENCES
[1] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J.

Elmore, A. Aboulnaga, A. Pavlo, and M. Stonebraker,
“E-store: Fine-grained elastic partitioning for
distributed transaction processing systems,” Proc.
VLDB Endow., vol. 8, no. 3, pp. 245–256, Nov. 2014.
[Online]. Available:
http://dx.doi.org/10.14778/2735508.2735514

[2] V. Narasayya, S. Das, M. Syamala, S. Chaudhuri,
F. Li, and H. Park, “Sqlvm: Performance isolation in
multi-tenant relational database-as-a-service,” in
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’13.
New York, NY, USA: ACM, 2013, pp. 1077–1080.
[Online]. Available:
http://doi.acm.org/10.1145/2463676.2463686

[3] “Amazon ec2 pricing,”
https://aws.amazon.com/ec2/dedicated-hosts/,
accessed: 2010-09-30.

