The Fast and the Private: Task-based Dataset Search
Abstract
Recent platforms utilize ML task performance metrics, not metadata keywords, to search large data corpus. Requesters provide an initial dataset, and the platform searches for additional datasets that augment—join or union—requester’s dataset to most improve the model (e.g., linear regression) performance. Although effective, current task-based data searches are stymied by (1) high latency which deters users, (2) privacy concerns for regulatory standards, and (3) low data quality which provides low utility. We introduce Mileena, a fast, private, and high-quality task-based dataset search platform. At its heart, Mileena is built on pre-computed semi-ring sketches for efficient ML training and evaluation. Based on semiring, we develop a novel Factorized Privacy Mechanism that makes the search differentially private and scales to arbitrary corpus sizes and numbers of requests without major quality degradation. We also demonstrate the early promise in using LLM-based agents for automatic data transformation and applying semi-rings to support causal discovery and treatment effect estimation.