
Seventh International Workshop on

Data Management for Sensor Networks

(DMSN’10)

September 13, 2010

Singapore

in conjunction with the

36th International Conference on Very Large Data Bases

Editors: Demetris Zeinalipour

Wang-Chien Lee

Sponsored by:

Foreword

It is our great pleasure to welcome you all to the 7th International Workshop on Data Management for Sensor

Networks (DMSN’10), which takes place in Singapore on September 13, 2010. The annual DMSN workshop is a

leading international forum that covers all important aspects of sensor data management, including data acquisition,

processing, and storage in remote wireless networks; the handling of uncertain sensor data; and the management

of heterogeneous and sometimes sensitive sensor data in databases. It brings together a wide range of researchers,

practitioners, and users to explore and share scientific and industrial challenges that arise in the aforementioned

contexts. We hope you find the workshop academically stimulating and the location interesting and enjoyable.

One of our main objectives was to bring forward an exciting research program, spanning both predominant and

emerging fields in data management for sensor networks. DMSN’10 received 10 submissions for research papers, out

of those we accepted only 6 papers. The accepted papers were thematically organized in the following categories:

Data Provenance, Query Processing, Mobile Sensor Networks and Outlier Detection in Sensor Networks. In addition

to research contributions, DMSN’10 features an exciting keynote talk by Prof. Kian-Lee Tan (National University

of Singapore, Singapore), with title: “What’s NExT? Sensor + Cloud!?” Finally, the program also features a

panel discussion with title “Future Directions in Sensor Data Management: A Panel Discussion”, with panelists

Dr. Yanlei Diao (University of Massachusetts Amherst, USA), Prof. Le Gruenwald (National Science Foundation,

USA), Prof. Christian S. Jensen (Aarhus University) and Prof. Kian-Lee Tan (National University of Singapore,

Singapore)

Besides authors that provided the content of the program, several other people have contributed to the successful

organization of DMSN’10. In particular, we would like to thank our technically and geographically diverse Technical

Program Committee (TPC), which enabled us to make high quality decisions. Our TPC comprised of 32 members

that spanned the following continents: North America (50%), Europe (31%) and Asia (19%). Our TPC board

came from both Academia (87%) and Industrial Research Labs (13%). We owe our sincere gratitude to all of these

members for their excellent work in reviewing the papers and providing valuable feedback under a tight schedule.

Every paper was reviewed at least by 3 TPC members. We would like to thank Microsoft for granting us permission

to use the Microsoft Conference Management System (CMT) and the entire CMT support team, for their help in

setting up and managing the online review process. The latest features in CMT made it extremely easy to cope

with virtually all aspects of the paper evaluation process.

Our special thanks also go to the general chairs of DMSN’10 Mario Nascimento (University of Alberta, Canada) and

Nesime Tatbul (ETH Zurich, Switzerland) for their frequent advice that guided us through many of the questions

and concerns that arose along the way. We are also grateful to our publicity chair Olga Papaemmanouil (Brandeis

University, USA) for setting up and maintaining the DMSN’10 website but also for her timely dissemination activ-

ities. Finally, we would like to thank the DMSN’10 Steering Committee: Yanlei Diao (University of Massachusetts

Amherst, USA), Christian S. Jensen (Aarhus University, Denmark), Alexandros Labrinidis (University of Pitts-

burgh, USA), Samuel R. Madden (Massachusetts Institute of Technology, USA); and the VLDB organization, in

particular the VLDB workshop chairs: Amol Deshpande (University of Maryland, USA), Zachary G. Ives (Uni-

versity of Pennsylvania, USA) and Anthony Kum Hoe Tung (National University of Singapore, Singapore) as well

as the VLDB proceeding chairs: Yi Chen (Arizona State University, USA) and Y.C. Tay (National University of

Singapore, Singapore).

Despite the economically hard times we were very fortunate to receive a sponsorship from CONET (EU’s Coop-

erating Objects Network Of Excellence), which deals with research in the areas of embedded systems, pervasive

computing and wireless sensor networks.

ii

Last and definitely not the least, we want to thank all authors who submitted their work to DMSN’10, our panelists

and all of you participating at this great workshop.

We sincerely hope you enjoy the workshop, VLDB, and Singapore!

Demetris Zeinalipour Wang-Chien Lee

DMSN’10 PC Co-Chair DMSN’10 PC Co-Chair
Department. of Computer Science Department of Computer Science and Engineering
University of Cyprus The Pennsylvania State University
CY-1678 Nicosia, Cyprus University Park, PA 16802, USA
(dzeina@cs.ucy.ac.cy) (wlee@cse.psu.edu)

iii

DMSN 2010 Workshop Organization

General Chairs: Mario A. Nascimento (University of Alberta, Canada)
Nesime Tatbul (ETH Zurich, Switzerland)

Program Committee Chairs: Wang-Chien Lee (Pennsylvania State University, USA)
Demetris Zeinalipour (University of Cyprus, Cyprus)

Steering Committee: Yanlei Diao (University of Massachusetts Amherst, USA)
Christian S. Jensen (Aarhus University, Denmark)
Alexandros Labrinidis (University of Pittsburgh, USA)
Samuel R. Madden (Massachusetts Institute of Technology, USA)

Program Committee: Karl Aberer (EPF Lausanne, Switzerland)
Magdalena Balazinska (University of Washington, USA)
Erik Buchmann (Karlsruhe Institute of Technology, Germany)
Ugur Cetintemel (Brown University, USA)
Lei Chen (Hong Kong University of Science and Technology, Hong Kong)
Panos K. Chrysanthis (University of Pittsburgh, USA)
Yanlei Diao (University of Massachusetts Amherst, USA)
Alvaro A.A. Fernandes (University of Manchester, UK)
Lin Guo (Hong Kong University of Science and Technology, Hong Kong)
Takahiro Hara (Osaka University, Japan)
Wei Hong (Arch Rock Corporation, USA)
Christian S. Jensen (Aarhus University, Denmark)
Vana Kalogeraki (Athens University of Economics and Business, Greece)
Yannis Kotidis (Athens University of Economics and Business, Greece)
Philip Levis (Stanford University, USA)
Samuel R. Madden (Massachusetts Institute of Technology, USA)
Sebastian Michel (Saarland University, Germany)
Gail Mitchell (BBN, USA)
Mohamed Mokbel (University of Minnesota, USA)
Rene Muller (ETH Zurich, Switzerland)
Suman Nath (Microsoft Research Redmond, USA)
Ioanis Nikolaidis (University of Alberta, Canada)
Olga Papaemmanouil (Brandeis University, USA)
Kai-Uwe Sattler (TU Ilmenau, Germany)
Adam Silberstein (Yahoo! Research, USA)
Kian-Lee Tan (National University of Singapore, Singapore)
Xueyan Tang (Nanyang Technological University, Singapore)
Nesime Tatbul (ETH Zurich, Switzerland)
Goce Trajcevski (Northwestern University, USA)
Matt Welsh (Harvard University, USA)
Jianliang Xu (Hong Kong Baptist University, Hong Kong)
Jun Yang (Duke University, USA)

iv

Table of Contents

SESSION I: Keynote Speaker

What’s NExT? Sensor + Cloud!? .1

Kian-Lee Tan (National University of Singapore, Singapore)

SESSION II: Data Provenance and Query Processing

Provenance-based Trustworthiness Assessment in Sensor Networks . 2

Hyo-Sang Lim (Purdue University, USA)

Yang-Sae Moon (Kangwon National University, South Korea)

Elisa Bertino (Purdue University, USA)

Facilitating Fine Grained Data Provenance using Temporal Data Model . 8

Mohammad R. Huq (University of Twente, Netherlands)

Andreas Wombacher (University of Twente, Netherlands)

Peter M. G. Apers (University of Twente, Netherlands)

Processing Strategies for Nested Complex Sequence Pattern Queries over Event Streams 14

Mo Liu (Worcester Polytechnic Institute, USA)

Medhabi Ray (Worcester Polytechnic Institute, USA)

Elke A. Rundensteiner (Worcester Polytechnic Institute, USA)

Daniel J. Dougherty (Worcester Polytechnic Institute, USA)

Chetan Gupta (HP Labs, USA)

Song Wang (HP Labs, USA)

Ismail Ari (Ozyegin University, Turkey)

Abhay Mehta (HP Labs, USA)

SESSION III: Mobile Sensor Networks and Outlier Detection

Query Driven Data Collection and Data Forwarding in Intermittently Connected Mobile Sensor

Networks .20

Wei Wu (National University of Singapore, Singapore)

Hock Beng Lim (Nanyang Technological University)

Kian-Lee Tan (National University of Singapore, Singapore)

DEMS: A Data Mining Based Technique to Handle Missing Data in Mobile Sensor Network Ap-

plications . 26

Le Gruenwald (University of Oklahoma, USA)

Md. Shiblee Sadik (University of Oklahoma, USA)

Rahul Shukla (University of Oklahoma, USA)

Hanqing Yang (University of Oklahoma, USA)

PAO: Power-Efficient Attribution of Outliers in Wireless Sensor Networks .32

Nikos Giatrakos (University of Piraeus, Greece)

Yannis Kotidis (Athens University of Economics and Business, Greece)

Antonios Deligiannakis (Technical University of Crete, Greece)

SESSION IV: Panel Discussion

Future Directions in Sensor Data Management: A Panel Discussion . 38

Panelists: Yanlei Diao (University of Massachusetts Amherst, USA), Le Gruenwald

(National Science Foundation, USA), Christian S. Jensen (Aarhus University, Den-

mark), Kian-Lee Tan (National University of Singapore, Singapore)

Panel Moderator: Demetris Zeinalipour (University of Cyprus, Cyprus)

v

What’s NExT? Sensor + Cloud!?

Kian-Lee Tan
National University of Singapore, Singapore

tankl@comp.nus.edu.sg

ABSTRACT
Today, we are witnessing a number of interesting phenom-
ena. First, there is an increasing adoption of sensing tech-
nologies (e.g., RFID, cameras, mobile phones) in many in-
dustries. Second, the internet has become a source of real-
time information (e.g., through blogs, social networks, live
forums) for events happening around us. In fact, we can con-
sider these sources as ”sensors”. Finally, Cloud computing
has emerged as an attractive solution for dealing with the
”Big Data” revolution. By combining data obtained from
sensors with that from the internet, we can potentially cre-
ate a demand for resources that can be appropriately met by
the cloud. This talk will discuss some application scenarios,
challenges and opportunties for the communities. Our goal
is to exploit these technolgies for smart living.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
DMSN ’10, September 13, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Kian-Lee Tan is a Professor of Computer Science at the
School of Computing, National University of Singapore (NUS).
He received his Ph.D. in computer science in 1994 from NUS.
His current research interests include multimedia informa-
tion retrieval, query processing and optimization in multi-
processor and distributed systems, database performance,
and database security. He has published numerous papers
in conferences such as SIGMOD, VLDB, ICDE and EDBT,
and journals such as TODS, TKDE, and VLDBJ. Kian-Lee
is a member of ACM.

1

Provenance­based Trustworthiness Assessment
in Sensor Networks

Hyo­Sang Lim
Department of Computer

Science,
Purdue University, USA

hslim@cs.purdue.edu

Yang­Sae Moon
Department of Computer

Science,
Kangwon National University,

South Korea
ysmoon@kangwon.ac.kr

Elisa Bertino
Department of Computer

Science,
Purdue University, USA

bertino@cs.purdue.edu

ABSTRACT
As sensor networks are being increasingly deployed in decision-
making infrastructures such as battlefield monitoring systems and
SCADA(Supervisory Control and Data Acquisition) systems, mak-
ing decision makers aware of the trustworthiness of the collected
data is a crucial. To address this problem, we propose a system-
atic method for assessing the trustworthiness of data items. Our
approach uses the data provenance as well as their values in com-
puting trust scores, that is, quantitative measures of trustworthiness.
To obtain trust scores, we propose a cyclic framework which well
reflects the inter-dependency property: the trust score of the data
affects the trust score of the network nodes that created and ma-
nipulated the data, and vice-versa. The trust scores of data items
are computed from their value similarity and provenance similar-
ity. The value similarity comes from the principle that “the more
similar values for the same event, the higher the trust scores”. The
provenance similarity is based on the principle that “the more dif-
ferent data provenances with similar values, the higher the trust
scores”. Experimental results show that our approach provides
a practical solution for trustworthiness assessment in sensor net-
works.

1. INTRODUCTION
Advances in hardware and network technologies enable the de-

velopment of large-scale sensor networks in a large variety of novel
applications, like supervisory systems, e-health, and e-surveillance.
In near future, sensor networks will be deployed everywhere and
consist of thousands to millions of tiny sensor nodes as we can see
from the Smart Dust project [7] which aims to create grain-of-sand
sized sensors. In such new environments, sensor networks collect
large amounts of data that can convey important information for
critical decision making. Thus, being able to assess the trustwor-
thiness of the collected data and making decision makers aware of
the trustworthiness of these data become crucial.

A possible approach to this problem is to associate a trust score
with each data item. Such score provides an indication about the
trustworthiness of the data item and can be used for data compari-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
DMSN’10, September 13, 2010, Singapore
.

son or ranking. For example, even though the meaning of absolute
scores varies depending on the application or parameter settings, if
a data item has the highest trust score in a data set, then we can say
that the data item is the most trustworthy compared with the other
data items in the set. Also, as indicators about data trustworthiness,
trust scores can be used together with other factors (e.g., informa-
tion about contexts and situations, past data history) for deciding
about the use of data items. A critical element in solutions to as-
sign trust score to data is the method for computing the data trust
scores. The goal of this paper is to develop such a method for data
collected in sensor networks. Our approach is based on the con-
cept of provenance, as provenance gives important evidence about
the origin of the data, that is, where and how the data is generated.
Provenance provides knowledge about how the data came to be in
its current state - where the data originated, how it was generated,
and the operations it has undergone since its creation.

Our method is based on the principle that the more trustwor-
thy data a source provides, the more trusted the source is consid-
ered. There is thus an interdependency between network nodes and
data items with respect to the assessment of their trust scores, i.e.,
the trust score of the data affects the trust score of the network
nodes that created and manipulated the data, and vice-versa. To re-
flect such interdependency in computing trust scores, we propose a
cyclic framework that generates: (1) trust scores of data items from
those of network nodes and (2) trust scores of network nodes from
those of data items. Trust scores are gradually evolved in our cyclic
framework.

Our framework works as follows. Trust scores are initially com-
puted based on the values and provenance of data items; we refer
to these trust scores as implicit trust scores. To obtain these trust
scores, we use two types of similarity functions: value similarity
inferred from data values, and provenance similarity inferred from
data provenances. Value similarity is based on the principle that the
more data items referring to the same real-world event have simi-
lar values, the higher the trust scores of these items are. We thus
propose a systematic approach for computing trust scores based
on value similarity under the distribution of collected data. Prove-
nance similarity is based on the observation that different prove-
nances of similar data values may increase the trustworthiness of
data items. In other words, different provenances provide more in-
dependent data items. In the paper we thus present a formal model
for computing the provenance similarity and integrating it into the
data similarity.

We have implemented the cyclic framework for computing trust
scores. Through extensive experiments, we first show that our
method works correctly in sensor networks and the cyclic frame-
work gradually evolves trust scores by reflecting changes in sensing

2

value changes. These experimental results show that our approach
provides a practical solution for trustworthiness assessment in sen-
sor networks.

The rest of the paper is organized as follows. Section 2 mod-
els sensor networks and data provenances. Section 3 proposes the
cyclic framework for generating trust scores of data items and net-
work nodes based on their values and provenance. Section 4 re-
ports the experimental results. We finally summarize and conclude
the paper in Section 5.

2. DATA PROVENANCE AND ITS REPRE­
SENTATION

Networks are usually modeled as graphs. We thus model the
physical (sensor) network as a graph of G(N,E), where the set of
nodes, N , and the set of edges, E, are defined as follows:

• N = {ni | ni is a network node of whose identifier is i.}: a
set of network nodes

• E = {ei,j | ei,j is an edge connecting nodes ni and nj .}: a
set of edges connecting nodes

Figure 1 (a) shows an example of a sensor network.

Regarding the network nodes in N , we categorize them into three
types according to their roles.

Definition 1. A terminal node generates a data item and sends
it to one or more intermediate or server nodes. An intermediate
node receives data items from one or more terminal or intermedi-
ate nodes, and it passes them to intermediate or server nodes; it
may also generate an aggregated data item from the received data
items and send the aggregated item to intermediate or server nodes.
A server node receives data items and evaluates the user queries
based on those items. 2

Without loss of generality, we assume that in G there is only one
server node, denoted by ns. To simplify the presentation, we only
consider a single numeric value as a data item. However, we can
easily extend our solution to multiple attributes by separately as-
signing independent scores to each attribute or by exploiting multi-
attribute distributions. In this paper, we also only focus on han-
dling selection and aggregation which are the most used operations
in sensor networks. We will explore additional other operations in
our future work.server nodeintermediate nodes

terminalnodes
sn sn

1tn 2tn 3tn 4tnin
d

3d1d 2d 4d
sn

tn
d sn

tn
inan bn1d 2d

d
(a) A physical sensor network (b) A simple provenance (c) An aggregate provenance (d) An exception

Figure 1: A physical sensor network and data provenance ex-
amples.

We now define the provenance of a data item d, denoted as pd.
The provenance pd records where and how the data item d was
generated and how it was passed to the server ns.

Definition 2. The provenance pd of a data item d is a rooted
tree satisfying the following properties: (1) pd is a subgraph of the
physical sensor network G(N,E); (2) the root node of pd is the
server node ns; (3) for two nodes ni and nj of pd, ni is a child of
nj if and only if ni has passed the data item d to nj . 2

We categorize intermediate nodes in data provenance into two
types based on their operations. The simple nodes are internal node
having only one child. The simple nodes simply pass data items
from their children to their parents. Simple nodes are typically used
in ad-hoc sensor networks to relay data items to a server in order
to address the insufficient capability of data transmission. The ag-
gregate node are internal nodes having two or more children nodes.
They receive multiple data items from their multiple children, gen-
erate aggregated data items, and pass them to their parents.

Figures 1 (b) and 1 (c) show some examples of the two different
data provenances. As shown in the figures, data provenances are
subgraphs of the physical sensor network of Figure 1 (a), and they
are trees rooted at the server node ns. In Figure 1 (b) every interme-
diate node in the provenance pd is a simple node, which means that
the data item d is generated in a terminal node nt and simply passed
to the server ns. We call this type provenance a simple provenance,
which can be represented as a simple path. On the other hand, in
Figure 1 (c) an internal node ni is an aggregate node, which means
that ni generates a new data item d by aggregating multiple data
items d1, . . . , d4 from nt1 , . . . , nt4 and passes d to the server ns.
We call this type provenance an aggregate provenance, which is
represented as a tree rather than a simple path.

According to Definition 2, a data provenance should be a tree.
However, there could be cycles and thus the provenance is not a
tree such as the example in Figure 1 (d). We do not consider this
case because of two reasons. First, it rarely occurs in real environ-
ments. Second, tree similarity can be computed in O(n3log n) [6];
in contrast, computing graph similarity is known as an NP-hard
problem [5] (refer to Section 3 for details). We note that basically
there is no much difference between tree-shaped and graph-shaped
provenances (Only minor changes are required to support graph-
based provenance).

3. PROVENANCE­BASED TRUST SCORE
COMPUTATION

In this section, we present our cyclic framework for computing
trust scores of data items and network nodes.

3.1 Cyclic Framework for Incremental Up­
date of Trust Scores

We derive our cyclic framework based on the interdependency [1,
3] between data items and their related network nodes. The inter-
dependency means that the trust scores of data items affect the trust
scores of network nodes, and similarly the trust scores of network
nodes affect those of the data items. In addition, the trust scores
need to be continuously evolved in the stream environment since
new data items continuously arrive to the server. Thus, a cyclic
framework is adequate to reflect the interdependency and continu-
ous evolution properties. Figure 2 shows the cyclic framework ac-
cording to which the trust scores of data items and the trust scores
of network nodes are continuously updated. Note that we consider
a sensor network where there are multiple sensors for monitoring
an event (i.e., we can get multiple independent observations for an
event), and thus trust scores are computed for the data items con-
cerning the same event in a given streaming window.

As shown in Figure 2, we maintain three different types of trust
scores, current, intermediate, and next trust scores to reflect the in-

3

Current trust scores of nodes ()Next trust scores of nodes () Intermediate trust scores of nodes ()+ Current trust scores of data items () Intermediate trust scores of data items ()Next trust scores of data items ()
A set of data items of the same event in a current window+1 235 4

6 ns ns)
ns

ds ds)ds
Figure 2: A cyclic framework of computing trust scores of data
items and network nodes.

terdependency and continuous evolution properties in the computa-
tion of the trust scores. The trust scores of data items and network
nodes well reflect those properties as many as cycles are repeated.
We explain the detailed computation process for the trust scores of
data items and network nodes in Section 3.3 and 3.2, respectively.

It is important to note that these scores are mainly indicators,
to be used for example for comparison purpose. For example, let
s1 and s2 be trust scores of data d1 and d2. If s1 > s2, d1 is
more trustworthy than d2. The meaning of absolute scores varies
depending from the specific applications or parameter values.

3.2 Computing Trust Scores of Network Nodes
For a network node n whose current score is sn, we are about

to compute its next score s̄n. In more detail, the trust score of n
was computed as sn in the previous cycle, and we now recompute
the trust score as s̄n using a set of recent data items in a streaming
window in order to determine how the trust score has to evolve in a
new cycle. We compute the next score based on the following two
principles: 1) the intermediate score ŝn reflects the trust scores of
its related data items based on the interdependency property; 2) the
next score s̄n reflects its current and intermediate scores sn and ŝn
to gradually evolve the trust scores of network nodes.

We now show how to compute ŝn and s̄n. First, let Dn be a set
of data items that are issued from or passed through n in the given
streaming window. That is, all data items in Dn are identified as re-
lated to the same event, and they are issued from or passed through
the network node n. We adopt the idea that “higher scores for data
items (∈ Dn) result in higher scores for their related node (n)” [1,
2]. Thus, ŝn is simply computed as the average of s̄d’s (d ∈ Dn),
which are the next trust scores of data items in Dn:

ŝn =

∑
d∈Dn

s̄d

|Dn|
(1)

In Eq. (1) we note that the trust score of a network node is deter-
mined by the trust scores of its related data items, and this satisfies
the first principle, that is, interdependency property. Also, the next
score s̄n is computed as a weighted-sum of sn and ŝn:

s̄n = cnsn + (1− cn)ŝn,

where cn is a given constant of 0 ≤ cn ≤ 1. (2)

In Eq. (2) we note that this satisfies the second principle, i.e., the
consideration of current and intermediate scores.

The constant cn in Eq. (2) represents how fast the trust score is
evolved as the cycle is repeated. For example, if cn has a larger
value, especially if cn > 1

2
, we consider sn to be more important

than ŝn, and this means that the previously accumulated historic
score (sn) is more important than the latest trust score (ŝn) recently
computed from data items in Dn. On the other hand, if cn has a
smaller value, especially if cn < 1

2
, we consider the latest score ŝn

to be more important than the historic score sn. In summary, if cn

is large, the trust score will be evolved slowly; in contrast, if cn is
small, the trust score will be evolved fast.1

3.3 Computing Trust Scores of Data Items
Basically we compute the trust score of a data item d using its

value vd and provenance pd. In this paper, we model the distribu-
tions of data items in the same event as a normal (Gaussian) dis-
tribution. In more detail, for data items in a set D of data items
related to the same event, we model the distribution of D as a prob-

ability density function f(x) = 1

σ
√
2π

e
− (x−µ)2

2σ2 , where x is the
attribute value vd of a data item d (∈ D), and µ and σ2 are mean
and variance of D respectively. We use the normal distribution
since it well reflects natural phenomena. Especially, values sensed
for one purpose in general follow a normal distribution [4, 8], and
thus this distribution is a reasonable choice for modeling stream-
ing data items in sensor networks. However, we note that the nor-
mal distribution assumption is not a limit of our solution. We just
use the distribution for estimating similarities among data values
in the trust score computation. We can adopt other distributions,
histograms, or correlation information with simple changes to the
data similarity models.

3.3.1 Current trust score sd

For a data item d, we first compute its current score sd based
on current scores of network nodes in its provenance pd (see 1⃝
in Figure 2). This process reflects the interdependency property
because we use the trust scores of network nodes for those of data
items. In Section 2 we have explained the two different types of
provenance: one is the simple provenance with a path structure; the
other is the aggregate provenance with a tree structure. According
to this classification, in what follows we first show how to compute
the current score sd for the simple provenance and then extend it
for the aggregate provenance.

In the case of the simple provenance (like in Figure 1 (b)), we can
represent it as pd = (n1, n2, . . . , nk = ns), that is, as a sequence
of network nodes that d passes through. In this case, we deter-
mine the current score sd on the minimum among the scores of all
nodes in pd. This is based on an intuition that, if a data item passes
through network nodes in a sequential order, its trust score might
be dominated by the worst node with the smallest trust score2. That
is, we compute sd as follows:

sd = min{sni | ni ∈ pd} (3)
If a data item d has an aggregate provenance pd, we need to con-

sider the tree structure (like in Figure 1 (c)) to compute its current
score sd. For an aggregate node, we first obtain a representative
score by aggregating the current scores of its child nodes and then
use this aggregate score as the current score of the child nodes. We
use an average score of child nodes as their aggregated score3. By
recursively executing this aggregation process, we simplify a tree
into a simple path of aggregated scores, and we finally compute the
current score sd by taking their minimum score as in Eq. (3).

Algorithm 1 shows a recursive solution for computing the current
score sd from its provenance pd, which can be either a simple or
1In the experiment we set cn = 1

2 to equally reflect the importance of sn and ŝn,
and we assume that the first value of sn is set to 1.
2We can also use an average score or weighted average score of network nodes to
compute the current score. In this case, we obtain the score by simply changing the
minimum function to the average or weighted average function in Eq. (3).
3According to the aggregate operation applied to the aggregate node, we can use dif-
ferent methods. That is, for AVG we can use an average of children, but for MIN or
MAX we can use a specific score of a network node that produces a resulting minimum
or maximum value. An aggregation itself, however, represents multiple nodes, and we
thus use the average score of child nodes as their representative score.

4

aggregate provenance. To obtain the current score sd of a data item
d, we simply call CompCurrentScore(ns) where ns is the root node
of pd.

Algorithm 1 CompCurrentScore (ni: a tree node in pd)
1: if ni is a simple node (i.e., ni has only one child) then
2: Let nj be the child node of ni; // an edge ei,j connects two nodes.
3: return MIN(sni

, CompCurrentScore(nj));
4: else if ni is an aggregate node with k children then
5: Let nj1 , . . . , njk

be k child nodes of ni;
6: return MIN(sni

, AVG(CompCurrentScore(nj1), . . .,
7: CompCurrentScore(njk

)));
8: else // ni is a leaf node.
9: return sni

;
10: end-if

3.3.2 Intermediate trust score ŝd

An intermediate trust score ŝd of a data item d is computed from
the latest set of data items of the same event with d in the current
streaming window (see 2⃝ in Figure 2). Let D be the set of data
items in the same event with d. In general, if set D changes, i.e.,
a new item is added to D or an item is deleted from D, we recom-
pute the trust scores of the data items in D. We obtain ŝd through
the initial and adjusting steps. In the initial step, we use the value
similarity of data items in computing an initial value of ŝd. In the
adjusting step, we use the provenance similarity to adjust the initial
value of ŝd by considering provenances of data items.

(1) Initial score of ŝd based on value similarity
Based on our normal distribution model, we observe that, for a set
D of a single event, its mean µ is the most representative value
that well reflects the value similarity. This is because the mean is
determined by the majority values, and obviously those majority
values are similar to the mean in the normal distribution. Thus, we
conclude that the mean has the highest trust score; if the value of
a data item is close to the mean, its trust score is relatively high; if
the value is far from the mean, its trust score is relatively low.

Based on those observations, we propose a method to compute
the intermediate score sd in the initial step. In obtaining ŝd, we
assume that vd ≥ µ. We can easily extend our method to the case
of vd ≤ µ, and we thus omit that case for simplicity.

As intermediate score ŝd, we use the cumulative probability of
the normal distribution. In this method, we use “1 − the amount
of how far vd is from the mean” as the initial score of ŝd, and here
“the amount of how far vd is from the mean” can be thought as the
cumulative probability of vd. Thus, as in Eq. (4), we obtain the
initial ŝd as the integral area of f(x).

ŝd = 2

(
0.5−

∫ vd

µ

f(x) dx

)
= 1−

∫ vd

2µ−vd

f(x) dx = 2

∫ ∞

vd

f(x) dx (4)

Figure 3 shows how to compute the integral area for the initial in-
termediate score sd. In the figure, the shaded area represents the
initial score of ŝd, which is obviously in (0,1]. Here, the score ŝd
increases as vd is close to µ.

According to our data similarity model, if a sensor suddenly gen-
erates a data value which is different from the mean, this data value
will initially receive a low trust score. However, in this case, the
system provides users with an explanation about why the trust score
is so low. There could be two possible reasons for the trust score
of a data generated by a sensor to be low: 1) the observation by
the sensor is quite different from the other observations of the same

()()
2 ddvvµ −

= µ − − µ
µ dv

 ()dv f x dx
µ∫

 0.5 () ()d dv vf x dx f x dx∞

µ
− =∫ ∫x

()f x
Figure 3: Computing the intermediate score of ŝd.

event; 2) the observation is currently the only observation for the
event. In the former case, users can safely conclude that the data
value is wrong. In the latter case, users can take different actions.
They can just wait for the arrival of new data concerning this event.
Or they can activate additional sensors (for example we may as-
sume that not all sensors are always activated in order to save en-
ergy), that in turn will result in more data to be generated. If the
initial observation is actually true, other sensors will send similar
observations shortly, and then, the cyclic framework will automati-
cally reflect this situation by increasing the trust scores of the initial
data value.

(2) Adjusted score of ŝd based on provenance similarity
We need to adjust the intermediate score ŝd by reflecting the prove-
nance similarity of data items. To achieve this, we let a set of
provenances in D be P and the similarity function between two
data provenances pi, pj (∈ P) be sim(pi, pj)

4. Here, the similar-
ity function sim(pi, pj) returns a similarity value in [0, 1], and can
be computed from the tree or graph similarity [5, 6]. Computing
graph similarity, however, is known to be an NP-hard problem [5],
and we thus use the tree similarity [6], which is an edit distance-
based similarity measure.

Our approach to take into account provenance similarity in com-
puting the intermediate score ŝd is based on some intuitive observa-
tions. In the following, notation ‘∼’ means “is similar to”, and no-
tation � means “is not similar to.” Given two data items d, t ∈ D,
their values vd, vt, and their provenances pd, pt ∈ P ,

• if pd ∼ pt and vd ∼ vt, the provenance similarity makes a
small positive effect on ŝd;

• if pd ∼ pt and vd � vt, the provenance similarity makes a
large negative effect on ŝd;

• if pd � pt and vd ∼ vt, the provenance similarity makes a
large positive effect on ŝd;

• if pd � pt and vd � vt, the provenance similarity makes a
small positive effect on ŝd;

Based on the above observations, we introduce a measure of ad-
justable similarity to reflect the provenance similarity in adjusting
ŝd. Given two data items d, t (∈ D), we first define the adjustable
similarity between d and t, denoted by ρd,t, as follows:

ρd,t =

{
1 − sim(pd, pt), if dist(vd, vt) < δ1; // positive effect
−sim(pd, pt), if dist(vd, vt) > δ2; // negative effect
0, otherwise. // no effect

(5)

In Eq. (5), dist(vd, vt) is a distance function between vd and vt; δ1
is a threshold indicating when vd and vt are to be treated as simi-
lar; δ2 is a threshold indicating when vd and vt are to be treated as
4Data items in the same event may have similar provenances, so we may assume that
the number of possible provenances for an event is finite and actually small. Thus, for
real-time processing purposes, we can materialize all sim(pi, pj)’s in advance and
maintain them in memory.

5

dissimilar5. The adjustable similarity ρd,t in Eq. (5) well reflects
the effect of provenance and value similarities. That is, if vd and
vt are similar, ρd,t has a positive value of “1 − sim(pd, pt)” de-
termined by the provenance similarity; in contrast, if they are not
similar, ρd,t has a negative value of “−sim(pd, pt).” To consider
adjustable similarities of all data items in D, we now obtain their
sum ρd as follows:

ρd =
∑

t∈D,t ̸=d

ρd,t (6)

We then adjust the value vd by considering ρd and use the ad-
justed value, denoted by v̄d, to compute ŝd instead of vd. In more
detail, we first normalize ρd into [−1, 1] using its maximum and
minimum similarities, ρmax and ρmin. The normalized value of ρd,
denoted by ρ̄d, is thus computed as follows:

ρ̄d = 2
ρd − ρmin

ρmax − ρmin
− 1, where ρmax = max{ρt| t ∈ D}

and ρmin = min{ρt| t ∈ D} (7)

We then adjust the data value vd to a new value v̄d as follows:

v̄d = min{vd − ρ̄d(cp · σ), µ},
where cp is a constant greater than 0. (8)

Figure 4 shows how the value vd changes to v̄d based on the ad-
justable similarity ρ̄d in the framework of a normal distribution.
As shown in the figure, if ρ̄d > 0, i.e., if the provenance simi-
larity makes a positive effect, vd moves to the left in the distribu-
tion graph, i.e., the intermediate score ŝd increases; in contrast, if
ρ̄d < 0, i.e., if the provenance similarity makes a negative effect,
vd moves to the right in the graph, i.e., ŝd decreases. In Eq. (8), cp
represents the important factor of provenance similarity in comput-
ing the intermediate score. That is, as cp increases, the provenance
similarity becomes more important. We use 0.2 as the default value
of cp, i.e., we move the data value vd in ±20% range of the stan-
dard deviation σ.

2 dvµ − µ dv x
()f x ()d pcρ ⋅ σdv dv

()0dif ρ > ()0dif ρ <

Figure 4: The effect of the provenance similarity on a data
value.

By using the adjusted data value v̄d, we finally recompute the
intermediate score ŝd. By simply changing vd to v̄d, we can also
obtain Eq. (9) from Eq. (4) in which the integral area for the inter-
mediate score may increase or decrease by the provenance similar-
ity.

ŝd = 2

∫ ∞

v̄d

f(x) dx = 1−
∫ v̄d

2µ−v̄d

f(x) dx (9)

5In the experiment we set δ1 and δ1 to 20% and 80% of the average distance, respec-
tively.

3.3.3 Next trust score s̄d

For a data item d we eventually compute its next trust score s̄d
by using the current score sd and the intermediate score ŝd. In ob-
taining s̄d, we use sd for the interdependency property since sd is
computed from network nodes, and we exploit ŝd for the contin-
uous evolution property since ŝd is obtained from the latest set of
data items. Similar to computing the next score s̄n of a network
node n in Eq. (2), we compute s̄d as follows:

s̄d = cdsd + (1− cd)ŝd,

where cd is a given constant of 0 ≤ cd ≤ 1. (10)

As shown in Eq. (10), the next score s̄d is gradually evolved from
the current and intermediate scores sd and ŝd. We also note that
s̄d will be used to compute the intermediate scores (i.e., ŝn) of
network nodes in the next computation cycle (see 4⃝ in Figure 2)
for the interdependency and continuous evolution principles.

Like constant cn used in computing sn for a network node n in
Eq. (2), constant cd in Eq. (10) represents how fast the trust score
evolves as the cycle is repeated. If cd is large, the trust scores of
data items evolve slowly; in contrast, if cd is small, they evolve
fast.6

In this section, instead of calibrating our model with real data
sets, we present general principles for choosing parameter values (e.g.,
confidence ranges control the tradeoff between the number and
quality of results, cn controls how fast scores are evolved). We
believe these principles can be used in most applications.

4. EXPERIMENTAL EVALUATION
In this section, we present our performance evaluation. In what

follows, we first describe the experimental environment, and then
present the experimental results.

4.1 Experimental Environment
The goal of our experiments is to evaluate the efficiency and ef-

fectiveness of our approach for the computation of trust scores. To
evaluate the efficiency, we measure the elapsed time for processing
a data item with our cyclic framework in the context of a large scale
sensor network and a large number of data items. To evaluate the
effectiveness, we simulate an injection of incorrect data items into
the network and show that trust scores rapidly reflect this situation.

We simulate a sensor network for the experiments. For simplic-
ity, we model our sensor network as an f -ary complete tree whose
fanout and depth are f and h, respectively. We vary the values of f
and h to control the size of sensor networks for assessing the scal-
ability of our framework. We also set the number of unique events
to Nevent.

We use synthetic data that has a single attribute whose values
follow a normal distribution with mean µi and variance σi

2 for
each event i (1 ≤ i ≤ Nevent). To generate data items, for each
event, we assign Nassign leaf nodes of the sensor network with an
interleaving factor Ninterleave . This means that the data items for
an event are generated at Nassign leaf nodes and the interval be-
tween the assigned nodes is Ninterleave (e.g., if Ninterleave = 0,
then Nassign nodes are exactly adjacent with each other). To simu-
late the incorrect data injection, we randomly choose an event and
a node assigned for the event, and then, generate a random value.

For computing the similarity between two provenances pi and pj
(i.e., sim(pi,pj)), we use a path edit distance defined as follows:

sim(pi, pj) = 1 −
1

h

h∑
k=1

node distance between pi and pj at the k-th level
total number of nodes at the k-th level

6In the experiment we set cd = 1
2 to equally reflect the importance of sd and ŝd.

6

Here, the node distance is defined as the number of nodes between
two nodes at the same level.

All the experiments have been conducted on a PC with a 2.2GHz
Core2 Duo processor and 2GB RAM running Windows/XP. The
program code has been written in Java with JDK 1.6.0. Table 1
summarizes the experimental parameters and their default values.
In all experiments we use the default values unless mentioned oth-
erwise.

Table 1: Summary of notation.
Symbols Definitions Default
h height of the sensor network 5
f fanout of the sensor network 8
Nevent # of unique events 1000
Nassign # of nodes assigned for an event 30
Ninterleave interleaving factor 1
ω size of window for each event 20

As can be seen in Table 1 we only vary some application insen-
sitive parameters. The other parameters (e.g., weights, thresholds)
may be more sensitive to application contexts (e.g., data distribu-
tions, attack patterns). We will consider these parameters in the
context of specific applications in our future work.

4.2 Experimental Results
(1) Computation efficiency: We measured the elapsed time for pro-
cessing a data item. Figure 5 reports the elapsed times for different
values of h’s and ω’s.

0

2

4

6

8

10

12

14

3 4 5 6 7

el
ap

se
d

 ti
m

e
/

a
da

ta
 it

em
 (

m
s)

height, h

1

10

100

10 20 40 80

el
ap

se
d

 ti
m

e
/

a
da

ta
 it

em
 (

m
s)

window size, ω(a) Varying height of the sensor network (b) Varying the window size
Figure 5: Elapsed times for computing trust scores.

From Figure 5 (a), we can see that the elapsed time increases
as h increases. The reason is that, as h increases, the length of
provenance also increases. However, the increasing rate is not high;
for example, the elapsed time increases only by 9.7% as h varies
from 5 to 6. The reason is that the additional operations for longer
provenance linearly increase when computing the trust scores for
both data items and network nodes. For the data items, only sd
and ŝd are affected by the length of the provenance, i.e., an addi-
tional iteration is required to compute the weighted sum for sd and
a provenance similarity comparison for ŝd. For the network nodes,
the computation cost increases linearly with the height (not with
the total number of nodes), since we consider a very small number
of network nodes related to the provenance of the new data item.

From Figure 5(b), we can see that the elapsed time increases
more sharply as ω increases. The reason is that the number of sim-
ilarity comparisons (not an iteration) for ŝd linearly increases as ω
increases. However, we can see that the performance is still ade-
quate for handling high data input rates; for example, when ω is 80,
the system can process 25 data items per second.
(2) Effectiveness: To assess the effectiveness of our approach, we
injected incorrect data items into the sensor network, and then ob-
served the change of trust scores of data items. Figure 6 shows the
trend in trust score changes for different values of the interleaving

factor Ninterleave . Here, Ninterleave affects the similarity of prove-
nances for an event, i.e., if Ninterleave increases, the provenance
similarity decreases.

Figure 6 (a) shows the changes in the trust scores when incor-
rect data items are injected. The figure shows that the trust scores
change more rapidly when Ninterleave is smaller. This trend is ex-
plained by the principle “different values with similar provenance
result in a large negative effect.” In contrast, Figure 6 (b) shows
the changes when the correct data items are generated again. In
this case, we can see that the trust scores are modified more rapidly
when Ninterleave is larger. This trend is explained by the principle
“similar values with different provenance result in a large positive
effect.”

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120

tr
us

t s
co

re
s

number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120

tr
us

t s
co

re
s

number of iterations(a) With untrustworthy data items (b) With trustworthy data items
Ninterleave = 0Ninterleave = 4 Ninterleave = 0Ninterleave = 4

Figure 6: Changes of trust scores for incorrect data items.

5. CONCLUSIONS
In this paper we propose a systematic method for computing and

evolving the trustworthiness levels of data items/network nodes.
We first introduce a cyclic framework of computing actual trust
scores of data items and network nodes based on the interdepen-
dency between data and network nodes. We then provide a formal
method for computing trust scores based on the value and prove-
nance similarities of data items. Through extensive experiments,
we show that our cyclic framework works well in sensor networks.

As future work, we plan to: (1) consider multiple dependent at-
tributes and multi-attributes in-network operations and (2) consider
other probability distributions instead of normal distributions.

Acknowledgements: The work of Elisa Bertino and Hyo-Sang
Lim has been partially supported by Northrop Grumman as part
of the NGIT Cybersecurity Research Consortium and by the NSF
Grant N.0964294 “NeTS: Medium: Collaborative Research: A
Comprehensive Approach for Data Quality and Provenance in Sen-
sor Networks”.

6. REFERENCES
[1] E. Bertino, C. Dai, H.-S. Lim, and D. Lin, “High-Assurance Integrity

Techniques for Databases,” In Proc. of the 25th British Nat’l Conf. on
Databases, Cardiff, UK, pp. 244-256, July 2008.

[2] C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu, “An Approach to Evaluate
Data Trustworthiness Based on Data Provenance,” In Proc. of the 5th VLDB
Workshop on Secure Data Management, Auckland, New Zealand, pp. 82-98,
Aug. 2008.

[3] C. Dai et al., “Query Processing Techniques for Compliance with Data
Confidence Policies,” In Proc. of the 6th VLDB Workshop on Secure Data
Management, Lyon, France, pp. 49-67, 2009.

[4] E. Elnahrawy and B. Nath, “Cleaning and Querying Noisy Sensors,” In Proc.
of the 2nd ACM Int’l Conf. on Wireless Sensor Networks and Applications,
San Diego, California, pp. 78-87, Sept. 2003.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness, 1990.

[6] P. N. Klein, “Computing the Edit-distance between Unrooted Ordered Trees,”
In Proc. of the 6th Annual European Symposium on Algorithms (ESA), Venice,
Italy, pp 91-102, Aug. 1998.

[7] Smart Dust Project, http://robotics.eecs.berkeley.edu /∼pister/SmartDust/.
[8] M. Rabbat and R. Nowak, “Distributed Optimization in Sensor Networks,” In

Proc. of the 3rd Int’l Symp. on Information Processing in Sensor Networks,
Berkeley, California, pp. 20-27, Apr. 2004.

7

Facilitating Fine Grained Data Provenance using Temporal
Data Model

Mohammad R. Huq
University of Twente

Enschede, The Netherlands.
m.r.huq@utwente.nl

Andreas Wombacher
University of Twente

Enschede, The Netherlands.
a.wombacher@utwente.nl

Peter M. G. Apers
University of Twente

Enschede, The Netherlands.
p.m.g.apers@utwente.nl

ABSTRACT
E-science applications use fine grained data provenance to
maintain the reproducibility of scientific results, i.e., for each
processed data tuple, the source data used to process the tu-
ple as well as the used approach is documented. Since most
of the e-science applications perform on-line processing of
sensor data using overlapping time windows, the overhead
of maintaining fine grained data provenance is huge espe-
cially in longer data processing chains. This is because data
items are used by many time windows. In this paper, we
propose an approach to reduce storage costs for achieving
fine grained data provenance by maintaining data prove-
nance on the relation level instead on the tuple level and
make the content of the used database reproducible. The
approach has prototypically been implemented for stream-
ing and manually sampled data.

Keywords
E-science applications, Sensor data, Fine grained data prove-
nance, Temporal data model

1. INTRODUCTION
Sensors have become very common in our day-to-day lives

and are used in many applications. Sensor data are ac-
quired and processed to higher level events used in appli-
cations for decision making and process control. Events are
often processed continuously in a streaming fashion to facili-
tate ongoing processes. In many applications it is important
that the origin of processed data can be explained to under-
stand the semantics of the event and to reproduce events.
Data provenance documents the origin of data by explicating
the relation of input data, algorithm, and processed data.
Thus, data provenance can be used to derive event seman-
tics. Data provenance can be defined on data relation level
called coarse grained data provenance or on data tuple level
called fine grained data provenance [4].

Provenance is applied on different kinds of sensor data:
Streaming data is continuously produced data, while manu-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

ally sampled data is a small set of data produced at a par-
ticular point in time [1, 6]. While streaming data is never
updated, sampled data might be updated.

In case of fine grained data provenance, storage cost is lin-
ear with the number of sensors and processed data. Stream
processing is often based on sliding windows resulting in a
single data tuple contributing to many processed data. As
a consequence, fine grained or tuple-based data provenance
has to refer to a single tuple multiple times depending on the
overlap of two subsequent sliding windows. Thus, the stor-
age costs for tuple-based data provenance with many over-
lapping data in a sliding window can result in a multitude
of provenance data related to the actual sensor data. The
aim of this research is to provide tuple-based data prove-
nance functionality with reduced storage costs to keep data
provenance in streaming scenarios manageable.

Though the volume of manually sampled data is much
less than streaming data, manually sampled data can be
updated. If a piece of data is updated or deleted from the
database, relation-based data provenance cannot extract the
original data again. Tuple-based data provenance can solve
this problem. But once there will be an update, new prove-
nance data should be also preserved. Moreover, manually
sampled data are often combined with streaming data and
processed together to achieve more meaningful results. Thus
this combination will end up with high volume of prove-
nance data to be maintained compared to the actual sensor
data. Therefore, low-cost tuple-based data provenance func-
tionality should be realized in an environment where both
streaming and manually sampled data are handled together.

Our proposed approach provides tuple-based data prove-
nance with reduced storage costs by maintaining relation-
based data provenance and using a temporal data model.
We add timestamps to each tuple which allows us to re-
trieve a particular database state based on a given times-
tamp. Then using coarse grained provenance data, we can
figure out the original tuples participated in a query to pro-
duce output tuples. The additional storage costs of these
temporal attributes along with the cost of relation-based
data provenance together will not exceed the storage costs
for tuple-based data provenance. Furthermore, we develop a
prototype combining streaming and manually sampled data
to realize our approach.

This paper is structured as follows. In Section 2, we dis-
cuss related work. Next, we provide a detailed description
of our motivating scenario followed by the problem descrip-
tion in Section 4. In Section 5, we provide the structure
of our temporal data model followed by the implementation

8

that demonstrates the viability of our approach in Section
6. Finally, we conclude with the hints of some future work.

2. RELATED WORK
Recently issues pertaining to data provenance are getting

more attention from researchers. In [3], authors have de-
scribed a data model to compute provenance on both re-
lations and tuples level. In this data model, the location
of any piece of data can be uniquely described by a path.
This paper shows case studies for traditional data but it
does not address how to handle streaming data and associ-
ated overlapping windows. In [10], authors have provided a
data model for provenance repository which is based on re-
lational database. Their approach maintains relation-based
data provenance whereas our approach provides fine grained
data provenance.

Relation-based data provenance cannot reproduce results.
The work described in [12] proposed a data and collection
model using timestamp based approach to collect prove-
nance information when there is any change in sampling rate
and accuracy of the stream. Though it saves a lot of disk
space, it cannot address update of sampled data. We use
multiple timestamps to identify the validity of a particular
(updated) tuple. In [5] authors have presented an algorithm
for lineage tracing in a data warehouse environment. They
have provided data provenance on tuple level. Their algo-
rithm only works for traditional data. It cannot address the
issue of database state change due to update.

For databases that change over time, compact versioning
is essential to recover data referenced by the provenance
of data derived from an earlier version of the database [2].
Since one version is an extension of the previous version, this
versioning technique incurs space overhead. Our proposed
approach does not store any versions physically in the disk
instead we attach timestamps to each tuple to retrieve any
database state based on a given timestamp.

In e-science applications, supporting reproducibility of re-
search results are necessary. In [8], authors outline the struc-
ture of a provenance-aware storage where provenance data
will be treated as the first class data. For recording and
querying provenance data Tupelo2 project [7] has been ini-
tiated. This project is aimed at creating a metadata man-
agement system which stores annotation triples (subject-
predicate-object) in several kinds of databases, including
normal relational databases. Tupelo2 cannot address issue
with update operation.

Recently, a complete DBMS, LIVE [9] can store base and
derived relations with simple versioning capabilities where
each tuple includes a start and end version number. LIVE
also preserves the lineage of derived data items. Since LIVE
uses different version number associated with each relation,
we cannot retrieve the overall database state given a sin-
gle version number. Our approach of using timestamp in-
stead of version number overcomes this drawback. Most
significantly, in our approach, we need not maintain any
tuple-based provenance data instead we store relation-based
provenance data along with temporal data model which is
more cost effective than LIVE.

3. SCENARIO
Figure 1 depicts a Bluetooth localization scenario that

has been set up in our SensorDataLab [17]. The location

of a user is determined by acquiring the signal strength
of a Bluetooth device carried by the user and the known
location of the system acquiring the signal strength mea-
surement. Linksys NSLU2 devices are used for acquiring
signal strength measurements of all Bluetooth devices. On
these systems, a Bluetooth discovery application is installed
which continuously checks for handheld devices and reports
detected devices via a UDP packet to the data processing
system. A packet contains the person’s device MAC ad-
dress, identification number of the discovery systems, signal
strength, and the timestamp (see figure 6). The NSLU2 sys-
tems are represented as EWI 1148, EWI 1149, EWI 1150.

In addition, the deployment location of NSLU2 device as
well as the mapping of MAC address of a handheld device to
an actual person at a specific point in time is documented
and made available as manually sampled data. The data
processing allows to correlate streaming and sampled data
and provides a query interface to access the data on-line and
off-line.

Figure 1: Bluetooth localization scenario in Sensor-
DataLab

In our scenario Alice, Bob, and Carlos are three users,
joining the experiment on 2010-03-03 at 9:00. Each of them
using a mobile device. It turns out that the mobile device of
Alice has not been charged over night and is running out of
power. Therefore, at 10:00 she has to exchange the mobile
device with another one. Bob has to attend a lecture in the
afternoon and therefore is leaving the experiment at 13:00.
At around 11:00 Carlos finds out that he picked up a new,
unused mobile device instead which had been assigned to
him. Since Carlos likes this mobile device better, the device
had been permanently assigned to Carlos.

The supervisor of Alice, Bob and Carlos uses the data for
publishing a paper about a new localization approach tested
in this experiment. From the available data, she evaluates
her approach and creates graphs to document the results.
If the outcome is unexpected, she may want to debug the
results. Thus, this scenario exhibits the properties of an
e-science scenario, since she must be able to reproduce the
evaluation results and graphs later. The requirement of re-
producible results corresponds to tuple-based provenance in
the scenario as described above because it documents how
each tuple has been created. For the rest of this paper,
we will explain our approach to achieve fine grained data
provenance based on this scenario.

4. PROBLEM DESCRIPTION

4.1 Fine grained Data Provenance
In our scenario (see Section 3), each second a lot of stream-

ing data is arriving from different sensor nodes. Moreover

9

manually sampled data including metadata are also stored
to help the overall data processing job. We have 8 NSLU2
devices installed in our lab. Whenever users are roaming
around the lab, each second a UDP packet is sent containing
the user’s device MAC address, detection timestamp along
with other parameters.

Now, consider a time-triggered query to compute a per-
son’s location based on the readings of the last 30 seconds.
This translates in a continuous query having window size
of 30 seconds. At each second, 8 different tuples/packets
will be sent by those NSLU2 devices. After each second,
the window shifts forward by a second. Therefore, at a par-
ticular moment we have 240 data tuples which should be
processed to compute that time-triggered query. For each
data tuple, we associate provenance data using a pointer
to the tuple represented as bigint field. Moreover, we need
two more pointers to point to the activity and the result-
ing output tuple assuming there is only one output tuple.
In total, we need to preserve 242 pointers in order to have
the tuple-based data provenance. In MySQL[15], the bigint
field consumes 8 bytes. The output will be current location
of a particular person which is nothing but a co-ordinate in
form of (x,y) and consumes 8 bytes in total. Therefore, the
ratio of the provenance data to processed data is 242:1 per
processed data tuple in this scenario. In other words, only
4 gigabytes of a 1 terabyte disk will be used to store the
sensor data and the rest of the space will be consumed by
provenance data. Moreover, provenance data is a type of
indirection used to identify the original data which has no
significant meaning to users. Therefore, buying additional
storage space seems to be an expensive solution to this prob-
lem.

Based on the example described above in this section,
relation-based data provenance needs to preserve only three
provenance data. One for the set of input data, another
for the query and the rest is maintained for the output.
For relation-based data provenance, the ratio of provenance
data to actual desired sensor data is 3:1 per processed query
and it is independent of overlapping window size between
two subsequent windows and number of tuples per second.
Therefore, from the storage point of view relation-based data
provenance is more efficient than tuple-based data prove-
nance.

4.2 Reproducible Results
Reproducibility of results can be achieved by having differ-

ent versions of a database - a new version after every change
of the database. Traditionally, versioning is implemented
by replicating the complete database before applying the
change. An alternative way is to document changes in the
database according to time. Timestamps can be used as a
global version number. Using timestamp, we can provide
a particular state of the database without storing versions
physically. In this paper, we achieve reproducibility by using
timestamps as version numbers and requiring a consistency
property on the database which ensures for a query on a
particular database state in the past to have the same result
set regardless of the query execution time. The definition of
consistency is given below.

Definition 1. If a particular query is executed on the same
database state by same/different users at different points in
time, users are expecting to have the same result sets each
time under the assumption that the query processing is not

hindered by any means of network volatility.

Figure 2: Query Time and Query Execution Time

In the definition, the term same result set refers to the
same set of tuples extracted from the same set of relations
from participating nodes for the same query executed at
different points in time. Figure 2 pictorially represents def-
inition 1. Assume that a user wants to know the location
of Alice on a particular point in time which can be termed
as query time, QT is represented as query Q at QT. In
the upper pair of timelines, a user submits the query Q at
QT=10:00. Regardless of their query execution time which
is represented as NOW, the outcome should be the same
since they queried on the same database state that is avail-
able on 10:00. On the other hand, QT is different for the
lower two timelines. The middle timeline shows that the user
submits query Q at QT=10:00 and the last timeline depicts
that the user submits Q at QT=10:30. Though these two
queries are executed at the same point in time, the result set
may be potentially different if there is a change on Alice’s
handheld device. In other words, if there is a database state
change we may get potentially different results for a partic-
ular query. The consistency property is also applicable for
continuous queries. Reconstructing the window having same
set of tuples and trigger condition will ideally produce the
same result set each time irrespective of the query execution
time. This is how definition 1 differentiates between query
time and query execution time which allows users to have
the same set of data retrieved as a result of the query de-
pending on the point in time for which they want the query
result, but irrespective of the time when the query has been
executed. It fulfills the requirement of retrieving historic
data as well as provides a consistent view of the database.

4.3 Data Classes
In our scenario, we have both streaming and manually

sampled data. Streaming data is automatically acquired
from sensors which is not the case for manually sampled
data. The volume of streaming data is much larger than
the volume of sampling data. Manually sampled data or
metadata are associated with streaming data which make
them important to preserve into the database. Sometimes,
there is a large time delay between a fact becomes valid in
the real world and that fact is inserted into the database.
This delay is known as propagation delay. Since human in-
tervention is needed to enter sampled data in database, it
may have longer propagation delay than streaming data.
Moreover, data processing is also challenged by update of

10

sampling data. Streaming data, on the other hand, never
updates but due to its high volume, it is a challenging task
to provide tuple-based data provenance in streaming sce-
narios. Next sections will discuss these problems associated
with streaming and sampling data in detail.

Figure 3: Propagation delay of streaming data

4.4 Propagation Delay in Streaming Data
In Figure 3, we have one continuous timeline and two dif-

ferent worlds: real world and database world. The upper
block of timeline shows that the data tuples generated from
EWI 1148 has delay between the time they got valid and en-
tered into the database due to the propagation delay. This
delay can affect the data processing steps and eventually the
outcome. In the lower block of the processing timeline, we
see a user initiates a query Q with same query time on tu-
ples generated by EWI 1148 in two different points of query
execution time. When the query Q is executed for the first
time, as tuples are yet to enter in the database the out-
come contains no result which is unexpected. The set of
data arrives later after the first query execution and influ-
ence the outcome of the next execution of the same query
Q. Maintaining relation-based provenance in the aforemen-
tioned scenario, cannot extract original data to reproduce
results.

4.5 Updates in Sampled Data
Sampling data may be updated or modified over time.

Figure 4 shows an example where user Alice changes her
handheld device at 10:00 (see section3). After changing the
device, the related data on Alice’s new handheld device (e.g.
device MAC) is entered into the database and overwrites the
previous data. This operation indicates a state change for
the overall database. Now, if a query Q on Alice’s handheld
device is executed on two different points in time (different
query execution times), we will get two different results be-
cause of the state change of the database. Therefore, this
update operation in the database causes to have inconsistent
results and thus creates inconsistency in the database.

5. TEMPORAL DATA MODEL
One of the major challenges to preserve our consistency

property 1 is to allow query execution on the same database
state. That’s why, we use a temporal data model to avoid
storing of all the previous versions physically. Using a tem-
poral model, we can retrieve any particular state of the
database based on a given timestamp since each data tu-
ple will be associated with temporal attributes. Our pro-
posed data model is actually inspired by the bi-temporal
data model [11] using the following temporal attributes:

Figure 4: Update of sampled data

• valid time representing the point in time a sample
has been taken or a measurement has been sensed.

• transaction time from is the point in time the tuple
has been inserted in the database.

• transaction time to representing the point in time
the tuple is marked as deleted without physically delet-
ing it.

These temporal attributes allow users to initiate queries
on a database mentioning a specific timestamp. Next, we
discuss the way of executing some most common database
operations based on our data model. Since streaming data
never changes, only insert operation is applicable for stream-
ing data.

• Insert: A tuple is added in the database for the very
first time with specified valid time and transaction
time from being the current point in time (e.g. Al-
ice, Bob and Carlos join the experiment). The value
of transaction time to is set to ’0:00:00’.

• Update: It addresses the situation whenever a user
would like to rectify wrong data given earlier (e.g. Car-
los uses one device but another device was registered
for him). Transaction time to of the existing tuple
is set to NOW − 1 and a new tuple is added to the
database with same valid time as the existing tuple.
Transaction time from is set to NOW and transaction
time to is set to ’0:00:00’. The difference from change
of data operation is that here the valid time of existing
and new tuples are same.

• Delete: It refers to the incident that causes damage
or complete removal of a particular entity from the
scenario (e.g. at 13:00 Bob is not participating in the
experiment anymore). In the tuple describing the par-
ticipation of Bob in the experiment is updated by set-
ting the value of transaction time to to NOW -1.

One of the principle requirements of our data model is to
preserve all the past data in order to execute queries on a
given database state so that we can maintain consistency
according to the given definition 1. We are not going to
delete or modify any existing tuples in the database rather
we will insert new tuples with different valid and transaction
times. Therefore, all these database operations need to be
handled in a different manner than a traditional database
does.

6. IMPLEMENTATION

11

6.1 Prototype

Figure 5: Architecture of prototype

We build a prototype to validate our approach of achiev-
ing fine grained data provenance for both streaming and
sampled data which ensures to reproduce query results. We
make use of Sensor Data Web [18] for gathering, processing
and publishing sensor data. We perform some modifications
on the existing java code so that we can realize and execute
our proposed approach.

Figure 5 shows the basic building block of the platform. In
sensor data web platform, Query Manager (QM) is responsi-
ble for collecting streaming data from sources like GSN [13]
and sampling data from the wiki via a Sparql end point.
Within the query manager a query network is generated,
consisting of several processing elements (PEs). Some of
them are source PEs which can communicate and receive
streaming data directly from nodes in the sensor network or
pull information from external sources. Every PE presents
output as a view. A view is not considered as the final out-
come since it can be input for another PE. We modify the
structure of original views to ensure that the transaction
time for each data tuple is now included into the views.
Users can request results in a preferred format like as a
HTML page or a CSV document. This request is handled
by sinks which return results to users in requested format
via specific sink (e.g. HTML sink, CSV sink). We add one
extra parameter query time in each sink structure so that
each of these sinks now can return results based on the given
timestamp.

Sensor data web can also interact with external sources
to pull sampled data according to a given query. In order to
manage sampled data, we use MediaWiki [14] as our basic
platform. One of the main reasons for choosing MediaWiki
is to collaborate with different metadata and sampled data
owners. As wiki is well known for it’s community based use,
using wiki as the repository of sampling data would be an
easy way to collect those data. On the top of MediaWiki,
we use semantic mediawiki extension [16] on top of which we
build our own semantic wiki extension known as Temporal
Semantic History [19].

Our developed extension tracks and monitors the content
of each page in wiki. Data are changed manually in a wiki
page. Revision manager (RM) preserves the previous con-
tent after each revision done on a particular page according
to timestamp in a new revision page. Each revision page
keeps the value of (e.g. valid time, transaction time from

Figure 6: A set of streaming data

and transaction time to) along with other data. The value
for transaction time from and transaction time to are added
into the wiki page by the system itself. These revision pages
together form the pool of revision pages. When a query Q
requests data from wiki, it is redirected via query network to
this extension. Semantic query manager (SQM) chooses ap-
propriate revision pages from the pool according to the user
given timestamp in Q. Then the content of selected revision
page is transferred and displayed in the result page. This
data is provided as input to one of the source PEs which can
handle sparql data. Then the data is further processed and
result is sent to users.

6.2 Use Case
In the proposed data model, each data tuple is associated

with temporal attributes irrespective of their sources and
types. Figure 6 shows a set of streaming data produced by
one of the NSLU2 systems, EWI 1148 in our scenario. The
temporal attributes valid time and transaction time (as an
abbreviation of transaction time from) are added for each
tuple. Transaction time to is not needed for streaming data,
since we consider append-only streaming data.

On the other hand, sampled data (e.g. manually sampled
data, metadata) is stored in a semantic wiki. In a wiki, data
is stored in form of SPO (Subject-Predicate-Object) triples.
Figure 7 depicts that for each entity, a unique wiki page
is created based on the candidate key. As for example, we
have three different persons in our scenario: Alice, Bob and
Carlos and a unique wiki page is created according to the
person name. In triple store, for all triples, subject contains
name of the page. Moreover, once a wiki page is modified,
the page content before the revision is preserved in order
to provide original data upon user requests. The name of
these revision pages depends on the original page name and
transaction time from. Moreover, ’0:00:00’ in transaction
time to attribute is used as a pattern to indicate that the
tuple is currently valid.

Sampling data may be updated and deleted over time.
As discussed earlier, sampling data is organized in a se-
mantic wiki which has different data organization technique.
Among the different database operations, update is a more
interesting operation for sampling data. In figure 7, Alice
changed her device after a while which is indicated by tuple
no. 4. As overwrite existing data causes problems to re-
trieve original data, we insert another tuple having different
valid and transaction time from. Before inserting the new
tuple, we update transaction time to of the previous tuple
to NOW -1.

6.3 Discussion
Our approach achieves fine grained data provenance with

reduced storage costs. Consider the set of streaming data
in figure 6. If we perform any select, project or join op-
erations on that dataset, we will get output tuples. Now,

12

Figure 7: Organization of Sampled data in Wiki

based on a user given timestamp, we can retrieve original
database state at that point in time. Then, we will use
coarse grained provenance data to figure out the tuples from
input dataset which participated in the query to produce
output data tuples. This is how, we can achieve fine grained
data provenance with reduced storage costs by maintaining
coarse grained data provenance and applying temporal data
model.

In section 4.1, a comparison of consumption of storage
space between fine grained and coarse grained provenance
data has been given. In our prototype, for each tuple, we
need at most three timestamp attributes which take at most
12 bytes storage space per tuple and it is independent of win-
dow size, size of the overlap of the windows, and number of
tuples per second. In tuple-based provenance, each data tu-
ple is associated with provenance data which is a pointer to
the tuple itself and since a particular data tuple is partic-
ipating in the query execution for several times depending
on the overlap of subsequent sliding windows, the space con-
sumed for provenance data is much larger than our proposed
approach. If there is no overlap between subsequent sliding
windows, our approach incurs extra disk space (8 bytes per
tuple) as much as fine grained provenance does. Though
our prototype requires more space than relation-based data
provenance, it enables users to have reproducible results and
overcomes drawbacks of relation-based data provenance.

We assume the append-only data stream processing engine
in our scenario. There are some stream processing engines
which act as non append-only. In those cases, our solution
will handle stream data in a similar way of handling manu-
ally sampled data.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an approach to achieve

fine grained data provenance with low storage costs. To
achieve our goal, we maintained relation-based data prove-
nance along with timestamp-based logical versioning of the
database. The proposed approach is mainly beneficial for
streaming data, thus data processed on-line. However, the
approach allows us also to combine and correlate streaming
and sampled data. The proposed approach has been imple-
mented for both of the streaming and sampled data which
shows the viability of our approach.

In future, we would like to compare performance (i.e. stor-

age cost, response time) of our approach to any existing
techniques.

8. REFERENCES
[1] D. Brus and M. Knotters. Sampling design for

compliance monitoring of surface water quality: A
case study in a polder area. Water Resources
Research, 44(11):95 – 102, 2008.

[2] P. Buneman, S. Khanna, and T. Wang-Chiew. Data
provenance: Some basic issues. Foundations of
Software Technology and Theoretical Computer
Science, pages 87–93, 2000.

[3] P. Buneman, S. Khanna, and T. Wang-Chiew. Why
and where: A characterization of data provenance.
Database Theory - ICDT 2001, pages 316–330.

[4] P. Buneman and T. Wang-Chiew. Provenance in
databases. In Proc. Intl. Conf. on Management of
data, pages 1171–1173, New York, NY, USA, 2007.
ACM.

[5] Y. Cui and J. Widom. Lineage tracing for general
data warehouse transformations. The VLDB Journal,
vol. 12, pages 41–58.

[6] J. de Gruijter, D. Brus, M. Bierkens, and
M. Knotters. Sampling for natural resource
monitoring. Springer Verlag, 2006.

[7] J. Futrelle. Tupelo Server. Website.
http://tupeloproject.ncsa.uiuc.edu/.

[8] J. Ledlie, C. Ng, D. A. Holland, K. kumar
Muniswamy-reddy, U. Braun, and M. Seltzer.
Provenance-aware sensor data storage. In Workshop
on Networking Meets Databases (NetDB), 2005.

[9] A. Sarma, M. Theobald, and J. Widom. LIVE: A
Lineage-Supported Versioned DBMS. In Proc. Intl.
Conf. on Scientific and Statistical Database
Management, 2010.

[10] M. Szomszor and L. Moreau. Recording and reasoning
over data provenance in web and grid services. In On
The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE, pages 603–620.

[11] C. K. University and C. Koncilia. A bi-temporal data
warehouse model. In Proc. Intl. Conf. on Advanced
Information Systems Engineering, pages 77–80, 2003.

[12] N. N. Vijayakumar and B. Plale. Towards low
overhead provenance tracking in near real-time stream
filtering. In Provenance and Annotation of Data,
pages 46–54, 2006.

[13] Website. Global Sensor Network. http:
//www.swiss-experiment.ch/index.php/GSN:Home.

[14] Website. Mediawiki.
http://www.mediawiki.org/wiki/MediaWiki.

[15] Website. MySQL. http://www.mysql.com/.

[16] Website. Semantic Mediawiki Extension.
http://www.mediawiki.org/wiki/Extension:

Semantic_MediaWiki.

[17] Website. Sensor Data Lab. http://www.
sensordatalab.org/wiki/index.php5/Loc:Home.

[18] Website. Sensor Data Web. https:
//sourceforge.net/projects/sensordataweb/.

[19] Website. Temporal Semantic History.
http://www.sensordatalab.org/wiki/index.php5/

Extensions:Temporal_Semantic_History.

13

Processing Nested Complex Sequence Pattern Queries
over Event Streams

Mo Liu, Medhabi Ray, Elke A. Rundensteiner, Daniel J. Dougherty
Worcester Polytechnic Institute, Worcester, MA 01609, USA

(liumo|medhabi|rundenst|dd)@cs.wpi.edu
Chetan Gupta, Song Wang, Ismail Ari‡, Abhay Mehta

USA Hewlett-Packard Labs, USA
‡Ozyegin University, Turkey

(chetan.gupta|songw|abhay.mehta)@hp.com ‡Ismail.Ari@ozyegin.edu.tr

ABSTRACT
Complex event processing (CEP) has become increasingly impor-
tant for tracking and monitoring applications ranging from health
care, supply chain management to surveillance. These monitoring
applications submit complex event queries to track sequences of
events that match a given pattern. As these systems mature the need
for increasingly complex nested sequence queries arises, while the
state-of-the-art CEP systems mostly focus on the execution of flat
sequence queries only. In this paper, we now introduce an iterative
execution strategy for nested CEP queries composed of sequence,
negation, AND and OR operators. Lastly the promise of applying
selective caching of intermediate results to optimize the execution.
Our experimental study using real-world stock trades evaluates the
performance of our proposed iterative execution strategy for differ-
ent query types.

1. INTRODUCTION
Complex event processing (CEP) has become increasingly im-

portant in modern applications, ranging from supply chain man-
agement for RFID tracking to real-time intrusion detection [1, 2,
3]. CEP must be able to support sophisticated pattern matching on
real time event streams including the arbitrary nesting of sequence
operators and the flexible use of negation in such nested sequences.
For example, consider reporting contaminated medical equipments
in a hospital [4, 5]. Let us assume that the tools for medical oper-
ations are RFID-tagged. The system monitors the histories of the
equipment (such as, records of surgical usage, of washing, sharp-
ening and disinfection). When a healthcare worker puts a box of
surgical tools into a surgical table equipped with RFID readers, the
computer would display approximate warnings such as “This tool
must be disposed”. A query Q1 = SEQ (Recycle r, Washing w,
NOT SEQ(Sharpening s, Disinfection d, Checking c), Operating
op) with the condition that ([ID] (equality on ID) and op.ins-type
= “surgery”) expresses this critical condition that after being re-
cycled and washed, a surgery tool is being put back into use with-
out first being sharpened, disinfected and then checked for quality
assurance. Such complex sequence queries contain complex nega-
tion specifying the non-occurrence of composite event instances,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

such as negating the composite event of sharpened, disinfected and
checked subsequences.

However, the state-of-the-art CEP in the literature including SASE [1]
and ZStream [3] do not support such nested queries. Even though
the Cayuga system [2] mentions composable queries, they assume
the negation filter is only applied to a single primitive event type
within the SEQ pattern. Our objective however is to allow the
specification of negation within any level of the nested query as
in the above example. While CEDR [6] allows applying negation
over composite event types within their proposed language, the ex-
ecution strategy for such nested queries is not discussed. In short,
no processing mechanisms for nested complex negation of CEP
queries have been discussed in the literature to date. In this work,
we address this gap by designing an execution strategy specifically
to handle nested CEP queries specified by the nested complex ex-
pression query language NEEL1. The semantics of this language is
presented in [7].

Our contributions in this paper include:

• We introduce an algebraic query plan for nested CEP queries
expressed in NEEL.

• We design an iterative topdown execution strategy based on
the algebraic plan that applies a window constraint tightening
technique designed to correctly process nested sub-queries.
Intermediate results are pushed up conservatively for delayed
resolution when a child query can’t be fully answered locally
for nested negation.

• We experimentally evaluate our proposed execution strategy
studying nested queries with different properties including
sub-query lengths and nesting levels on real data streams.

• Lastly selective caching of intermediate results is introduced
as technique for optimizing the execution.

2. NESTED CEP QUERY MODEL

2.1 Event Model
An event instance is an occurrence of interest which can be ei-

ther primitive or composite as further introduced below. A primitive
event instance denoted by a lower-case letter (e.g.,‘e’) is the small-
est, atomic occurrence of interest in a system. ei.ts and ei.te denote
the start and the end timestamp of an event instance ei, respectively,
with ei.ts≤ ei.te. For a primitive event instance e, ei.ts = ei.te. For
simplicity, we use the subscript i attached to a primitive instance e
to denote the timestamp i.
1NEEL stands for Nested Complex Event Query Language.

14

A composite event instance is composed of constituent primitive
event instances e = < e1, e2, ..., en >. A composite event instance
e occurs over an interval. The start and end timestamps of e are
equal to min{ei.ts | ei in e } and max{ei.te | ei in e }, respectively.

An event type is denoted by a capital letter, say Ei. An event
type Ei describes a set of attributes that the event instances of this
type share. An event type can be either a primitive or a composite
event type [8]. Primitive event types are pre-defined in the appli-
cation domain of interest. Composite event types are aggregated
event types created by combining other primitive and/or composite
event types. ei ∈ Ej denotes that ei is an instance of the type Ej .
Suppose one of the attributes of Ej is attr and ei ∈ Ej , then we use
ei.attr to denote ei’s value for that attribute.

2.2 The Nested Complex Pattern Query Language NEEL
We now briefly introduce the NEEL query language for specify-

ing complex nested event pattern queries [1, 6, 9] as an extension
of basic non-nested languages from the literature. NEEL supports
the nesting of AND, OR, Negation and SEQ operators at any query
nesting level as in Table 1.

<Query>::= PATTERN <event-expression>
WITHIN <window>
[RETURN <output-specification>]

<event-expression> = <ex>
<ex> ::=
SEQ((<ex> | ! (<ex>, [<q>]))∗,<ex>, (<ex> |

! (<ex>, [<q>]))∗, [<q>])
| AND((<ex>, (<ex> | ! (<ex>, [<q>]))∗, [<q>])
| OR((<ex>)+, [<q>])
| (<primitive-event type>, [<var>])
<primitive-event type> ::= E1 | E2 | ...
<var> ::= event variable ei

<q>::= (<elemqual>)∗

<elemqual> ::= <var>.attr <op> <var>.attr |
<var>.attr <op> constant

<op> ::= < | > | ≤ | ≥ | = | ! =
<window>::= time duration w | tuple count c

Table 1: NEEL Query Language

A primitive event type Ei itself is an event expression. If E1, E2

,..., En are event expressions, an application of SEQ, AND and OR
over these event expressions is again an event expression [8]. In
other words, nesting of AND, OR and SEQ operators is supported.

SEQ in the PATTERN clause specifies a particular order in which
the event instances of interest should occur. If there is a ! (NOT)
symbol before an event expression in an operator, we say that the
event expression marked by ! is to be negated. Event instances
that satisfy the positive components with no events in the stream
relative to this match satisfying the negative components are output.
If several adjacent event types are marked by ! in a SEQ operator
such as SEQ(E1, ! E2, ! E3, E4), the query requires the non-
existence of any E2 and E3 events in either order between E1 and
E4 events within the input stream. In other words < e1, e3, e4 >
and < e1, e2, e4 >, < e1, e3, e2, e4 > and < e1, e2, e3, e4 > all
do not result in a valid match for this query.

An event expression expi can be used as a component in SEQ,
AND and OR operators to construct another expression expj . Then
we call expj the outer or parent expression of expi and expi the
inner (or child) expression of expj . Qualification in the PATTERN
clause contains predicates on single attributes or on attributes across
multiple event types in the query [6, 1]. The event variables de-
fined in an outer expression are visible within the scope of its own
nested inner expressions. Local predicates are specified directly
inside expi. Correlated predicates involving events from both an

outer and an inner expression are associated with the innermost ex-
pression that define an event in the predicate. Correlated predicates
involving two adjacent sibling expressions are not allowed since
the events in one inner expression are not visible in any sibling.

The WITHIN clause indicates the temporal interval within which
the event instances of interest must occur. The RETURN clause
transforms the set of matching event instances extracted by the
query into a complex event as specified in the output specification.

Q1 below in Figure 1 is a sample query expressed by NEEL.
Time

PATTERN SEQ(Recycle r, Washing w,
! SEQ(Sharpening s, Disinfection d, Checking c, s.id=d.id=c.id=o.id),

Operating o, r.id=w.id=o.id and o.ins-type="surgery")
WITHIN 1 hour

Figure 1: Sample Query Q1 for Hospital Hygiene

2.3 Nested CEP Query Plan
A query expressed by a NEEL specification is translated into a

default algebraic query plan composed of the following algebraic
operators: Window Sequence (WinSeq), Window Or (WinOr) and
Window And (WinAnd). During query transformation, each ex-
pression in the event pattern is mapped to one operator node in
the query plan. The same window w is assigned to all operator
nodes. WinSeq first extracts all matches to the positive components
specified in the query, and then filters out events based on negative
components as specified in the query. WinOr returns an event e if
e matches any one of the event expressions specified in the WinOr
operator. WinAnd computes the cross product of its positive com-
ponents. For queries expressed by NEEL, predicates are placed into
the respective algebra operators in the nested event expressions (see
Section 2.2).

OperatingRecycle Washing

WinSeq(Recycle r, Washing w, , Operating o)

WinSeq(Sharpening s, Disinfection d, Checking c)

Sharpening Disinfection Checking

(r.id = w.id = o.id and o.ins_type = surgery”)

(s.id = d.id = c.id=o.id)

!

RFID readings

Complex Events

Figure 2: Basic Query Plan

EXAMPLE 1. Figure 2 depicts the query plan for query Q1 in
Figure 1. The two SEQ expressions in Q1 are transformed into two
WinSeq operator nodes in the plan. The predicate s.id = d.id = c.id
= o.id is placed with the inner WinSeq operator node containing
the negative component. The other predicates are attached to the
topmost WinSeq operator node.

3. NESTED CEP QUERY PROCESSING

3.1 Execution of Individual Operators
For simplicity, we briefly review the implementation strategy of

one of the operators, namely, the SEQ operator, while the others can
be implemented in a similar fashion. We adopt the state-of-the-art
stack-based strategy for SEQ execution [1, 10, 11]. We associate
a stack with each event type in the query. Each received event in-
stance is simply appended to the end of the stack of its type. Event
instances are augmented with pointers ptri to adjacent events to fa-
cilitate quick locating of related events in other stacks during result
construction.

15

The arrival of an event instance em of the last event type Em

of a query qi triggers the compute function of qi
2. The result con-

struction is done by a depth first search along instance pointers ptri

rooted at that last arrived instance em. All paths composed of edges
“reachable” by that root em correspond to one matching event se-
quence returned for qi. When negative event types are specified in
WinSeq, then during sequence construction any edges “reachable”
from the root em are skipped if an instance of the negative event
type is found in the corresponding stream position. Events that are
outdated based on the window constraints are purged.

3.2 Iterative Nested Execution Strategy
Following the principle of nested query execution for SQL queries

[12, 13, 14, 15], the outer query is evaluated first followed by its
inner sub-queries. The results of the inner queries are passed up
and joined with the results of the outer query. The main idea of
our nested execution is about passing down more stringent window
constraints from outer queries to inner queries. For every outer par-
tial query result, a constraint window (see Figure 3) is passed down
for processing each of its children sub-queries. These sub-queries
compute results involving events within the substream constrained
by the constraint window. Qualified result sequences of the inner
operators are passed up to the parent operator and the outer operator
then joins its own local results with that of its positive sub-queries.
The outer sequence result is filtered if the result set of any of its neg-
ative sub-queries is not empty. We apply iterative execution until a
final result sequence is produced by the root operator. Finally, the
process repeats when the outer query consumes the next instance
e. We will discuss nested queries with negation and predicates in
more detail in Sections 3.3 and 3.4, respectively.

Interval IntervalConstraints (Result rj, Query qi)
// rj is one partial result of the outer query
01 Interval ts;
02 if(root operator of qi is SEQ)

// gets the position of qi in outer query
03 { nestedPosition = getNestedPos(qi);

// if outer query starts with sub query qi

04 if(nestedPosition == 0)
// left bound is time of last event in result rj - W

05 tsleft = getTime(rj.LastEve) - W;
// if outer query ends with sub query qi

06 if(nestedPosition == rj.size)
// right bound is time of first event in result rj + W

07 tsright = getTime(rj.FirstEve) + W;
08 else
09 {tsleft=getTime(rj.get(nestedPos-1))
10 tsright=getTime(rj.get(nestedPos))}
11 if(root operator of qi is AND)
12 {tsleft = getTime(rj.lastEve) - W;
13 tsright = getTime(rj.lastEve); }
14 if(root operator of qi is OR)
15 {tsleft = getTime(rj.lastEve) - W;
16 tsright = getTime(rj.lastEve); }
17 return ts;

Figure 3: Algorithm to Compute Interval Constraints for an
Inner Query Qi Given an Outer Partial Result rj

3.3 Processing Nested Queries with Negation
We now describe our approach of supporting negations in nested

queries. In SASE [1, 11, 10], flat queries can have negations and
they are dealt with using the timestamp information. More pre-
cisely, if a query has a negative A between positive B and C event
2if Em is a negative event type, postponed sequence evaluation is
applied. We omit the details here.

types, they first evaluate the query without the negation, i.e., they
compute all B-C pairs. Then for every result generated they check
if an A event occurred between the qualified B and C events. If it
occurs, such pairs are discarded. When two negative event types
are adjacent to each other, their order does not matter. For exam-
ple, SEQ(A, !B, !C, D) is equivalent to SEQ(A, !C, !B, D). That is,
all (A, D) result pairs without any B and C events in between them
would be returned.

For negative event types at the end of a query, postponed se-
quence evaluation is applied. That is the execution is continued till
the last negation as per our iterative strategy however results are
not output. Instead at t he arrival of every new event we note the
time stamp of the event and also check whether it is a triggering
event for the last negative part of the query. If it is not a triggering
event, based on the time stamp of the arriving event, some results
from the buffer may be output and removed from the buffer. If it
is a triggering event, the negative part of the query is executed and
if it produces some partial results, the result buffers of the outer
query are completely cleared. However if the negative ending part
of the query does not produce any results, some results are output
and removed from the result buffers based on the time stamp of the
arriving event.

In our nested query model, a sub-query as a whole could also be
negated. For example, SEQ(A, ! AND(B, C), D). For each outer
result of SEQ(A, D), we search for AND(B, C) results occurring
between such A and D events. If none exist, then the outer SEQ(A,
D) result is returned, otherwise it is filtered out.

We distinguish between the following positions in which the
negation clause can occur.

• Bound by Upper Query. The existence of a negative event in-
stance could be bounded by positive event instances in the di-
rect upper queries. Examples of this category include SEQ(A,
!B, C) and SEQ(A, SEQ(B, !C), D). In the second query, neg-
ative C events are bound by B and D events. B events that
do not have any C events occurring after them and before D
events are passed up to the upper query operator. All B events
passed up will be joined with the outer SEQ(A, D) result to
construct SEQ(A, SEQ(B, !C), D) results.

• Bound by Adjacent Query. The existence of a negative event
instance could be bound by positive event instances of an
adjacent sibling sub-query. Examples of this type include
SEQ(A, SEQ(B, !C), SEQ(D, E), F) or SEQ(A, !B, SEQ(C,
D), E). In this case, we apply a contextual delayed constraint
technique. Namely, we conservatively pass up additional in-
termediate results as compared to the case described above.
In SEQ(A, SEQ(B, !C), SEQ(D, E), F), outer SEQ(A, F)
results < ai, fj> are constructed. The constraint window
for both children sub-queries SEQ(B, !C) and SEQ(D, E) is
[ai.te, fj .ts]. When processing the sub-query SEQ(B, !C)
within this constraint window, any event of type B should
be passed up. We cannot filter out events of type B even
though C events exist after it within its constraint window.
The reason is that the right bound of the interval constraint
of the query SEQ(B, !C) is decided by the results of the query
SEQ(D, E). We should not have a C event between a B or D
event. However, it is not possible to know time stamps of
D events while still processing the query SEQ(B, !C). Hence
the decision is postponed until the results of both the inner
queries are returned to the outer query and then the filtering
of results takes place based on the presence of C events.

3.4 Processing Nested Queries with Predicates
The approach of handling sub-queries with correlated predicates

is similar to the basic nested execution described above except that
the join is not only based on timestamps but also on other predi-
cates. Below, we list the different cases for predicate handling.

16

• Local predicates. Events are filtered based on predicate val-
ues before being stored in their stack. Query processing pro-
ceeds otherwise as explained above. For example, for the
query in Figure 2, Operating events where the instrument
type is not equal to “surgery” will be filtered.

• Correlated predicates between inner and outer queries. Nested
sub-queries may be correlated with their parent queries by
means of predicates. In order to evaluate these queries with
predicates, it is necessary to pass down attribute values to the
children queries. For example, the query in Figure 2 requires
events in the inner sub-queries have the same tool id as the
outer match. For each outer SEQ(Recycle r, Disinfection d,
Operating o) match, the tool id information for the operat-
ing instance is thus passed down to the children sub-queries.
Inner query results involving events having the same tool id
with the outer match are returned to the upper query. As can
be seen in Table 1, predicates on negative components are
associated directly with the later and not with the operator as
a whole. They are thus only evaluated for those subqueries,
for which the positive parent context match has already been
established.

3.5 Putting It All Together
At compile time, queries with negation bounded by an adjacent

sub-query (as discussed in Section 3.3) are marked with label ”de-
layed constraint”. More specifically, if a query qi is labeled as “de-
layed constraint”, it not only needs to pass up potential qi results,
but also negative events are passed up as we can’t determine locally
if they are in violation or not. The pseudo code of the nested execu-
tion algorithm is given in Figure 4. This function is called whenever
a new event of the last positive event type in the outer query arrives.
Figure 5 shows the algorithm for joining partial outer results with
its children query results.

EXAMPLE 2. Consider the query Q = SEQ(Recycle r, ! SEQ(
Washing w, Drying dr, Sharpening s), Disinfection d, SEQ(Checking
c, Relabeling rl), Operating op). When event instances of types Re-
cycle, Washing, Drying, Sharpening, Disinfection, Checking, Rela-
beling and Operating arrive, they are pushed into their respective
stacks. The outer query is first evaluated for a given window size
followed by the inner sub-query. The outer query construction is
triggered by the arrival of Operating events which are of the right-
most positive event type in the root query. For every partial result
< ri, dj , opk > of the outer query SEQ(Recycle r, Disinfection
d, Operating op), we compute the window constraints for its chil-
dren queries. For details, see Figure 3. If we were to evaluate this
query without predicates, all results for SEQ(Washing w, Drying
dr, Sharpening s) and SEQ(Checking c, Relabeling rl) would be
constructed for events that occur within [ri.te, dj .ts] and [dj .te,
opk.ts], respectively. The outer operator joins with all results re-
turned by its positive sub-query SEQ(Checking c, Relabeling rl).
The outer result < ri, dj , opk > fails if results of the negative
child query SEQ(Washing w, Drying dr, Sharpening s) exist. When
evaluating Q with correlated predicates [id], the id is passed down
from the outer query to the children sub-queries. Results involving
events with the same id are constructed in the sub-queries.

4. PERFORMANCE EVALUATION
The objective of our evaluation is to verify if our strategy gives

the correct results so that they can be used as a benchmark to com-
pare alternate future methods against. We verify using various
types of queries. We also make note of the execution time to test
the effectiveness and practicability of our method.

4.1 Experimental Setup

NestedExecution (query qi, event ei, Window W))
01 if(ei triggers qi result construction)
02 {Interval ts; tsleft=ei.ts - W; tsright=ei.ts

RecursiveCompute(qi, ei, ts)}
// compute qi results
RecursiveCompute(query qi, event ei, ts)
01 finalResult fr[];

buffers bufchildren[];
02 result r[] = selfCompute(qi , ei);
03 if (qi has no children queries)
04 {if(qi ∈ labeledSubQueries (Sec 3.5))
05 return r[] with negative events in qi;
06 else return r[]; }
07 else for each result rj belongs to r[]
08 for each inner query childj of qi

09 Interval ts =
IntervalConstraints(rj, qi.childj);

// compute constraint window for each sub-expression
10 RecursiveCompute(qi.childj, e, ts);
11 for each inner query childj of qi

12 if (Eval(qi, qi.childj, bufchildren))
// join positive children results

14 continue;
// stop evaluation if a negative component is not empty. 15else break;

Figure 4: Nested Execution Strategy
Eval (Query qi, Query qj, Buffer bufchildren))
01 if (qj ∈ labeledSubQueries)
02 tighten qj results with negative events
03 if (qj is a positive query in qi)
04 join qi and qj results; return true;
05 else if(qj.results are not empty)

// qj is a negative component
06 return false;

Figure 5: Result Evaluation

We have implemented our proposed nested query processing frame-
work within the stream management system CHAOS [16] using
Java. We ran the experiments on Intel Pentium IV CPU 2.8GHz
with 4GB RAM. We evaluated our techniques using the real stock
trades data from [17] with 10,000 event instances with a sliding
window of size 10 ms.The data contained stock ticker, timestamp
and price information.

4.2 Varying Children Subquery Number
The first experiment processed queries with increased number

of sub-queries from 1 to 3 (Figure 6(a)). q3 generates minimum
results using maximum processing time among the three queries.
q3 has more sub-queries to process which thus consumes more CPU
processing time. Also, more outer SEQ(MSFT,ORCL,IPIX,INTC)
results are filtered in q3 as more constraints exist as compared to the
other queries. As expected, the computation time increases with the
number of sub-queries because the probability of finding patterns
decreases with an increasing number of event types.

Increased Children Number:
q1=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,IPIX,INTC);
q2=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,!SEQ(YHOO,DELL),IPIX,INTC);
q3=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,!SEQ(YHOO,DELL),IPIX,

!SEQ(CSCO,QQQ),INTC);

4.3 Varying Subquery Lengths
The second experiment processed the queries below with in-

creased sub-query lengths (from 2 to 4) as depicted in Figure 6(b).

17

(a) Increased Children Number (b) Increased Query Length (c) Increased Nesting Levels

Figure 6: Evaluating Nested Patterns

We observed that q6 generates the most number of results and uses
the most CPU processing time among the three queries. This is be-
cause q6 includes the sub-query with the longest length which con-
sumes more computational time. As expected, less outer SEQ(MSFT,
ORCL,INTC) results are filtered in q6 as the existence of a longer
pattern is relatively less likely as compared to the other queries with
shorter patterns within the same input stream.

Increased Query Length:
q4=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,INTC);
q5=SEQ(MSFT,!SEQ(RIMM,AMAT,YHOO),ORCL,INTC);
q6=SEQ(MSFT,!SEQ(RIMM,AMAT,YHOO,DELL),ORCL,INTC);

4.4 Varying Subquery Nesting Levels
The third experiment processed the queries below with increased

sub-query nesting levels as depicted in Figure 6(c). q9 generates
the most number of results and uses the most CPU processing time
among the three queries. It is because q9 includes the sub-query
with the largest nesting levels which consumes more time to be
computed. Less outer SEQ(MSFT, ORCL, INTC) results are fil-
tered as it is relatively infrequent to have more events in levels oc-
cur in a sequence.

Increased Nesting Levels:
q7=SEQ(MSFT,!SEQ(IPIX,QQQ),ORCL,INTC);
q8=SEQ(MSFT,!SEQ(IPIX,SEQ(RIMM,AMAT),QQQ),ORCL,INTC);
q9=SEQ(MSFT,!SEQ(IPIX,SEQ(RIMM,SEQ(YHOO,DELL),AMAT),QQQ),

ORCL,INTC);

5. NESTED QUERY OPTIMIZATION
Although the results of nested CEP queries obtained from the it-

erative execution strategy are correct, it produces results at a very
slow rate which is attributed to the re-computation of the results for
inner sub-queries every time an outer triggering event arrives which
makes the processing expensive. To tackle this deficiency, we pro-
pose to cache and incrementally maintain the inner query results.
Due to the sliding window, many intermediate results would con-
tinue to be valid from one sliding window to the next. Previously
calculated results of the previous window should be cached and
then be reused in the new window. In this paper we will only pro-
pose a direction for such an optimization technique. However this
technique is not generic and cannot support negation or predicate
correlation.

• Cache Interval Extraction. Assume Qi = SEQ(E1, . . . ,
Ei, SEQ(Ei+1, . . . , Ei+j), Ei+j+1, . . . , En). For a given
triggering event en ∈ En, the left bound of the interval at-
tached to the subexpression SEQ(Ei+1, . . . , Ei+j) is given
by ei.ts such that ei has the minimum timestamp among all
events of type Ei which have arrived so far. Similarly, the
right bound of the interval is given by an event ei+j+1.ts such

that ei+j+1 has the maximum timestamp among all events
of type Ei+j+1 which have arrived so far. The extracted in-
terval is attached to each cache representing the valid time
period for the cached results.

• Interval-driven Cache Expansion. We update the cache
content when a new triggering event et arrives. That is,
given a new triggering event instance ei, we calculate the
new cache interval. For each subexpression, we compare the
interval [i, j] attached to the cache to the new interval [m,
n]. By the way our algorithm works, i = m, since the left
bound is maintained at the event with minimum timestamp.
We compute the sub-query SEQ(Ei+1, . . . , Ei+j) for all trig-
gering events ei+j between the interval [j, n] New results
are appended to the cache for each subexpression triggered
by events occurring between the right bounds of [j, n].

• Interval-driven Cache Reduction. When a triggering event
et arrives, events with timestamp less than et - window are
purged from their stacks. Similarly, caching results involving
events with timestamp less than et - window are deleted from
the cache as the window constraint will be violated if these
results join with the new triggering event et in the final result.

EXAMPLE 3. In Figure 7, when the triggering event o26 ar-
rives, it is inserted into the Operating stack and triggers execu-
tion. [1, 15] and [8, 26] are extracted time intervals for the subex-
pressions SEQ(Washing, Drying, Sharpening) and SEQ(Checking,
Relabeling), respectively. SEQ(Washing, Drying, Sharpening) re-
sults are constructed based on all events that occurred during [1,
15]. Similarly, SEQ(Checking, Relabeling) events occurring dur-
ing [8, 26] are constructed and cached. When the new trigger-
ing event o30 arrives, we determine the interval for SEQ(Washing,
Drying, Sharpening) is still [1, 15]. Thus the cache is still com-
plete and thus we can reuse results in the cache. For subexpression
SEQ(Checking, Relabeling), we find the new interval [8, 30] over-
laps with the previous interval [8, 26]. Conceptually, we could
reuse the caching results related to [8, 26] and we must compute
the new additions to our cache. New SEQ(Checking,Relabeling) re-
sults are triggered by Relabeling events occurring between [26, 30]
such as rl28. Assume the window size is 30. When o34 arrives, all
caching results involving primitive events with time-stamp less than
4 expire. So < w2, dr6, s7 >, < w2, dr3, s7 > etc are deleted from
the cache. The meta-data attached to the cache for SEQ(Washing,
Drying, Sharpening) is updated from [1, 15] to [4, 15].
5.1 Evaluating Optimized Nested Execution:

Caching Results
We process query q10 comparing the optimized execution by

the caching technique to the one without caching as in Figure 8.
Caching helps in avoiding repeated computation for the subquery
SEQ(QQQ,AMAT,DELL) as our results demonstrate. Clearly, we

18

SharpeningWashing

w5
s7
s12

Drying

dr6
Checking

c16
c20

relabelling
rl28

Recycle Disinfection

r1 d8
d15

Operating

o26
r4

w9 dr10
rl18

o30

w2 dr3 c11

f

<w5, dr6, s7>

<w2, dr10, s12>
<w5, dr10, s12>
<w9, dr10, s12>

f<c16, rl18>
<c11, rl18>

Buffer Interval [8, 26]Buffer interval [1 15]

o14

f

<c16, rl18>
<c11, rl18>
<c20, rl28>
<c16, rl28>
<c11, rl28>

Buffer Interval [8, 30]

<w2, dr6, s7>
<w2, dr3, s7>

<w2, dr6, s12>
…

<w5, dr6, s12>

Figure 7: Interval Driven Subexpression caching

will have different gain with different reuse opportunities which
may be caused by larger windows, more expensive sub-queries, etc.

Increased Nesting Levels:
q10 = SEQ(YHOO,SEQ(QQQ,AMAT,DELL),ORCL,IPIX);

 0

 500

 1000

 1500

 2000

 0 5000 10000 15000 20000

C
P

U
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Result Number

Cache
No Cache

Figure 8: Interval-Driven Caching

6. RELATED WORK
The existing CEP systems [1, 2, 3, 6] do not focus on the exe-

cution of nested sequence queries as tackled here. The query lan-
guage of the CEDR [6] system supports nested sequence queries.
However, the execution strategy for nested queries is not given.

Complex queries used in decision support applications often have
multiple correlated sub-queries and table expressions, possibly across
several levels of nesting. It is usually inefficient to directly execute
a correlated query. Consequently, algorithms such as magic decor-
relation [18] and complex query decorrelation [19] have been pro-
posed to decorrelate the query. However, existing decorrelation al-
gorithms deal with only relational queries, that is, these algorithms
are neither described nor tested in the CEP streaming context.

For SQL queries, [20] discusses whether a query result should
be admitted to the cache and which results are to be purged in the
static data context. In semantic caching [21], a semantic descrip-
tion of the data in a cache is maintained which allows for a com-
pact specification. Semantic descriptors have also be shown to be
of importance for query caching in the XML context [22, 23, 24].
However, sophisticated cache matching algorithms had to be de-
signed to deal with query containment, namely, with extracting re-
lated XQuery subexpressions possibly with alternate hierarchical
XML structures yet the same content [22].

7. CONCLUSION
In this paper, we introduced a comprehensive iterative execution

strategy for processing nested CEP queries. An algebraic query

plan for the execution of nested CEP queries was designed. We
then developed a window constraint tightening technique to cor-
rectly process sub-queries. We also presented execution strategies
for handling predicates in nested queries. Optimization using inter-
val driven cache expansion and reduction was introduced. We plan
to study additional optimization techniques in the future.

8. ACKNOWLEDGEMENTS
This work is supported by HP Labs Innovation Research Pro-

gram and National Science Foundation under grants NSF IIS 0917017.
Ismail Ari is supported by TUBITAK Grant 109E194. We thank
Database System Research Group at WPI for valuable comments.

9. REFERENCES
[1] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event processing

over streams.” in SIGMOD Conference, 2006, pp. 407–418.
[2] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White,

“Cayuga: A general purpose event monitoring system.” in CIDR, 2007, pp.
412–422.

[3] Y. Mei and S. Madden, “Zstream: a cost-based query processor for adaptively
detecting composite events,” in SIGMOD Conference, 2009, pp. 193–206.

[4] J. M. Boyce and D. Pittet, “Guideline for hand hygiene in healthcare settings,”
MMWR Recomm Rep., vol. 51, pp. 1–45, 2002.

[5] “Wireless sensor networks for home health care,” pp. 832–837, 2007.
[6] R. S. Barga, J. Goldstein, M. Ali, and M. Hong, “Consistent streaming through

time: A vision for event stream processing.” in CIDR, 2007, pp. 363–374.
[7] M. Liu, E. Rundensteiner, D. Dougherty, C. Gupta, S. Wang, and A. Mehta,

“Nested complex event processing for real-time event analytics,” in BIRTE,
2010.

[8] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim, “Composite
events for active databases: Semantics, contexts and detection.” in VLDB, 1994,
pp. 606–617.

[9] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White,
“Cayuga: A general purpose event monitoring system.” in CIDR, 2007, pp.
412–422.

[10] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient pattern
matching over event streams,” in SIGMOD Conference, 2008, pp. 147–160.

[11] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman, “On supporting kleene
closure over event streams,” in ICDE, 2008, pp. 1391–1393.

[12] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,” in
ICDE, 1996, pp. 450–458.

[13] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakrishnan, “Magic is
relevant,” in SIGMOD Conference, 1990, pp. 247–258.

[14] E. Wong and K. Youssefi, “Decomposition - a strategy for query processing,”
ACM Trans. Database Syst., vol. 1, no. 3, pp. 223–241, 1976.

[15] J. M. Smith and P. Y.-T. Chang, “Optimizing the performance of a relational
algebra database interface,” Commun. ACM, vol. 18, no. 10, pp. 568–579, 1975.

[16] C. Gupta, S. Wang, I. Ari, M. Hao, U. Dayal, A. Mehta, M. Marwah, and
R. Sharma, “Chaos: A data stream analysis architecture for enterprise
applications,” in CEC’09, 2009, pp. 33–40.

[17] “I. inetats. stock trade traces. http://www.inetats.com/.”
[18] C. Beeri and R. Ramakrishnan, “On the power of magic,” J. Log. Program.,

vol. 10, no. 1/2/3&4, pp. 255–299, 1991.
[19] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,” in

ICDE ’96: Proceedings of the Twelfth International Conference on Data
Engineering. IEEE Computer Society, 1996, pp. 450–458.

[20] J. Shim, P. Scheuermann, and R. Vingralek, “Dynamic caching of query results
for decision support systems,” in SSDBM, 1999, pp. 254–263.

[21] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan, “Semantic data
caching and replacement,” in VLDB, 1996, pp. 330–341.

[22] L. Chen and E. A. Rundensteiner, “Xquery containment in presence of variable
binding dependencies,” in WWW, 2005, pp. 288–297.

[23] L. Chen, E. Rundensteiner, and S. Wang, “Xcache: A semantic caching system
for xml queries,” in ACM SIGMOD, 2002, pp. 618–618.

[24] L. Chen, S. Wang, and E. A. Rundensteiner, “Replacement strategies for xquery
caching systems,” in Data and Knowledge Engineering Journal, 2004, pp.
145–175.

19

Query­Driven Data Collection and Data Forwarding in
Intermittently Connected Mobile Sensor Networks

Wei Wu
School of Computing
National University of

Singapore

wuw@nus.edu.sg

Hock Beng Lim
Intelligent Systems Centre

Nanyang Technological
University

limhb@ntu.edu.sg

Kian­Lee Tan
School of Computing
National University of

Singapore

tankl@comp.nus.edu.sg

ABSTRACT
In sparse and intermittently connected Mobile Sensor Net-
works (MSNs), the base station cannot easily get the data
objects acquired by the mobile sensors in the field. When
users query the base station for specific data objects, the
base station may not have received the necessary data ob-
jects to answer the queries. In this paper, we propose to
use a Mobile Data Collector (MDC) to collect the data ob-
jects from the mobile sensors that the base station needs
for answering queries. To facilitate the MDC’s data collec-
tion, we design a location-based data forwarding protocol
that exploits the location metadata of data objects and uses
caching to improve data availability in the MSNs. Results of
performance study show that our solution can reduce query
response times on the base station.

1. INTRODUCTION
Mobile sensor networks (MSNs) are very useful in re-

connaissance, disaster rescue, and environment monitoring
tasks. For examples, mobile sensors can be used to gather
information in battlefields and earthquake areas.
In most applications of MSNs, users (such as commander

or rescue personnel) will want to access the data objects
acquired by the mobile sensors. They query the base station
for the data objects they want. Answering these queries
timely is very desirable (sometimes even critical).
Unfortunately, in sparse MSNs where the sensors and the

base station are only intermittently connected, many queries
may only be answered after a quite long time. Due to the
intermittent connections, it is difficult for the mobile sensors
to send data objects to the base station and for the base
station to pull data objects from the sensors.
Mobile data collectors (MDCs) [4], [10], [12] [3] are widely

used to collect data objects in sensor networks. A MDC
collects data objects by moving in the sensor networks, get-
ting data objects from sensors within wireless communica-
tion range, and moving back to the base station.
In this paper, we propose to use a MDC to do query-

driven data collection in sparse MSNs to reduce the average
query answering time. When the base station receives a
query but does not have the data object that the query
requests for, it lets the MDC to collect the data object.
We focus on data collection for answering spatial queries
that explicitly request for data objects that are acquired at
specific locations by the mobile sensors.

The challenge of query-driven data collection in intermit-
tently connected MSNs is that the base station and the MDC
do not know which mobile sensor has the data object they
want. Due to disconnections, they cannot simply flood a
message to all the sensors and find this out.

We design a query-driven data collection solution called
F4C (Forwarding for Collection). Our main idea is to use
spatial information of data objects to direct data forwarding
and use spatial information of queries to direct data collec-
tion so that the MDC will have a good chance of meeting a
mobile sensor that carries the data object that it needs.

In F4C, when the mobile sensors forward a data object
acquired at location l to the base station, they keep (when
possible) that data object in a region along the shortest
physical path from l to the base station. When a MDC
needs to collect a data object that was acquired at l, it
simply moves towards l along the shortest path from the
base station to l. The mobile sensors make data forwarding
decisions that reduce the distance the MDC needs to move
before it can get the data it wants. Furthermore, caching
is used to increase the data availability among the mobile
sensors. Through results from simulation, we show that F4C
can reduce the average query answering time on the base
station.

The remainder of the paper is organized as follows. We
describe the system model in Section 2, and present F4C

in Section 3. Results of performance study are shown in
Section 4. Related work is briefly discussed in Section 5. We
conclude this paper and list the directions of future work in
Section 6.

2. SYSTEM MODEL

2.1 Mobile Sensor Network (MSN)
The system consists of a stationary base station BS, n mo-

bile sensors (s1,s2,...,sn), and a mobile data collector (MDC)
in a task field A. They use wireless technology such as WiFi
for communication. Two nodes (we use “node” to refer to
a sensor, the BS, or a MDC) can communicate directly only
if the distance between them is smaller than the wireless
technology’s communication range r.

1

20

BS

C

2
1 4

3

5 6

r

C

i mobile sensor
mobile data collector7

8

9
10

11

12 BS base station

r communication
range

wireless
connection

Figure 1: Example of a sparse MSN where a MDC

is used to do data collection.

The mobile sensors move in the task field following a cer-
tain mobility model. Their move speed is v. We assume that
all mobile nodes have GPS equipped so they always know
their own locations. The BS is stationary and its location is
known to all mobile nodes.
This work assumes a mobile sensor network that is sparse

and only intermittently connected due to low sensor density
(and/or short communication range) and sensor movement.
Figure 1 shows an example of an intermittently connected
MSN where there are twelve mobile sensors.

2.2 Data Objects
The mobile sensors acquire data objects when they move

in the task field. The location where a data object is ac-
quired is kept as a part of the data object’s metadata. We
use Dp to refer to a data object that is acquired at loca-
tion p. In addition, a spatial region is also associated with
the data object. It is determined by the location p and the
sensor’s sensing range, and is the geographical region whose
feature is captured in the data object. For example, if the
data object is an image, then the spatial region associated
with it is the area captured in the image.

2.3 Queries
Users of the system query the base station for data ob-

jects by spatial predicates. For simplicity, we assume each
query asks for one data object acquired at a specific loca-
tion. We use query location to refer to the location specified
in a query.
A data object can be used to answer a query if the data

object’s spatial region covers the query location. The time
duration from the base station gets a query to the base sta-
tion answers the query is the query’s response time.

2.4 Data Forwarding
The mobile sensors always try to forward their data ob-

jects to the base station. They forward data objects in a
carry-and-forward fashion [2], because the sensor network
is only intermittently connected. When a sensor acquires
a data object or receives a data object from a neighbor (a
neighbor refers to a node within communication range) but
has no suitable neighbor to forward it to, the sensor carries
the data object and tries to forward it later.
In sparse MSNs, the sensors have only limited communica-

tion opportunities to forward data objects. For this reason,
we assume that a mobile sensor does not forward a data
object multiple times.

The mobile sensors make their data forwarding decisions
based on a data forwarding algorithm. We will describe our
location-based data forwarding algorithm in Section 3.

2.5 Data Collection
The MDC’s job is to collect data objects from the mobile

sensors. When there is no pending queries on the base sta-
tion, the MDC moves in the task field to collect data objects
from mobile sensors and periodically returns to the BS. Af-
ter returning to the BS, the MDC sends the data that it has
collected to the BS.

If the BS has pending queries when the MDC returns to
it, the BS sends a query to the MDC and lets it collect a
data object for the query. We call this query-driven data
collection, and use mission query to refer to the query that
the base station sends to the MDC.

In this paper we look at the problem of data collection
for one query. In future work, we will study the problem of
data collection for multiple queries.

We assume that the MDC also has sensing capability. If
the MDC failed to get a data object from the sensors for the
mission query, it can move to the query location to acquire
a data object for the query.

3. F4C: FORWARDING FOR COLLECTION
F4C (Forward for Collection) is specially designed for query-

driven data collection in intermittently connected MSNs. Its
goal is to reduce the distance that the MDC needs to move
before it gets a data object for the mission query.

We define two terms in F4C: a data object’s collection path
and forwarding region. The MDC collects a data object by
moving on the data object’s collection path. The forwarding
region is an area along the collection path. The mobile sen-
sors keep a data object in its forwarding region when they
forward the data object towards the base station.

3.1 Collection Path and Forwarding Region
For a data object Dp acquired at location p, we define the

shortest physical path in the field from the base station to
p as Dp’s collection path, and the union of the points in the
field whose distances to Dp’s collection path are shorter than
r (the wireless communication range) as Dp’s forwarding
region. We will use Path(Dp) to denoteDp’s collection path,
and Region(Dp) to denote Dp’s forwarding region.

Figure 2 shows an illustration of a data object’s collection
path and forwarding region in a field where there are no
obstacles. If there are obstacles in the filed, the collection
path may not be a straight line. For simplicity, in this paper
we will use examples where there are no obstacles in the
field. Note that F4C also applies to fields where there are
obstacles.

Note that Dp’s collection path is determined by the loca-
tion of BS and p (the location metadata of Dp), and Dp’s
forwarding region is determined by its collection path and
the wireless communication range r. The idea is that when
the MDC moves along Dp’s collection path it will encounter
the mobile sensors in Dp’s forwarding region.

A data object’s collection path and forwarding region are
fixed and they are independent of the mobile sensor that is
currently carrying it. Since the location of the BS is known

2

21

BS

C r

Collection Path of Dp

Forwarding
Region of Dpp

C

BS Base Station

MDC

Figure 2: Illustration of a data object’s Collection

Path and Forwarding Region.

to all the mobile nodes, and data objects have location meta-
data, the mobile sensors can compute their data objects’ col-
lection paths and forwarding regions by themselves. Given
a query, the MDC can also immediately compute the collec-
tion path of the data object that the query requests for.

3.2 Query­Driven Data Collection
When the BS has a pending query that requests for a data

object acquired at location l and the MDC is connected to
the BS, the BS sends the query to the MDC and lets it
collect a data object for the query.
In F4C, the MDC’s process of query-driven data collection

is very simple. It simply moves from the BS towards l on
Path(Dl). When the MDC encounters a mobile sensor, it
queries the mobile sensor for a data object that can answer
the mission query. If the mobile sensor has such a data
object, it sends the data object to the MDC. After receiving
the data object, the MDC moves back to the BS. If none
of the sensors that the MDC encountered has a data object
that is an answer to the mission query, the MDC will arrive
at l. The MDC acquires a data object by itself at l, and
moves back to the BS.
Note that although the MDC’s main task in a query-

driven data collection mission is to collect a data object for
the mission query, it also collects other data objects when
it encounters the mobile sensors. We will elaborate on this
in Section 3.4.2.
The time cost of collecting a data object for a query is

roughly twice the time from it got the query to it gets a
data object that can answer the query. In the worst case,
the MDC arrives at the query location and then acquires
such a data object. Reducing the distance that the MDC
needs to move before it gets a data object for the mission
query will be an effective way to reduce the time cost of
query-driven data collection.

3.3 Location­based Data Forwarding
The general idea of data forwarding in F4C is keeping the

data objects in their own forwarding regions when the mo-
bile sensors forward the data objects towards the base sta-
tion. The objective is to maintain a data object’s availability
in its forwarding region so that the MDC can easily get the
data object by moving on its collection path.
Suppose sensor si currently carries a data object Dp. si

computes Dp’s forwarding region using Dp’s location meta-
data and the location of the BS (which is known to all the
sensors). si knows its own location and exchanges location
information with neighbors periodically. si makes different
forwarding decisions for Dp based on (1) whether it is inside
Dp’s forwarding region and (2) neighbors’ location.

• If si is in Dp’s forwarding region, si forwards Dp to
a sensor that is also in Dp’s forwarding region but is
nearer to the base station.

• If si is not in Dp’s forwarding region, si forwards Dp

to a sensor that is in Dp’s forwarding region. If none of
si’s neighbors is in Dp’s forwarding region, si forwards
Dp to a sensor that is closer to Dp’s forwarding region.

In both cases, if none of si’s neighbors satisfies the con-
ditions, si carries the data object and tries to forward it
later.

3.4 Prioritize Data Objects in Forwarding
In sparse MSNs, each mobile sensor will be carrying many

data objects, because the sensor keeps acquiring data ob-
jects in the field but has limited opportunities to forward
data objects to the BS or the MDC. Therefore, when a sen-
sor encounters a neighbor, it will have more data objects
than it can send to the neighbor during the short connection
duration with the neighbor. The sensor has to decide what
data objects should be forwarded to the neighbor. Based
on whether the neighbor is a mobile sensor or the MDC,
different algorithms are used to select the data objects for
forwarding. Both algorithms are optimized to help reduce
the distance that the MDC needs to move before getting a
data object for the mission query.

3.4.1 Forwarding to a Neighboring Sensor
To help the sensors decide which sensor should carry what

data object, we define a measure called collection-distance
and let the sensors make data forwarding decisions based on
their collection-distance of the data objects. Given a data
object, a sensor’s collection-distance is the distance that a
DMC needs to move to get the data object if the sensor
carries that data object.

Let Circle(si, r) denote the circle centered at the loca-
tion of si with radius r which is the wireless communication
range. Given a data object Dp, if Circle(si, r) does not
intersect with Path(Dp), si’s collection-distance for Dp is
defined as the length of Path(Dp); otherwise, let I be the
intersection of Circle(si, r) and Path(Dp) that is closer to
the BS, si’s collection-distance for Dp is the distance from
the BS (along Path(Dp)) to I.

Figure 3 illustrates the definition of collection-distance
with two examples. Circle(s1, r) does not intersect with
Path(Dp), so s1’s collection-distance for Dp is the length of
Path(Dp). Circle(s2, r) intersects with Path(Dp) at I1 and
I2. I2 is closer to the BS, so s2’s collection-distance for Dp

is the distance from the BS to I2 along Path(Dp).
Intuitively, a sensor’s collection-distance for a data object

is the distance that the MDC needs to move alone the data
object’s collection path before it can get the data object
from the sensor. When a sensor is outside a data object’s
forwarding region, its collection-distance for the data object
is the length of the data objet’s collection path.

Given two sensors si and sj , a data object Dp, and let
cd(si, Dp) and cd(sj , Dp) denote si and sj ’s collection-distances

3

22

BS

Path(Dp)

p

1 r

2 r

I2

I1

i Sensor i

Figure 3: Illustration of forward distance definitions.

forDp, we define (cd(si, Dp) - cd(sj , Dp)) as the delta-collection-
distance between si and sj for Dp.
When si encounters sj , si uses delta-collection-distance

for the data objects (that si carries) to prioritize the for-
warding of the data objects. First, the data objects whose
delta-collection-distances are positive are considered for for-
warding. si keeps sending to sj the data object for which
the delta-collection-distance between si and sj is the largest.
This process goes on until si and sj are not connected any
more or no data object has a positive delta-collection-distance.
For the data objects whose delta-collection-distance is zero,

the ones for which si is outside their forwarding regions are
considered for forwarding. Since si and sj have the same
collection-distance for these data objects, sj must also be
outside the objects’ forwarding regions. si forwards a ob-
ject to sj if sj is closer to its forwarding region. Due to
space limitation, we do not further elaborate on this.
Note that we are considering single-path forwarding where

a sensor forwards a data object only once. Once si sends a
data object to sj , si may remove the data object from its
storage. Also note that sj may also forward data objects
to si. Our design is at the application layer and assume
that the allocation of communication slots is controlled by
a MAC (Media Access Control) layer protocol.

3.4.2 Forwarding to the MDC
During the MDC’s query-driven data collection missions,

the MDC collects not only data objects for the mission
queries but also other data objects. When the MDC en-
counters a mobile sensor, the mobile sensor can send data
objects to the MDC as long as they are connected.
A mobile sensor prioritizes the data objects for forwarding

to the MDC by the lengths of their collection paths. The
data object whose collection path is the longest gets first for-
warded to the MDC. For example, suppose sensor si carries
data object Da and Db, and the collection path of Path(Db)
is longer than Path(Da), and si can only forward one data
object to the MDC due to limited connection time. si will
forward Db to the MDC.
The rationale behind this design is that the data objects

with longer collection paths are more difficult for the MDC
to collect if there is a query in the future requesting for it.
Recall that in the worst case the MDC has to move to the
query location to acquire a data object for the query. By

forwarding the data objects with longer collection paths to
the MDC, the base station will get (from the MDC) these
data objects and will be able to answer the queries that re-
quest for such data objects. The queries requesting for data
objects closer to the BS are easier to be answered because
it is easier for the MDC to collect these data objects even if
they are not in their forwarding regions.

3.5 Caching
In F4C, the sensors do their best to keep a data object in

its forwarding region, but sometimes the sensor carrying the
data object may move out from the data object’s forward-
ing region and none of its neighbors is in the data object’s
forwarding region. To improve the chance that the MDC en-
counters a sensor that has the data object which the MDC
is looking for, we use caching to further improve the data
availability among the mobile sensors.

After a sensor si forwards a data object to a neighboring
sensor sj , si does not delete the local copy of the data object
but keeps it as a caching in local storage. si will not forward
the copy of the data object to any other sensor (because
we are considering single-path data forwarding rather than
multiple-path data forwarding), but can send it to the MDC
if the MDC needs this data object for answering its mission
query. Recall that when the MDC encounters a sensor, the
MDC will check whether the sensor has a data object for
the query.

4. PERFORMANCE STUDY
We study the performance of F4C through simulation. The

aim of the experiments is to investigate whether F4C can help
reduce the average query answering time at the base station
and how the system parameters (such as the number of sen-
sors, size of data object, etc) will affect F4C’s performance.

Since we are not aware of any existing query-driven data
collection scheme for sparse MSNs, we compare F4C to a so-
lution where the MDC moves towards the query location (as
in F4C) and the mobile sensors use geographical greedy rout-
ing [9] in data forwarding. We choose geographical greedy
routing for comparison because it has been regarded as a
very effective data forwarding algorithm in sensor network.
In experiments we call this method GeoGreedy. In Ge-
oGreedy, only the locations of neighbors are considered and
a sensor always forwards data objects to a neighbor that is
closer to the BS (no matter whether the neighbor is in the
data objects forwarding regions).

We designed a simulation package for mobile sensor net-
works and implemented it in Java. In our simulation exper-
iments, n mobile sensors are initially randomly placed in a
600 Meters * 600 Meters field and they move in the field
at speed v according to a random waypoint mobility model.
The move speed of the MDC is 2 ∗ v. Each sensor acquires
a data object every Ts seconds. The size of a data object
is D KB. The BS receives a query every Tq seconds. 100
queries with random query locations in the field are issued
to the base station. The wireless communication bandwidth
is 2Mbps and the communication range is r Meters. Table 1
lists the parameters and their values.

The performance measure is the average query answer-
ing time on the base station. Both the queries that are
answered by the base station right away and the queries
answered through the MDC’s query-driven data collection
are accounted for in the calculation of the average query

4

23

Table 1: System Parameters

Parameter Unit Default Range

number of sensors n 30 20 - 50
move speed v Meters/s 2 1 - 8
data size D KB 500 100 - 1000

sense interval Ts seconds 20 10 - 60
query interval Tq seconds 20 10 - 60

communication range r Meter 100 50 - 150

 0

 20

 40

 60

 80

 100

 120

 140

 20 25 30 35 40 45 50

A
vg

 q
ue

ry
 r

es
po

ns
e

tim
e

(s
ec

on
ds

)

Number of sensors

GeoGreedy
F4C

Figure 4: Effect of the number of sensors on average

query response time.

answering time.
In each set of experiments we vary the value of one pa-

rameter and study its effect on F4C and GeoGreedy. Due to
space limitation, we will present only some representative
experiment results.

4.1 Effect of the Number of Sensors
The number of mobile sensors immediately affect the den-

sity of sensors in the field and the connectivity of the sensor
network. Figure 4 shows the effect of the number of sensors
on the performance of F4C and GeoGreedy. We see that F4C
reduces the average query response time and the improve-
ment over GeoGreedy is between 15% to 50%. When there
are very few (e.g., 20) sensors moving in the field, the sensor
network is very sparse and most of the times a sensor has no
neighbor to forward its data objects to. The sensors cannot
keep data objects in their forwarding regions and the MDC
needs to move to the query locations to get data objects for
most of the mission queries. As the number of sensors in-
creases, F4C can effectively direct the sensors to forward data
objects to neighbors in data objects’ forwarding regions, so
F4C starts to clearly outperform GeogGreedy.
F4C outperforms GeoGreedy because in F4C a data ob-

jects’ availability along its collection path is generally higher
than that in GeoGreedy.

4.2 Effect of Sensors’ Move Speed
The effect of sensors’ move speed on the performance of

F4C and GeoGreedy is shown in Figure 5. We observe that
F4C consistently outperform GeoGreedy, and the average
query answering times decrease as the sensors’ move speed
increases. Sensors’ move speed affects the number of neigh-
bors that a sensor will encounter during a period of time.
When the sensors and the MDC move at a faster speed,
they encounters new neighbors more frequently but have
shorter connection time with the neighbors, and the MDC

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8

A
vg

 q
ue

ry
 r

es
po

ns
e

tim
e

(s
ec

on
ds

)

Sensor move speed (m/s)

GeoGreedy
F4C

Figure 5: Effect of sensor’s move speed on average

query response time.

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600 700 800 900 1000

A
vg

 q
ue

ry
 r

es
po

ns
e

tim
e

(s
ec

on
ds

)

Size of a data object (KB)

GeoGreedy
F4C

Figure 6: Effect of data object size on average query

response time.

can arrive at the query locations in shorter time. In F4C,
the mobile sensors exploit the encounters and keep data ob-
jects in their forwarding regions by sending carefully selected
(through prioritization) data objects to the neighbors.

4.3 Effect of the Size of a Data Object
Figure 6 shows how the size of a data object will affect the

performance of F4C and GeoGreedy. The average query an-
swering times in both F4C and GeoGreedy are longer when
the data objects are bigger. This is because as the data ob-
ject size increases a sensor can forward a smaller number of
data objects to a neighbor during their limited connection
time. This not only means that a smaller number of data ob-
jects can be kept in their forwarding regions but also means
that the MDC will receive a smaller number of data objects
from the sensors. As a result, the BS will get less data ob-
jects from the MDC and more queries need to be answered
through the MDC’s data collection in the field.

4.4 Effect of Other Parameters
Due to space limitation, we will not present in detail the

experiment results on communication range, sense interval,
and query interval. All experiment results show that F4C

results in shorter average query answering time when com-
pared to GeoGreedy. Longer communication range makes
the sensor network better connected and lets the nodes have
more time for communication, and thus has a positive effect
on average query answering times. Longer sense interval
and longer query interval also have positive effects on av-
erage query answering times. Longer sense interval means

5

24

the sensors will gather smaller amount of data and it will
be easier for them to keep the data objects in forwarding
regions or send to the MDC. Longer query intervals means
that the BS will receive more data before it receives a new
query so it is more likely that the query can be answered
right away.

5. RELATED WORK
Several routing protocols designed for mobile ad-hoc net-

works (MANET) and wireless sensor networks make use of
mobile nodes’ location information. The well-known exam-
ples include compass routing [7], DREAM (distance rout-
ing effect algorithm for mobility) [1], LAR (location-aided
routing) [6], GPSR (greedy perimeter stateless routing) [5],
and GEAR (Geographical and Energy Aware Routing) [11].
[9] investigated the performance of geographic greedy rout-
ing algorithms in sensing-covered networks and showed that
simple greedy geographic routing is an effective routing scheme
in many sensing-covered networks.
The data forwarding method proposed in this paper dif-

fers from existing location-based routing protocols in that
it exploits not only the location of the mobile nodes but
also the location information of the data objects. Further-
more, our data forwarding method is specially designed to
facilitate a MDC’s query-driven data collection.
Studies on mobile data collectors in sensor networks are

also related to this work. In existing work on mobile data
collection [8], [13], [4], [10], [12] [3], however, the focus is to
minimize the energy consumption of the sensors. The mobile
data collectors in existing work either have fixed collection
routes or move randomly in the field. The main difference
between this work and existing work on mobile data collec-
tors is that we focus on data collection for query answering
on the base station and use query location to direct the
movement of the mobile data collectors.

6. CONCLUSION AND FUTURE WORK
In sparse and intermittently connected mobile sensor net-

works, the base station cannot easily get data objects from
the mobile sensors to answer the queries received from the
users. We propose to use a mobile data collector (MDC) to
do query-driven data collection so that the base station can
answer the queries more timely. We present a data forward-
ing and data collection solution called F4C (Forwarding for
Collection) that reduces the time that the MDC needs to
move before it gets data objects for queries. In F4C, a MDC
collects a data object for a query by simply moving from
the BS towards the query location, and the mobile sensors
keep data objects available in regions along the data objects’
collection paths. The mobile sensors make data forwarding
decisions based on their locations and the data objects’ loca-
tion metadata. The algorithms that the mobile sensors use
to prioritize the data objects for forwarding are designed
to help reduce average collection time. We did simulation
to study the performance of our proposed solution. Exper-
iment results show that F4Ccan help reduce average query
processing time on the base station.
This preliminary work only considers spatial information

of the query and data objects. A future work is to take query
and data objects’ temporal information also into account.
In F4C, single-path data forwarding is assumed. Another
direction of future work, therefore, is to consider multi-path

forwarding and study the trade-off between data availability
and data traffic. Last but not the least, we believe that it
will be interesting to design an algorithm for the MDC to
collect data for multiple queries.

7. ACKNOWLEDGMENTS
This work is partially supported by a research grant R-

252-000-352-232 (TDSI/08-001/1A) from the Temasek De-
fense Systems Institute.

8. REFERENCES
[1] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A.

Woodward. A distance routing effect algorithm for
mobility (dream). In MobiCom ’98: Proceedings of the
4th annual ACM/IEEE international conference on
Mobile computing and networking, pages 76–84, New
York, NY, USA, 1998. ACM.

[2] K. W. Chen. Cafnet: A carry-and-forward
delay-tolerant network. MIT Master Thesis, 2007.

[3] M. D. Francesco, K. Shah, M. Kumar, and
G. Anastasi. An adaptive strategy for energy-efficient
data collection in sparse wireless sensor networks. In
EWSN, pages 322–337, 2010.

[4] Y. Gu, D. Bozdaǧ, R. W. Brewer, and E. Ekici. Data
harvesting with mobile elements in wireless sensor
networks. Comput. Netw., 50(17):3449–3465, 2006.

[5] B. Karp and H. T. Kung. Gpsr: greedy perimeter
stateless routing for wireless networks. In MOBICOM,
pages 243–254, 2000.

[6] Y.-B. Ko and N. H. Vaidya. Location-aided routing
(lar) in mobile ad hoc networks. Wirel. Netw.,
6(4):307–321, 2000.

[7] E. Kranakis, S. O. C. Science, H. Singh, and
J. Urrutia. Compass routing on geometric networks.
In in Proc. 11 th Canadian Conference on
Computational Geometry, pages 51–54, 1999.

[8] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data
mules: modeling a three-tier architecture for sparse
sensor networks. In IEEE SNPA Workshop, pages
30–41, 11 May 2003.

[9] G. Xing, C. Lu, R. Pless, and Q. Huang. On greedy
geographic routing algorithms in sensing-covered
networks. In MobiHoc ’04: Proceedings of the 5th
ACM international symposium on Mobile ad hoc
networking and computing, pages 31–42, New York,
NY, USA, 2004. ACM.

[10] G. Xing, T. Wang, W. Jia, and M. Li. Rendezvous
design algorithms for wireless sensor networks with a
mobile base station. In MobiHoc ’08: Proceedings of
the 9th ACM international symposium on Mobile ad
hoc networking and computing, pages 231–240, New
York, NY, USA, 2008. ACM.

[11] Y. Yu, R. Govindan, and D. Estrin. Geographical and
energy aware routing: a recursive data dissemination
protocol for wireless sensor networks. Technical
report, 2001.

[12] M. Zhao and Y. Yang. Bounded relay hop mobile data
gathering in wireless sensor networks. In MASS, 2009.

[13] W. Zhao, M. Ammar, and E. Zegura. A message
ferrying approach for data delivery in sparse mobile ad
hoc networks. In MobiHoc, pages 187–198, New York,
NY, USA, 2004. ACM.

6

25

DEMS: A Data Mining Based Technique to Handle
Missing Data in Mobile Sensor Network Applications

Le Gruenwald Md. Shiblee Sadik Rahul Shukla Hanqing Yang
School of Computer Science

University of Oklahoma
Norman, Oklahoma, USA

{ggruenwald, shiblee.sadik, rahul.shukla-1, hqyang3}@ou.edu

ABSTRACT
In Mobile Sensor Network (MSN) applications, sensors move to
increase the area of coverage and/or to compensate for the
failure of other sensors. In such applications, loss or corruption
of sensor data, known as the missing sensor data phenomenon,
occurs due to various reasons, such as power outage, network
interference, and sensor mobility. A desirable way to address
this issue is to develop a technique that can effectively and
efficiently estimate the values of the missing sensor data in order
to provide timely response to queries that need to access the
missing data. There exists work that aims at achieving such a
goal for applications in static sensor networks (SSNs), but little
research has been done for those in MSNs, which are more
complex than SSNs due to the mobility of mobile sensors. In
this paper, we propose a novel data mining based technique,
called Data Estimation for Mobile Sensors (DEMS), to handle
missing data in MSN applications. DEMS mines the spatial and
temporal relationships among mobile sensors with the help of
virtual static sensors. DEMS converts mobile sensor readings
into virtual static sensor readings and applies the discovered
relationships on virtual static sensor readings to estimate the
values of the missing sensor data. We also present the
experimental results using both real life and synthetic datasets to
demonstrate the efficacy of DEMS in terms of data estimation
accuracy.

Keywords
Sensors, Missing Data, Mobile Sensor Networks

1. INTRODUCTION
A wireless sensor network (WSN) can be defined as a set of
independent sensors which can solve cooperatively some
monitoring based applications [1]. Typical applications of WSN
include environmental monitoring [2], scientific investigation
[3], civil structure flaw detection, battle surveillance and
medical applications [4]. However, successful monitoring of any
physical phenomenon is directly dependent on the appropriate
deployment of the sensors [5], [6]. In a static sensor network
(SSN), the sensors’ positions remain stationary after the initial
deployment. In addition, the areas covered by the sensors are
dependent on the initial network configuration and remain
unchanged over time [7]. An inappropriate deployment of
sensors in a SSN may partition the monitoring area into regions
either covered by at least one sensor and/or devoid of any
sensors [7]. Therefore, while a covered region may be monitored
by unnecessary multiple sensors, the regions uncovered by
sensors may not be monitored at all leading to inaccurate results.
Also, certain restrictions, such as hostile environments and

disaster areas [8], make initial, manual deployment of sensors
impossible. Finally, certain applications like monitoring
atmosphere or ocean environment require constant mobility that
can be achieved only if the sensors themselves are mobile [7].
Consequently, in recent years, much interest has been shown
towards un-stationary sensors (e.g., Robomote [9]), that can re-
deploy themselves according to the needs of the application.
These sensors are termed as mobile sensors and their networks
as mobile sensor networks (MSNs).

WSN data, in form of online data streams, arrive at the base
station as real-time updated data [10]. These online data streams
are infinite, unbounded and have high continuous arrival rates
which do not permit complete scanning of the entire data [11].
Various factors, such as limited power and transmission
capabilities of sensors, hardware failures, power outages, and
network issues like disruption, package collision and external
noise, cause the transmitted data to fail to reach the base station
and/or be corrupted. The sensors that ‘generate’ these missing
data are called missing sensors. A major concern with any WSN
is the issue of missing sensor data. Several approaches, such as
ignoring missing data, using backup sensors, re-querying the
network, and utilizing data estimating techniques to estimate the
values of the missing data, have been proposed to address the
issue of missing sensor data [15]. Ignoring missing data is not
viable for sensitive applications; using backup sensors may lead
to data duplication and is expensive; and re-querying the
network is unrealistic in terms of time and resource efficiency.
The approach that uses data estimation has shown to be the most
promising solution; however, currently it is limited to SSNs only
[15], [16], [17], [18]. To the best of our knowledge, no work has
been proposed to estimate the values of the missing sensor data
in MSN applications.

MSNs consist of sensors placed on mobile platforms like
Robomote [9]. In addition to the issues common to any data
stream application, MSN applications have certain additional
constraints. MSN applications are broadly divided into
relocation and continuous coverage based applications [7], [8].
The spatial relation between two sensors is distorted by the
mobility of mobile sensors; hence the spatial relationship
between two mobile sensors is difficult to obtain in MSNs.
Moreover, the history data of a mobile sensor that are generated
at different locations may not necessarily possess the spatial or
temporal relationships with the data in the current round of
sensor readings. Finally, mobile sensors have the capability of
moving themselves which costs lots of energy; so power outage
occurs more often on mobile sensors than on static sensors;
hence, instances of missing data are more pronounced in MSNs.

26

In this paper we propose a data mining based solution for
estimating the values of the missing sensor data in MSN
applications, called DEMS (Data Estimation for Mobile
Sensors). DEMS is a novel concept that addresses the issues
associated with mobile sensors by utilizing virtual static sensors.
DEMS establishes these virtual static sensors by dividing the
entire monitoring area into hexagons and associating each
hexagon’s center with a virtual static sensor. It converts each
mobile sensor reading into an equivalent virtual sensor reading.
When a mobile sensor reading is missing, DEMS uses the
spatial and temporal association rules among the virtual sensor
readings that it discovers based on the history virtual sensor
readings to compute the estimated value of the missing mobile
sensor reading.

The rest of the paper is organized as follows: Section 2 discusses
the related work; Section 3 describes DEMS; Section 4 presents
the performance evaluation comparing DEMS with the three
existing techniques: Average, Spirit [17], and TinyDB [13]; and
Section 5 provides the conclusions and future work.

2. RELATED WORK AND ISSUES
Approaches for estimating the values of the missing sensor data
(or approaches for estimating missing data for short), as of now,
have been limited to SSNs only. TinyDB [13] is a prominent
information extracting system for sensor networks. TinyDB does
data estimation for a missing sensor by averaging the readings of
other sensors for a particular round. However, it does not work
well if a non-linear relationship exists among sensors and the
sensors do not report similar readings. SPIRIT [17] uses auto-
regression for finding correlations using hidden variables inside
the history data of a sensor. It estimates missing data by
predicting changes in data patterns using hidden variables as a
summary of data correlation among all the history data.
However, it does not consider the sensor readings from other
sensors for the current round; therefore it is unable to find the
current relationships among the data which may affect its
accuracy. The Kalman filter [15] uses the dynamic linear model
to predict missing data based on the history data. However, the
dynamic nature of data distribution may introduce instances
when the same sensor reports a completely different value in the
current round compared to the previous rounds. This may cause
erroneous results.

FARM [14] uses association rules among sensor readings to
estimate missing data. It uses a novel data freshness framework
to address the temporal nature of data. Further, it implements a
data compaction scheme to store history data. Its estimated data
are fairly accurate compared to those of statistical methods.
However, its limitation is that it establishes association rules
among similar sensor readings only; thus, only equivalent
relationships are mined.

Mining Autonomously Spatio-Temporal Environmental Rules
(MASTER) [16] is a comprehensive spatio-temporal association
rules mining framework which provides both a competitive data
estimation method and an exploratory tool to investigate the
evolution of patterns of the sensor data in static sensor networks.
MASTER is well equipped to discover spatial and temporal
association rules among the sensors. This framework includes a
novel data structure called MASTER-tree which stores the
history data synopsis (the moments) for each sensor and
represents the association rules among the sensors. An example

of an association rule in MASTER is ��[10, 20], �	[40, 90] →

 ��[30, 40] where ��, �	 and �� are three sensors, �� and �	 are
called the antecedent sensors and �� is called the consequent
sensor of the rule. This rule implies when the sensor reading of
�� is between 10 and 20 and the sensor reading of �	 is between
40 and 90, the sensor reading of �� would be between 30 and 40.
Each node in the MASTER-tree represents a sensor except the
root node which represents an empty node; and each path/sub-
path starting from the root node represents an association rule.
Hence a MASTER-tree is capable of representing any kind of
relationships among the sensors which participate in the
MASTER-tree.

MASTER limits the number of sensors in one MASTER-tree by
clustering the sensors into small groups and producing an
individual MASTER-tree for each cluster. The advantage of the
clustering step is twofold: 1) the clustering step arranges
spatially co-related sensors into a cluster, and 2) it limits the
number of sensors in a MASTER-tree which restricts the
exponentially large number of association rules into a more
manageable number. As each data round arrives, MASTER
finds the appropriate MASTER-tree for each sensor and updates
the MASTER-tree based on the arrived sensor readings. At any
particular time, if a sensor reading is missing, MASTER finds
the appropriate MASTER-tree for the missing sensor and
evaluates the support and confidence of the association rules
where the missing sensor appears as consequent. MASTER
finds the best association rule comparing the obtained support
and confidence with the user-defined minimum support and
minimum confidence. Finally, it uses the best association rule
and the current sensor readings of the antecedent sensors in the
best association rule to estimate the consequent sensor’s reading.
Interested readers are referred to [16] for further details.

MASTER was designed for SSNs. It has the following
deficiencies. The cluster formation step is solely based on the
spatial attributes of a sensor. In a MSN, the spatial data of a
sensor are changing; therefore the prior knowledge about sensor
locations is not enough for MSNs even though spatial clustering
works very well in SSNs. One possible solution for this problem
is re-clustering whenever a sensor changes its location, but re-
clustering is very computation-intensive and may cause loss of
the history data, and thus loss of history data synopsis (the
moments) stored in the MASTER-tree. Hence location-based
clustering for mobile sensors does not produce any meaningful
result. Moreover, in a MSN, a reading of a sensor is
accompanied by the location of the sensor. So, if a sensor is
missing, it is very likely that the reading and the location from
that sensor will be missing together. Hence the estimation
technique must estimate both dimensions for the missing
sensors, which means that location prediction has to be an
inherent part of the technique.

In a SSN, association rule mining can be used to discover the
relations among sensors. According to Tobler’s first law of
geography [22], geographically close sensors are more
correlated than the distant one. In a MSN, the distance between
the mobile sensors changes over time; therefore the correlation
changes over time too. The association rules among the sensors
represent the correlation among them. If the mobile sensors
change their locations, the correlations among them change;
hence the association rules previously obtained based on the
sensor data will no longer be valid for the new locations. This

27

has two-fold implications on MASTER: 1) any previously
explored rules may not be valid anymore; and 2) previously
formed clusters may not be valid at all. In the extreme case, the
history data from the same sensor may no longer be valid to
estimate the missing data of the same sensor in the current round
of data. This is because the old data are based on the previous
locations of the sensor, whereas the new data are based on the
new locations. So the methods (e.g., Kalman Filter [15]) which
use history data to estimate new data will also become invalid in
such a situation.

Motivated by the drawbacks of MASTER, in this paper we
propose a new technique, called DEMS, for MSN applications.
DEMS makes use of virtual static sensors that tackles the
problems of location-aware clustering of real mobile sensors. It
also tackles the problem of having no related history information
for the current round of data from real mobile sensors.
Moreover, DEMS addresses the issue of missing location of a
real mobile sensor and is capable of predicting the next location
for a missing real mobile sensor. The details of DEMS are
presented in the next section.

3. THE PROPOSED DEMS
This section describes our technique, DEMS. It starts with a
brief overview of DEMS followed by a detailed description of
our novel concept of virtual static sensor and its significance.
Finally it presents the MASTER-tree used for data mining and
the estimation module for DEMS.

3.1 The Overview of DEMS
In DEMS, we exploit the spatial and temporal relations between
sensor readings to estimate the missing sensor data. First we
divide the entire monitoring area into hexagons based on a user-
defined radius. Each hexagon corresponds to a virtual static
sensor (VSS) placed at the center of the hexagon and covering
the entire hexagon. A VSS is an artificial sensor, i.e. it does not
exist physically in real life applications, but it exists in our
technique as a synthetic sensor which mirrors a real static
sensor. Each VSS has a unique identifier. DEMS converts the
real mobile sensor readings into VSS readings based on the
mobile sensors’ current locations. Figure 1 shows A as the
monitoring area covered by a MSN that is divided into 14
hexagons with 14 VSSs, V1… V14, and 7 real mobile sensors,
M1... M7.

Figure 1. Monitoring area and hexagons

Using agglomerative clustering [23], DEMS clusters the VSSs
based on their locations into clusters and creates a MASTER-
tree for each cluster. The dotted lines that connect the centers of
the hexagons in Figure 1 show three clusters (V1, V2, V3, V8,
V10), (V6, V7, V12) and (V5, V9, V11, V13, V14). MASTER-tree
records the data for the VSSs. For each missing mobile sensor

reading, its estimated value is computed using the three major
steps: 1) mapping the missing real mobile sensor to its
corresponding VSS; 2) estimating the missing VSS reading
using the discovered spatial and temporal association rules
among the history VSS readings, and 3) converting the
estimated VSS reading into the corresponding real mobile sensor
reading.

In a MSN, a sensor reading reported is accompanied by the
sensor location where the reading was obtained. Whenever a
mobile sensor reading is missing (we call this a missing mobile
sensor for short), it is likely that both the location and the
reading will be missing together. To find the appropriate
location of a missing mobile sensor we always keep track of
mobile sensors’ locations. A mobile sensor’s location is mapped
to a hexagon and the consecutive locations of a mobile sensor
are mapped to a sequence of hexagons. We refer to a sequence
of hexagons as a mobile sensor’s trajectory. We mine the mobile
sensor trajectories and predict the missing location based on the
history trajectories. Morzy [20] proposed a pattern tree based
approach for mining trajectories and predicting future locations,
which we adopt for DEMS. DEMS maintains a single pattern
tree of trajectories for all the mobile sensors. As small devices
like sensors often use the same protocol for relocation [7], [9], it
is reasonable to assume that they have similar patterns of
movement; therefore DEMS maintains a single pattern tree of
trajectories for all the mobile sensors and uses a single pattern
tree instead of an individual pattern tree for each mobile sensor.
This trajectory pattern tree is used to predict a missing mobile
sensor’s location. The predicted location is used to map a mobile
sensor to a VSS. Since sensors repeat the mobility pattern for
relocation, history based trajectory mining is more promising
than random walk models.

3.2 The Virtual Static Sensor
In SSNs, every sensor monitors a fixed region and a sensor’s
reading reflects an event occurring within this region; but in
MSNs, owing to their mobile nature, the region being monitored
varies with time. However, as in SSNs, the sensor readings for
MSNs still reflect events occurring within a particular region.
Our concept of virtual static sensors is directly motivated by the
above fact. Every VSS, like sensors in SSNs, ‘monitors’ a fixed
region called its coverage area. An event occurring within a
VSS’s coverage area is reflected in its readings. However,
unlike sensors in SSNs, VSSs do not have real existence and do
not ‘report’ data to a base station. On the contrary, they are
‘created’ in our technique virtually to ease the spatio-temporal
data mining.

A VSS reports a reading if there exists at least one real mobile
sensor in the coverage area. A VSS is active if it reports in the
current round and is inactive otherwise. VSS readings are
readings of the real mobile sensor(s) which are present in the
VSS’s coverage area. In situations when multiple real mobile
sensors are in a VSS’s coverage area, the VSS reports the
average of all the real mobile sensors’ readings. There are two
reasons for considering the average reading: 1) multiple sensors
monitoring the same small coverage area most likely will report
similar readings; and 2) any event occurring in the common
coverage area will be reflected in the readings of all the sensors
monitoring that area. As a hexagon is the atomic coverage
region in DEMS, the radius of each hexagon is usually small
enough to assure the variance of real sensors’ readings from the

28

same hexagon to be minimal, and averaging all readings from
sensors from the same hexagon will be close to the real value of
the corresponding region. A VSS is called a missing VSS if one
real mobile sensor exists or expected to exist within the
coverage area of that particular VSS and the reading from the
real mobile sensor is missing.

The total monitoring region for any MSN or SSN is fixed either
due to application specifications or hardware constraints.
However, we further sub-divide the MSN’s monitoring region
into fixed size hexagons with a VSS ‘covering’ each particular
hexagon. We choose hexagonal coverage area as they do not
suffer from overlapping or uncovered regions as in the case of
circular coverage area. Thus, in our monitoring area, we do not
encounter regions where a real mobile sensor can map to
multiple VSS (for overlapping regions) or cannot map to any
VSS (for uncovered regions). Two virtual static sensors are
neighbors if their covered hexagons share at least one edge. Due
to the static nature of VSSs, they have a static spatial relation
among themselves and can be co-related too. Finally
consecutive readings from a VSS are originated from the same
location and can show temporal relationships among them.

Procedure mapReal2Virtual(RealSensorData listRSData, VirtualSensorData
listVSData)

1 for each real sensor rs
2 if(rs is not missing)
3 location ← listRSData(rs).Location
4 vs ← findVirtualSensor(location)
5 listVSData(vs).addReading(listRSData(rs).Reading)
6 else
7 location ← predictLocation(rs)
8 vs ← findVirtualSensor(location)
9 listVSData(vs).status←missing

10 end loop
11 for each virtual static sensor vs
12 if(listVSData(vs) has data)
13 listVSData(vs).status←active
14 listVSData(vs).reading←average(listVSData(vs).Readings)
15 else
16 if(listVSData(vs).status is not missing)
17 listVSData(vs).status ←inactive
18 end loop

end procedure

Figure 2. Mapping mobile sensor readings to virtual static
sensor readings

Hence VSS readings are directly stored in our MASTER-tree.
So, in DEMS, the MASTER-tree represents the relationships
among the VSSs. We assume that at any instance, all the mobile
sensors report their readings to the base station, which is then
mapped to the corresponding VSSs. Figure 2 shows the mapping
algorithm in details. For each real mobile sensor, DEMS finds
the appropriate VSS (lines 3 & 4) using a geometric mapping
between location and hexagon. If the location of the real mobile
sensor is missing, DEMS predicts the expected location for the
real mobile sensor and maps it to the appropriate VSS for that
predicted location. If the mobile sensor reading is missing,
DEMS marks the corresponding VSS as missing. Finally, in the
loop from lines 11 to 18, each VSS is marked appropriately as
active, inactive or missing. At any particular time, only the
active virtual static sensors are stored in their appropriate
MASTER-trees.

3.3 The MASTER-tree Projection Module
A MASTER-tree is like a pattern tree, which is used to represent
arbitrary relationships among all Boolean itemsets [19]. A
pattern tree is equivalent to a spanning tree of a binary
hypercube which represents all possible Boolean items

relationships; but the computational complexity of a pattern tree
is exponential. However, grouping items into a set of clusters
and pruning the pattern tree or its equivalent hypercube lowers
the computational complexity. A pattern tree unduly favors only
the right most leaf node and extracts the relationships of this
node with all other nodes. A MASTER-tree does not suffer from
those issues of a pattern tree. It combines the various pattern
trees regarding each node and prunes the common paths in the
resulting tree and forms a new tree called a MASTER-tree [16].

 In a MASTER-tree, each tree node represents a VSS. The data
distribution of a particular VSS node over a particular vector
space is stored in each node. The complete vector space, in
which the VSS readings occur, is discretized into a finite
number of cells. Technically, for each cell, an arbitrarily
accurate data distribution function or probability distribution
function can be represented by an infinite number of moments in
statistical theory. However, computationally, only a finite
number of moments plus element counters are stored in the
MASTER-tree nodes (typically the first four moments). An
element counter is the number of VSS readings belonging to the
cell associated with the corresponding MASTER-tree node. For
each cell, a few moments are stored, and the cells across nodes
are linked following the MASTER-tree paths. These cells and
links form a grid structure (GS). As GS depends on a finite
number of cells and a fixed number of nodes in a particular
cluster, it does not grow exponentially with the increase in the
number of rounds of sensor readings. Thus, the MASTER-tree
projection module is to establish a MASTER-tree for each
cluster and then to incrementally update the GS as a new round
of sensor readings arrives. This maintains the up-to-date
association rules among the VSSs in a cluster to serve data
analysis purposes. Interested readers are refer to [16] for details
about this module.

3.4 The Data Estimation Module
The data estimation module computes the estimated value for
the missing mobile sensor. Initially, the location of the missing
mobile sensor is predicted based on the user-defined minimum
support and minimum confidence using Morzy’s approach [20].
If the algorithm fails to predict the next location, DEMS uses the
last reported location of the missing mobile sensor as its current
location. Location prediction is preceded by mapping the
missing mobile sensor to the corresponding VSS, which is called
missing VSS. The estimated missing mobile sensor reading is
the estimated missing VSS reading computed from the
MASTER-tree.

The data estimation module accomplishes the task in an iterative
way. First it obtains the prior distribution of the missing VSS
(mVSS) from the MASTER-tree, i.e., the rule ø → mVSS (here
ø means empty). If the rule satisfies the user-defined error
margin and the minimum support and minimum confidence
thresholds, the rule holds and the estimated value is produced by
taking the average of the prior distribution of mVSS. However,
if the error margin requirement is not satisfied, the related
information from the other tree nodes (VSSs) is considered for
re-estimation. Here, the data estimation module chooses one
more new antecedent node to infer the mVSS’s reading. As
every node represents a VSS, a node can be an antecedent node
if the corresponding VSS is active. The initial relevant subspace
for the antecedent node is simply the cell picked up based on its
current reading. When the actual support does not satisfy the

29

minimum support threshold, the relevant subspace is augmented
iteratively until the actual support is no less than the minimum
support. However, if the support requirement cannot be satisfied
even if the relevant space reaches its upper limit, i.e., the
complete subspace, the module removes this node and considers
a new prior node. This process of adding a new antecedent node
is repeated until the estimation procedure meets one of the
following conditions: 1) a rule that satisfies the minimum
support, minimum confidence and maximum error margin is
found, or 2) no more nodes within the cluster is to be added to
the antecedent nodes set. The procedure then returns the
estimated value using the last expected value (the average) over
the obtained consequent subspace. The estimated mVSS’s
reading is directly used as the estimated reading for the missing
mobile sensor.

4. EXPERIMENTAL DESIGN AND
RESULTS ANALYSIS
In this section, we compare DEMS with two existing algorithms:
SPIRIT [17] and TinyDB [13]. Although both TinyDB and
SPIRIT are designed for static sensors, it can be argued that they
can still be used for data estimation for mobile sensors
disregarding sensor’s mobility. We also compare it with the
Average which is a statistical baseline method where the
missing reading is estimated by averaging all other known
sensor readings of the current round.

4.1 Experimental Datasets
4.1.1 The DAPPLE project dataset
The real life dataset is obtained from the DAPPLE project [21].
The data are about carbon monoxide (CO) readings collected
over a period of two weeks around Marylebone Road in London.
The mobile sensors monitoring the atmospheric CO level are
attached to PDAs which store these readings. The data sampling
rate of the sensors is once every second. The software on the
PDAs generates log files containing the CO levels with the
locations and the timestamps associated with the readings. Each
reading was carried out with a single sensor kit every second for
a duration of about 45 minutes over a two weeks period.
Simultaneous use of multiple sensors (usually three) was limited
to some days only. For our experimental purposes, we
considered the instances when three sensors were
simultaneously recording CO pollution levels for a considerable
period of time. We chose Thursday, 20th May 2004, when three
sensors were simultaneously recording for about 32 minutes,
resulting in 600 rounds (after disregarding the missing rounds)
of CO readings.

4.1.2 The Factory Floor Temperature Dataset
Besides the above real life application dataset, we also
synthesized a factory floor temperature dataset [12] which
exhibits dynamically changing phenomena. In this experiment,
machines are placed on a grid floor. Initially, all machines are
off and the starting temperatures for all grid points are set to
zero. The boundary grid point temperature is held at zero
throughout the experiment. Then some machines will be turned
on for a number of rounds; the temperatures on these machines
will reach a high constant temperature and heat will disperse on
the floor. At each time step, a grid point is updated using the
heat transfer formula used in [12]. In this simulation, 100 mobile
sensors were roaming around in random directions to monitor
the factory floor and reported the temperature readings from

different locations at different points in time. In our simulations,
we sampled the mobile sensor readings once per hour. In total
we gathered 5000 rounds of readings from 100 sensors.

4.2 Performance Comparison Studies
In this section we compare the performances of DEMS,
Average, SPIRIT [17], and TinyDB [13] in terms of mean
absolute error (MAE). MAE is calculated using the following

formula: ��� =
∑ |�����|�

���

�
 where �� is the estimated value, � is

the original value for the i-th data point, and n is the total
number of data points. MAE is thus the magnitude, not the
percentage, of the error. We specifically study the impacts of the
number of rounds of sensor readings on the estimation accuracy.

4.2.1 Results for the DAPPLE Project Dataset

Fig 3. Number of rounds vs. MAE for the DAPPLE project
dataset

Figure 3 shows the change of MAE with the change of number
of rounds of sensor readings. The MAE value of 0 for DEMS
implies that DEMS estimates the missing data with no error. A
possible reason is that the DAPPLE project dataset has very few
variations (the CO levels are within the range 0~6) and the
sensors have very high spatial correlations. In most cases the
readings in the same hexagon are the same. Hence, DEMS
produces a zero error in terms of MAE. The MAEs for other
approaches are comparatively high at the beginning and become
stable at the end as the number of rounds increases.

Table 1. Average MAEs for the DAPPLE project dataset
Approach Average MAE

DEMS 0
Average 1.2717
TinyDB 0.6331
SPIRIT 0.9437

Table 1 shows the average MAE for all the approaches. DEMS
almost perfectly estimates the missing values while Average
gives the highest error compared to SPIRIT and TinyDB.

4.2.2 Results for the Factory Floor Temperature
Dataset

Table 2. Average MAEs for the factory floor temperature
dataset

Approach Average MAE
DEMS 2.2538

Average 14.7787
TinyDB 6.9621
SPIRIT 4.7472

We performed a similar study for the factory floor temperature
dataset. This dataset have more variations (temperatures are in

30

the range 0~100C) compared to the DAPPLE project dataset.
Figure 4 shows the change of MAE with respect to the change of
number of rounds. The MAE for each approach remains almost
constant when the number of rounds changes. As this dataset has
more variations than the DAPPLE project dataset, even though
DEMS still performs better than the other techniques, its
performance is not as good as its performance with the DAPPLE
project dataset.

Fig 4. Number of rounds vs. MAE for factory floor
temperature dataset

Table 2 shows the average MAE for all the approaches. The
average errors produced by Average, SPIRIT and TinyDB are
about seven times, three times, and two times more than that
produced by DEMS, respectively. DEMS is thus very effective
in estimating missing sensor data.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new technique (DEMS) to estimate
missing data in MSN applications. Experimental results show
that the estimated values computed by DEMS are more accurate
than those produced by the existing techniques: Average,
SPIRIT [17], and TinyDB [13]. For future work, we will
consider the case when multiple mobile sensors report data at
different times. We envision scenarios where considerable
delays may exist between each sensor’s readings. Finally as
DEMS currently is designed for single hop MSNs only, we plan
to expand the scope of DEMS to include multi-hop MSNs,
mobile base station, and clustered MSNs.

6. ACKNOWLEDGMENTS
This work has been supported in part by the NASA under the
grant No. NNG05GA30G.

7. REFERENCES
[1] T. Haenselmann; An FDL'ed Textbook on Sensor

Networks, GNU Free Documentation License, 2005.

[2] A. Mainwaring, D. Culler, J. Polastre , R. Szewczyk, J.
Anderson; Wireless sensor networks for habitat monitoring,
1st ACM international workshop on Wireless sensor
networks and applications, 2002.

[3] Metar. http;//metar.noaa.gov/, Last Accessed - January
2010.

[4] L. Schwiebert, S.Gupta, and J.Weinmann; Research
challenges in wireless networks of biomedical sensor,

MobiCom, 2001.
[5] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and

K.K Saluja; Sensor Deployment Strategy for Target

Detection, 1st ACM International Workshop on Wireless
Sensor Networks and Applications, 2002.

[6] S. Meguerdichian, F. Koushanfar, M. Potkonjak and
M.B.Srivastava; Coverage Problems in Wireless Ad-Hoc
Sensor Networks, INFOCOM, 2001.

[7] B. Liu, Peter Brass, Olivier Dousse, Philippe Nain, and
Don Towsley; Mobility Improves Coverage of Sensor
Networks, MobiHoc, 2005.

[8] G. Wang, G. Cao, T. parta, and W. Zhang; Sensor
Relocation in Mobile Sensor Networks, INFOCOM, 2005.

[9] G.T. Sibley, M.H. Rahimi and G.S. Sukhatme; Robomote –
A tiny Mobile Robot Platform for Large-Scale Sensor
Networks, ICRA, 2002.

[10] N. Jiang , Le Gruenwald; Research issues in data stream
association rule mining, SIGMOD Record 2006.

[11] S. Guha, N. Koudas, K. Shim; Data Streams and
Histrograms, ACM Symposium on Theory of Computing,
2001.

[12] A. Silberstein, K. Munagala, and J. Yang; Energy-Efficient
Monitoring of Extreme Values in Sensor Networks, ACM
SIGMOD, 2006.

[13] S. Madden, M. Franklin, J. Hellerstein and W. Hong;
TinyDB: An Acquisitional Query Processing System for
Sensor Networks, Transactions on Database Systems, 2005.

[14] L. Gruenwald, H. Chook, M. Aboukhamis; Using Data
Mining to Estimate Missing Sensor Data, ICDMW, 2007.

[15] N. Vijayakumar and B. Plale; Missing Event Prediction in
Sensor Data Streams Using Kalman Filters, book chapter in
Knowledge Discovery from Sensor Data, Taylor and
Francis/CRC Press, 2009.

[16] H. Chok and L. Gruenwald; An online spatio-temporal
association rule mining framework for analyzing and
estimating sensor data. IDEAS, 2009.

[17] S. Papadimitriou, J. Sun, and C. Faloutsos; Streaming
Pattern Discovery in Multiple Time-series, VLDB, 2005.

[18] L. Gruenwald, H. Yang, S. Sadik, R. Shukla; Using Data
Mining to Handle Missing Data in Multi-Hop Sensor
Network Applications, MobiDE, 2010.

[19] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu.in H.
Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds.);
Mining Frequent Patterns in Data Streams at Multiple Time
Granularities. Next Generation Data Mining, AAAI/MIT,
2003.

[20] M. Morzy; Mining Frequent Trajectories of Moving
Objects for Location Prediction, Machine Learning and
Data Mining in Pattern Recognition, LNCS, 2007.

[21] UCL Carbon Monoxide Data Collection at Dapple Site,
http://www.cs.ucl.ac.uk/research/vr/Projects/envesci/DAPP
LE2004/UCLDAPPLE.html, Accessed May 2010.

[22] W.Tobler; A Computer Movie Simulating Urban Growth in
the Detroit Region, Economic Geography, 1970.

[23] W. Day and H. Edelsbrunner; Efficient Algorithms for
Agglomerative Hierarchical Clustering Methods, Journal of
Classification, 1984.

31

PAO: Power-Efficient Attribution of Outliers
in Wireless Sensor Networks

Nikos Giatrakos
Dept. of Informatics
University of Piraeus

Piraeus,Greece
ngiatrak@unipi.gr

Yannis Kotidis
Dept. of Informatics
Athens University of

Economics and Business
Athens,Greece

kotidis@aueb.gr

Antonios Deligiannakis
Dept. of Electronic and
Computer Engineering

Technical University of Crete
Crete,Greece

adeli@softnet.tuc.gr

ABSTRACT
Sensor nodes constitute inexpensive, disposable devices that are
often scattered in harsh environments of interest so as to collect
and communicate desired measurements of monitored quantities.
Due to the commodity hardware used in the construction of sen-
sor nodes, the readings of sensors are frequently tainted with out-
liers. Given the presence of outliers, decision making in sensor
networks becomes much harder. In this work, we introduce PAO, a
framework that can reliably and efficiently detect outliers in wire-
less sensor networks. PAO significantly reduces the bandwidth con-
sumption during the outlier detection procedure, while being able
to operate over multiple window types. Moreover, our framework
possesses the ability to operate in either an exact mode, or an ap-
proximate one that further reduces the communication cost, thus
covering a wide variety of application requirements.

1. INTRODUCTION
Many monitoring applications rely on wireless sensory infras-

tructures in order to obtain measurements of the surrounding en-
vironment. Examples include habitat monitoring applications that
collect meteorological data (like temperature, pressure, humidity
etc), military surveillance applications that track movement of per-
sonnel or detect potentially hazardous chemicals, as well as vehicle
tracking and traffic surveillance applications. Despite their diver-
sity and differences, all such applications share the need to collect
measurements that accurately reflect the conditions of the physical
world being monitored. However, sensory infrastructures, in or-
der to provide an economically viable solution, typically rely on
inexpensive hardware used for the construction of the nodes. As
a result, sensor nodes often generate imprecise individual readings
due to interference or failures [10]. In several application scenar-
ios, sensor nodes are often thrown in hazardous environments and
need to operate in an unattended manner for long periods of time.
Such nodes, may be exposed to severe conditions that adversely
affect their sensing elements, thus yielding readings of low qual-
ity. As an example, the humidity sensors on the popular MICA
mote is very sensitive to rain drops [5]. A question that naturally
arises is whether (and how) one can build applications that take
mission-critical decisions, given the lack of trust on the baseline
measurements provided as input by the sensory infrastructure.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
DMSN ‘10, September 13, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

In order to address this question, a flurry of recent work has
targeted the problem of outlier detection in sensor networks [3,
5, 12, 17, 18]. Although the detection of outliers is an old re-
search problem, the particular challenges introduced when consid-
ering ad-hoc sensor networks render conventional outlier detection
algorithms [2] unsuitable for this new setting. In particular, sensor
nodes often have limited processing and storage capabilities. As a
result, sensory data that is continuously collected by the nodes may
be maintained in memory for only a limited amount of time. More-
over, since data is collected continuously (typically in predefined
intervals, called epochs), outlier detection needs on-line mecha-
nisms that will work in this restrictive, streaming setting. How-
ever, the main constraint in sensor network applications is often
the limited energy capacity of each sensor node. In many applica-
tions, sensor nodes are powered by batteries that cannot be easily
replaced if depleted, given that nodes are often thrown in remote
sites. Therefore, in order to ensure the longevity of the sensor
network, we need to devise techniques that can detect outliers in
an energy-efficient manner, thus reducing the energy drain of the
nodes. It is well understood that radio communication is by far the
the biggest culprit in energy drain [13]. This means that a central
collection of all sensory data (and subsequently, computation of
outliers using existing centralized techniques) is not feasible since
it results in high energy drain, due to the large amounts of trans-
mitted data. Hence, what is required are continuous, distributed
and in-network approaches that reduce the communication cost and
manage to prolong the network lifetime.

In this paper we introduce PAO (PAO stands for Power-efficient
Attribution of Outliers), an outlier detection framework tailored for
the particular constraints faced in typical sensor networks appli-
cations. Our framework follows the in-network paradigm, meaning
that computation of outliers is performed inside the network, avoid-
ing in this way the communication of raw sensor measurements to
the base station. Furthermore, PAO possesses the ability to perform
over multiple types of windows of observations collected by motes.
Similar to previous techniques [5, 8], our framework takes into ac-
count both temporal and spatial correlations in order to characterize
the readings of a sensor node. Temporal correlations are captured
by considering the latest measurements of a sensor node and by
computing localized regression models out of them. These com-
pact models are of fixed size and are used to replace the original
data values, reducing in this way the size of data that is transmitted
in the network. In PAO, we adopt a clustered network organiza-
tion [14, 19], where nodes communicate their regression models
to a clusterhead, which computes the similarity amongst the latest
values of any pair of sensors within its cluster. Based on the per-
formed similarity tests and a desired minimum support specified
by the posed query, each clusterhead generates a list of potential
outliers within its cluster. This list is then communicated, in a sec-
ond (inter-cluster) communication phase of PAO, among the clus-

32

terheads, in order to allow potential outliers to gain support from
measurements of nodes that lie in other clusters. The whole pro-
cess is sketched in Figure 2.

In order to alleviate clusterheads from comparing models from
all nodes within their cluster, we introduce PAO+, an extended ver-
sion of the original framework where additional nodes within each
cluster are utilized for that purpose. This extended scheme is made
possible by introducing a simple, yet effective hashing scheme over
the regression parameters computed by the sensor nodes. The bene-
fits of this extended scheme are twofold. Not only do we spread the
load into multiple nodes, but also (as will be explained) manage to
avoid many comparisons between regression models of motes that
are provably not similar and, thus, cannot support each other. The
PAO+ scheme also offers a load balancing mechanism that peri-
odically adopts the hashing functions to the characteristics of the
collected data, resulting in more effective comparison pruning.
The contributions of this paper can be summarized as follows:

1. We introduce PAO, an in-network outlier detection framework
that permits computation of outliers in a clustered sensor network.
PAO is capable of performing over different window types, it takes
into account both temporal and spatial correlations among the mea-
surements of the nodes and utilizes simple regression models in or-
der to reduce communication overhead. We provide techniques for
suppressing update messages by the motes, in continuous queries,
resulting in fewer transmitted bits.
2. We describe PAO+, which extends PAO with a novel load bal-
ancing and comparison pruning mechanism. The proposed exten-
sions alleviate clusterheads from excessive processing and commu-
nication load and result in a more uniform, intra-cluster power con-
sumption and prolonged network unhindered operation.
3. We present a detailed experimental analysis of our techniques
using real data sets. Our analysis demonstrates that our techniques
manage to detect outliers using only a fraction of the bandwidth
that a centralized approach would require.

This paper proceeds as follows. In Section 2 we comment on
related work. Section 3 presents preliminary concepts. Our PAO
framework is introduced in Section 4, while its extensions are dis-
cussed in Section 5. Section 6 presents our experimental evalua-
tion, while Section 7 includes concluding remarks.

2. RELATED WORK
Recently, substantial effort has been devoted to the development

of efficient outlier detection techniques that manage to pinpoint
motes producing low quality readings or observe interesting un-
dergoing phenomena so that proper actions can be taken [21]. [6,
10] introduce data cleaning mechanisms over sensor data streams
after their central collection at the query source. Nevertheless, the
central collection of data is not feasible nor desired as it has a cu-
mulative effect on the amount of communicated data, which in turn
depletes the residual energy of the motes.

Localized voting protocols [3, 18] have been proposed to deter-
mine faulty motes in completely ad-hoc network formations. How-
ever, such voting schemes are prone to errors when motes generat-
ing imprecise measurements are not able to communicate with each
other due to physical obstacles or other unpredictable disturbances
in their surrounding [5]. A fused weighted average scheme is pro-
posed in [9] where a fuzzy mechanism is utilized to infer the cor-
relation among sensor readings. In other related work, [22] makes
use of a weighted moving average to clean imprecise samples while
a histogram-based outlier attribution method is presented in [16].

The authors of [17] foster kernel functions to estimate the data
distribution of motes and subsequently detect distance-based out-
liers leveraging this information. The work of [5] manages to pro-
vide outlier reports on par with the execution of aggregate and

Figure 1: Main Stages of PAO. Step 1: Intra-cluster communi-
cation between regular motes and clusterheads (solid black ar-
rows). Step 2: Similarity tests are performed by clusterheads.
Step 3: An approximate TSP problem is solved, potential out-
liers are exchanged (dashed red arrows). The final outlier list
is transmitted to the base station (not shown).

group-by queries posed to an aggregation tree [1, 13, 20]. It thus
excludes extraordinary measurements avoiding the distortion of the
final aggregate result and simultaneously allows users to acquire
important information of motes exhibiting abnormal behavior. The
recent work of TACO [8], manages to efficiently determine outliers
by providing a mechanism based on Locality Sensitive Hashing [7],
which trades bandwidth consumption for accuracy during the out-
lier detection procedure in a straightforward way. However, PAO is
applicable to multiple types of window queries. Message suppres-
sion schemes in sensor networks for continuous aggregate queries
have been studied in [4, 15]. Our work differs in that we do not sup-
press raw measurements but updates to model parameters instead.

3. PRELIMINARIES

3.1 Network Model
We adopt an underlying network structure where motes are or-

ganized into clusters (shown as dotted circles in Figure 2) using
any existing network clustering algorithm [14, 19]. Queries are
propagated by the base station to the clusterheads, which, in turn,
disseminate these queries to sensors within their cluster.

3.2 Analyzing Trends in Mote Time Series
A time series constitutes a sequence of observations Yt0 , Yt1 , . . . ,

Ytw−1 , where t0 < t1 < · · · < tw−1, regarding a studied attribute
of interest Yt, in w different time instances. In our sensor network
setting, a posed outlier detection query dictates the epoch parame-
ter e, which is the time interval between consecutive samples. As
a result, after obtaining w quantities every mote Su has formed a
series Y Sut with t = (0, e, . . . , (w − 1) · e) as the vector of the
corresponding timestamps.

Time series analysis techniques aim at capturing the implied be-
havioral pattern in the observed data. A fundamental component
describing the existing patterns is the trend of the series, which is
able to describe the rate of change on the values of an attribute.
This in turn provides a compact picture of the presence of inter-
esting phenomena imprinted on previously acquired samples. A
simple yet popular way to depict the trend of time series data is
through linear models in which:

Ŷt = â · t+ b̂ (1)

According to Equation 1, the value of a studied attribute given
the time vector is expected to be encompassed by a line with pa-
rameters â and b̂ taking values:

â =
12(

∑w−1
i=0 ti·Yti−

e·w·(w−2)
2(w−1)

∑w−1
i=0 Yti)

e2·w·(w2+2)

b̂ = Y t − â · e·w2

(2)

33

Figure 2: Trends and intercept points in mote time series de-
pending on the spatial proximity to the source of the fire burst.

Y t refers to the mean of Ytis. Parameter â expresses the slope of
the linear model, while b̂ represents the intercept point between the
line and Yt axis. Hence, arctan(â) computes the actual angle]Yt
that the linear model’s slope forms in respect with the time axis and
−π

2
<]Yt < π

2
.

As an example, consider a sensor network in a forest designed
to sample attributes such as temperature, humidity etc. Should a
fire burst arise (Figure 2) nearby motes will collect increasing tem-
perature values. The absolute sampled values actually depend on
the radius around the source of the event that a mote is placed but
its rate and, thus, the trend of the corresponding time series will be
similar. In other words, upon utilizing a linear representation so as
to model the trend on motes data, parameter b̂ regards the proxim-
ity of a mote to the source of an event, contrary to â which shows
the actual rate in change of values. The same observation holds for
other physical attributes such as humidity (i.e., flood occurrence
where motes obtain increased humidity values sensed in the air),
sound vibrations, radiance measurements etc.

Nevertheless, in practice samples within a specific time window
may exhibit extraordinary deviation where no clear trend seems
to appear. Situations like these should be handled differently due
to the lack of a certain behavioral pattern. The question is how
could someone check whether such a pattern does exist. To achieve
that we reside to the correlation of determination, which shows the
amount of variance in Yt explained by the model:

R2 =

∑w−1
i=0 (Ŷti − Y t)2∑w−1
i=0 (Yti − Y t)2

, 0 ≤ R2 ≤ 1 (3)

High values of R2 validate that a trend exists and is well modeled
by Equation 1. On the contrary, low values indicate the absence of
this kind of motive.

3.3 Outlier Definition
Based on our previous discussion we formalize our definition

of outlying values. We assume that the posed outlier detection
query has specified a couple of parameters p,]thres, whose mean-
ing will be introduced shortly. Given the time series Y Sut , Y Svt
of motes Su, Sv we initially utilize Equation 3 to check whether
behavioral patterns that can be described by linear models occur
based on threshold p. That is, we simply check whether R2 ≥ p
for Y Sut and Y Svt , respectively. Please note that each test can be
performed independently by the corresponding mote. If this is true,
then, as already mentioned, we only need to compare the trends
based on the value of âs and more precisely on the equivalent an-
gles]Y Sut ,]Y Svt .

Given a similarity threshold]thres specified by the posed query
we consider Y Sut , Y Svt as similar if:

|]Y Sut −]Y Svt | ≤]thres (4)

Acquired samples that do not pass theR2 linearity test do not ex-
hibit any profound motif and should be compared separately. Such

cases can be handled using the cosine coefficient so as to compute
the angle similarity [8] between vectors VecSu ,VecSv . Value vec-
tor VecSu ∈ Rw contains the measurements of Su during the lat-
est w samples and the angle similarity in this case is calculated by
](VecSu ,VecSv) = arccos

VecSu ·VecSv
||VecSu ||·||VecSv ||

.
As in [5, 8], we require our techniques to be resilient to environ-

ments where spurious readings originate from multiple node time
series, due to a multitude of different and unpredictable factors.
Thus, for a mote not to be classified as an outlier it should be found
similar with at least minSup other motes. The value of minSup
can be expressed either as an absolute value or as a percentage of
motes.

4. OUR PAO ALGORITHM
We now present our PAO algorithm in detail. We assume that an

outlier attribution query of the form:

SELECT c.Su
FROM Clusterheads c
WHERE c.SupportSu < minSup
USING [
SAMPLING PARAMETERS (Interval = e,Size = w),
TESTS(Linearity p, Similarity]thres),
CHECKS ON <set of specifications on similarity tests>),
WINDOW TYPE={ Disjoint | Sliding } with ε]

has been posed to the sensor network. The parameters of the query
have been presented in the previous sections. Regarding the set of
specifications noted in CHECKS ON line of the USING compart-
ment, we note that it refers to motes that may find support outside
their cluster based on a set of static specifications. For instance,
users may allow motes within a certain radius to be able to witness
each other, irrespectively of whether they have been assigned to the
same cluster, as they are expected to be able to sense similar con-
ditions (i.e, the fire burst in the example of Figure 2). The last line
of the query refers to the window type (disjoint or sliding). In a
nutshell, using disjoint windows the query evaluation utilizes a set
of w new samples (not used in previous query evaluations - this is
often referred to as a tumble), while sliding windows always utilize
the latestw observations (thus at each step taking into accountw−1
observations that were also used in the previous evaluation, but then
also adding the latest observation by the mote). Parameter ε that ac-
companies the window type involves a message suppression choice
provided by PAO so as to support the potential for approximate de-
tection of outliers with further reduced communication costs, as it
will be explained at the end of the current section.
PAO at Individual Motes. After it receives a corresponding query,
every mote Su in the network assembles a time series Y Sut . Ini-
tially, Su computes â, b̂ using Equation 2, the correlation of deter-
mination R2 using Equation 3 and performs the linear trend exis-
tence test by checking whether R2 ≥ p. Recall that p expresses a
tolerance on the deviation of the collected measurements. In prac-
tice, an amount of this deviation is due to systematic calibration
errors of the inexpensive hardware used in the construction of sen-
sor nodes. As a result, knowing the specifications of the available
mote hardware infrastructure, users can appropriately set the de-
sired value for p. Subsequently, depending on the result of the latter
test, Su calculates]Y Sut = arccos(â) which is then transmitted
to the clusterhead. R2 < p results in communicating the analytical
form VecSu of samples to the clusterhead.
Intra-cluster Processing. Clusterheads receive data from motes
in their cluster and organize this information in a tabular format
with columns Su,]Y Sut or VecSu for motes that did not pass the
linearity test, and SupportSu .

Data collection is horizontally fragmented between the cluster-
heads and further separated in motes with captured behavioral pat-

34

terns and those which do not adapt to the model. The SupportSu
column is set to 0 at the beginning of this phase. Subsequently,
each clusterhead performs similarity tests as in Equation 4 on the
first category of motes, while applying](VecSu ,VecSv)-based
tests for the second. Each successful test increases the support of
the participating motes by 1. At the end of the procedure, each
clusterhead forms a list of tuples 〈Su,]Y Sut , SupportSu〉 and
〈Su,VecSu , SupportSu〉 for sensors that did not manage to ob-
tain enough witnesses to reach minSup.
Inter-cluster Processing. As already noted, lists of motes with
SupportSu < minSup are not final outliers since the query may
have allowed motes in different clusters to be tested for similarity.
Motes in the lists extracted by cluster Ci that are not subjected to
such kind of specifications can be directly reported to the query
source. Otherwise, triplets are placed in a list PotOutCi of poten-
tial (i.e., not yet determined) outliers. Given the current cluster as
the starting node, query-specified clusterheads as intermediate sites
and the base station for the destination, the intercluster communica-
tion problem is modeled as a TSP according to which PotOutCis
are exchanged between clusterheads participating in the path. The
TSP problem can be solved by the base station after clusterhead
election. Every Su ∈ PotOutCi that manages to reach minSup is
excluded from the list that will be forwarded to the next site.
Approximate Processing over Multiple Window Types. So far,
the procedure presented in PAO reduces the communication bur-
den only for disjoint time windows. In other words, motes collect
w quantities, form corresponding time series, and intra- as well as
inter-clustering processes are then triggered. Provided that Su suc-
ceeds in its linearity test, only]Y Sut s (instead of the entire series)
are transmitted. Subsequently, these steps are repeated every w
new measurements. On sliding window queries, new results are to
be provided based on thew−1 previous observations and the latest
w-th measurement, obtained every e time units. In this case, letting
motes transmit]Y Sut does not provide any savings in communica-
tion costs as it would be sufficient to merely send the newest w-th
measurement instead.

To efficiently handle sliding windows PAO fosters a message
suppression strategy to maintain low communication burden, while
providing approximate answers of satisfactory quality. In particu-
lar, consider a clusterhead which has received]Y Sut from Su and
assume a parameter ε encapsulated in the basestation’s inquiry. In
the upcoming window, we allow motes to suppress their own mes-
sages when]Y Sutnew ∈ []Y Sutprevious − ε,]Y

Su
tprevious

+ ε], where
]Y Sutprevious refers to the last value that the mote has transmitted to
its clusterhead and]Y Sutnew refers to the latest computed (but not
necessarily transmitted)]Y Sut value.

At clusterheads, similarity tests are performed in the same way
as before. Nevertheless, the suppression of messages introduces
approximate characteristics to PAO. It can easily be observed that
for pairs of motes which did not suppress their messages the cor-
responding test between them will provide exact result. We now
outline the cases of accurate similarity estimation despite message
suppression:

• For pairs of motes that both suppress their messages cluster-
heads rely on]Y Sutprevious ,]Y

Sv
tprevious

to obtain an answer re-
garding their similarity. Without loss of generality, we assume that
]Y Sutprevious <]Y Svtprevious . When]Y Sutprevious + ε +]thres <

]Y Svtprevious − ε the test is always accurate.

• Provided that Sv does not suppress its message while Su does,
clusterheads take into account]Y Sutprevious ,]Y

Sv
tnew

. Assuming
]Y Sutprevious <]Y Svtnew (the other case is symmetric), a correct
answer is ensured when]Y Sutprevious + ε+]thres <]Y Svtnew .

Otherwise, the result of the test might be either faulty or correct,
depending on the actual changes in]Y Sutnew ,]Y

Sv
tnew

. Obviously,
setting ε = 0 is equivalent to requiring exact results. Moreover,
notice that the above strategy manages to save communication costs
irrespectively of the window type. Eventually, we note that ε can be
dynamically adjusted by motes. Due to space limitations, we omit
the corresponding discussion, but we refer interested readers to [4]
for further details.

5. FROM PAO TO PAO+
During the intra- and inter-cluster communication phases of our

PAO algorithm clusterheads are assigned the load of angle/vector
reception as well as the processing burden of similarity test de-
termination. This means that they consume extra power resources
during these procedures compared to regular nodes in the clusters.
Remaining energy is a primary criterion in any clustering proto-
col for a mote to be maintained as clusterhead. Thus, the network
will need to frequently pause its operation and be led to a reorga-
nization process so as to elect new clusterheads (which also yields
an amount of communication cost for sensors). Bearing these, in
PAO+ we introduce a hashing mechanism that spreads the intra-
cluster communication and comparison load. Moreover, recall our
similarity test |]Y Sut −]Y Svt | ≤]thres. A different reading of
the inequality says that sensors with angle differences above]thres
should not be compared for similarity since we know in hand that
the test cannot be successful. Nonetheless, having arrived at a clus-
terhead comparisons will inevitably be performed even for motes
with high angle differences. PAO+ hashing mechanism also man-
ages to prune unnecessary comparisons of motes exhibiting highly
dissimilar behavioral patterns.
Load Distribution and Comparison Pruning in PAO+. Apart
from electing the clusterhead we choose additional B nodes in the
formed cluster as the hashing Buckets. To define the hashing proce-
dure we need to clarify: i) the hash key, ii) the hash key space, iii)
the hash function application. We proceed by presenting the afore-
mentioned parameters. The hash key is set to be the angle]Y Sut
of mote Su which means that the hash key space is determined by
the fact that −π

2
<]Yt < π

2
. The previous range is equally dis-

tributed between the available buckets such that a bucket Bi holds
a range between [−π

2
+i· π

B
,−π

2
+(i+1) π

B
). Next, the hash func-

tion that is applied by motes in order to decide the receiver bucket

is: H(]Y Sut) = b]Y
Su
t
π
B

+ dB
2
ec = Bi. Thus, in the intracluster

processing, instead of letting all regular nodes transmit their data
towards the clusterhead we impose that they should be sent to the

b]Y
Su
t
π
B

+ dB
2
ec-th bucket.

Obviously, the process groups motes with similar trends in buck-
ets while highly dissimilar motes hash in distant buckets in terms
of the hash key space assignment. However, at the edges of the
buckets similarity may still exist. More precisely, to guarantee
that a node can be witnessed by any similar within the cluster,
]Y Sut needs to be sent to the bucket nodes that cover the range

bmax{]Y Sut −]thres,0}
π
B

+ dB
2
ec to bmin{]Y Sut −]thres,π}

π
B

+ dB
2
ec.

Utilizing more buckets reduces the range of each, but results in
more]Y Sut s being transmitted to multiple buckets. PAO+ selects
the value B (whenever at least B nodes exist in the cluster) by set-
tingB < π

]thres
which limits the number of bucket nodes to which

motes transmit their data to the range bmax{]Y Sut −]thres,0}
π
B

+

dB
2
ec to b]Y

Su
t
π
B

+ dB
2
ec. The latter range is guaranteed to con-

tain at most 2 buckets.
In order to make sure that the similarity test is not performed

more than once we impose the following rules: (a) For]Y Sut s

35

mapping to the same bucket, the similarity test between them is
performed only in that bucket node; and (b) For]Y Sut s mapping
to different bucket nodes, their similarity test is performed only in
the bucket node with the lowest Bi.

Each bucket reports the set of outliers that it detected, along with
their support, to the clusterhead. Any mote reported by at least one,
but not all buckets to which it was transmitted, is guaranteed not to
be an outlier, as it has reachedminSup at some bucket. Even when
a mote is reported by all the buckets it was hashed, the support that
its measurements have gained is distributed between buckets need-
ing to be summed up. Hence, the received support is added, and
only those]Y Sut s that did not receive the required overall support,
from the buckets they were hashed to, are considered outliers.

We note that the whole process does not change the organization
of the data as presented in Section 4, as it simply introduces an extra
fragmentation step on the data. Eventually, sensor nodes that do not
manage to pass the linearity test are assigned to a separate bucket
to be compared with each other, omitting the hashing mechanism.
Load Balance in PAO+. The hashing mechanism we discussed
distributes the processing and communication load during the in-
tracluster phase of our algorithm. However, it does not guarantee
that load apportionment will be equal between buckets. A naive
way to confront occasions of high unbalanced load is to let buck-
ets locally redetermine the hash key space for themselves and sim-
ply route any hashed information outside the new range to other
left/right neighboring buckets. However, in this case our primary
concern regarding bandwidth preservation is violated which at last
deteriorates the power consumption for those buckets.

To balance the load amongst buckets and simultaneously achieve
an efficient way to do so, PAO+ takes into consideration the mon-
itored trends’ distribution. More precisely, PAO+’s load balancing
mechanism acts after the initial hash key space assignment and in-
volves the construction of simple equi-width histograms. As buck-
ets receive data from other motes in the cluster they maintain fre-
quency counts of]Y Sut s. Subsequently, each bucket communi-
cates to its clusterhead the estimated frequency counts along with
the width parameter used in their construction. Every clusterhead is
aware of the current hash key space assignment since it took part in
the previous partitioning and can easily reconstruct the histograms.

Finally, based on these compact representation of the monitored
patterns distribution, a new key space allocation is determined and
broadcasted to all nodes in the cluster. The whole procedure can be
periodically repeated i.e every a number of w · e time intervals to
allow adaptations to changing data distributions.

6. EVALUATION RESULTS
Experimental Setup. In order to perform a comprehensive study
of our algorithms varying different parameters, we developed a cus-
tom simulator. We randomly located sensors in a rectangular area
and set the packet size to 16 bytes. We tested our PAO and PAO+
algorithms using a real world data set termed Intel Lab Data. The
data set consists of temperature and humidity measurements col-
lected by 48 motes for a period of 633 and 487 epochs, respectively,
in the Intel Research, Berkeley lab [5]. To test our methods in harsh
conditions, apart from using the original data sets, we produced ex-
tra versions (termed as ”Noisy” in our experiments) where we in-
creased the complexity of the measurements by specifying for each
mote a 6% probability that it will fail dirty at some epoch. Failures
were simulated using a known deficiency [5] of the MICA2 tem-
perature sensor according to which a mote that fails-dirty increases
its samples until it reaches a maximum value. We set that incre-
ment to 1 degree per epoch with a maximum value of 100 degrees.
To prevent the measurements from lying on a straight line, we also
impose a noise up to 15% at the values of a node that fails dirty. Ad-
ditionally, each node with probability 0.4% at each epoch obtains

(a) Avg Bits Transmitted vs w (b) Avg Bits Transmitted vs p

Figure 3: Avg Bits Transmitted per Window varying w and p

a random, spurious reading between 0 and 100 degrees. We orga-
nized our network in four clusters and utilized a minSup value of
4 (i.e 1/3 of the total motes in a cluster). Eventually, in each exper-
iment we used]thres of 10 and 20 degrees which account for rigid
and more relaxed cases of outlier definitions.
Bandwidth Consumption in PAO. We first present a set of ex-
periments regarding the regular operation of our framework using
disjoint time windows. We compare the bandwidth consumption
of PAO against a centralized method termed ”SelectStar” that col-
lects all data in the query source and performs the outlier detection
process there, instead of using PAOs in-network paradigm.

Figure 3(a) shows the reduction in bandwidth consumption pro-
vided by PAO for the temperature data, when varying the window
sizew, for a p = 0.7 threshold. PAO manages to reduce the average
amount of transmitted data per window up to a factor of 1/3.8 for
the original and 1/2.6 for the noisy data compared to the SelectStar
approach. Additionally, Figure 3(b) depicts the average commu-
nication preservation depending on p’s strictness for the humidity
data using w = 16. Please note that setting the window size to the
maximum of the previously (Fig. 3(a)) cited windows constitutes
a worst case scenario for PAO, as the larger the window the fewer
the motes that manage to adapt to the linear model. We can ob-
serve that the gains in the average amount of transmitted bits range
between 1/1.65 and 1/15 for p = 1 and p = 0, respectively (Se-
lectStar is the straight line at the very top of the figure). Notice
that setting p = 1 for the noisy data version results in the trans-
mission of all V ecSus since no mote satisfies that threshold in the
examined data sets. As a result, the aforementioned lower bound
of 1/1.65 expresses the worst case gains solely provided by PAOs
in-network outlier detection approach.
Sliding the Window. We now investigate the characteristics at-
tributed to PAO when operating over sliding windows, thus ap-
proximately pinpointing outlying values and reducing the commu-
nication burden by suppressing messages as described in Section 4.
Figures 4(a), 4(b) present the accuracy of our framework and the
amount of communicated bits for different ε values expressed as
a percentage of the specified]thres. We compute the accuracy
of PAO using the F−measure = 2/(1/Precision + 1/Recall)
metric where precision specifies the percentage of reported outliers
that are true outliers, while recall specifies the percentage of out-
liers that are reported by our framework. Notably, PAO exhibits
high accuracy with F-measure values ≥ 80% in most of the cases
while managing to reduce the total amount of communicated data
to 1/3.6 on average compared to the mere transmission of the latest
value in the window (for ε = 0).

Eventually, Figure 5 shows the corrected answers that would be
obtained upon utilizing PAO on par with a simple aggregate (max)
query. The parameters used during the outlier detection are in-
cluded in the figure. In each epoch, we initially computed the max-
imum humidity reported by the network using the original data sets
(AGGREGATION). Then we posed the same aggregate query and

36

(a) Accuracy varying ε (b) Total Bits Transmitted vs ε

Figure 4: Approximate Processing over Sliding Window, w=16

let it be executed after the outlier detection and removal performed
by PAO using ε = 5 degrees. We can observe that PAO manages to
prevent the distortion on the final results caused by the outliers for
the vast majority of the epochs.
PAO+ Leverages. To validate the ability of the hashing mecha-
nism introduced by PAO+ to distribute the intracluster load, as well
as to prune unnecessary comparisons, in Table 1 we present the
effect of bucket node introduction utilizing disjoint time windows
of w = 16 size. We used different cluster sizes between 24 and
48 motes while varying the number of buckets from 1 to 4. More-
over, the notation ”+1” used in the number of buckets expresses
the utility of an additional bucket for motes that do not succeed
in the linearity test. The table provides average results per win-
dow. In particular, we include the average number of comparisons
(Cmps) that take place in a window along with the average number
of motes that sent their data to 2 buckets (Multihashes). Further-
more, we present the average hashes received by a bucket (Hashes
Per Bucket). It can easily be deduced that increasing the number
of buckets dramatically reduces the number of performed compar-
isons which validates the usefulness of PAO+ in this particular as-
pect. On the other hand, the number of multihashes and the number
of hashes per bucket regard a transmission cost mainly charged to
cluster’s regular motes and the load distribution between buckets,
correspondingly. The adoption of more buckets, causes an increase
in multihashes and a simultaneous decrease in the number of hashes
per bucket. This is interpreted as a shift in the energy consumption
from clusterhead and bucket nodes to regular cluster motes caused
by the increment of bucket nodes’ number. Achieving appropriate
balance aids in keeping intracluster, uniform energy consumption,
which subsequently leads to infrequent network reorganization.

7. CONCLUSIONS
In this paper we presented PAO, an outlier detection framework

that manages to perform over multiple window types and allows
users to choose between exact or approximate operation. We also
devised PAO+’s mechanisms that manage to prune unnecessary
comparisons and balance the intracluster load during the outlier
detection process. Our experimental evaluation using real world
datasets validated that our framework can pinpoint outlier readings
ensuring significantly decreased amount of communicated infor-
mation. It also showed the ability of approximate PAO to provide
results of high quality with further reduced bandwidth consump-
tion.

8. REFERENCES
[1] P. Andreou, D. Zeinalipour-Yazti, A. Pamboris, P. K. Chrysanthis, and

G. Samaras. Optimized Query Routing Trees for Wireless Sensor Networks.
Information Systems, to appear, 2010.

[2] S. D. Bay and M. Schwabacher. Mining Distance-based Outliers in Near Linear
Time with Randomization and a Simple Pruning Rule. In KDD, 2003.

[3] J. Chen, S. Kher, and A. Somani. Distributed Fault Detection of Wireless
Sensor Networks. In DIWANS, 2006.

Figure 5: Max Humidity Values after Outlier Removal

]thres
10 20

Cluster Buckets Cmps Multi- Hashes Cmps Multi- Hashes
Size hashes Per Bucket hashes Per Bucket

1+1 70.45 0 12 70.46 0 12
24 2+1 33.72 0.78 8.26 35.88 1.63 8.54

4+1 16.58 2.21 5.24 18.39 4.65 5.73
1+1 160.27 0 18 160.41 0 18

36 2+1 77.61 1.22 12.41 81.63 2.12 12.71
4+1 37.38 3.39 7.88 42.26 7.05 8.61
1+1 286.38 0 24 286.80 0 24

48 2+1 137.39 1.63 16.54 145.94 3.04 17.01
4+1 67.39 4.53 10.51 75.33 9.12 11.42

Table 1: Bucket Introduction in PAO+ (w=16, p=0.75)

[4] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical In-Network
Data Aggregation with Quality Guarantees. In EDBT, 2004.

[5] A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and A. Delis. Another
Outlier Bites the Dust: Computing Meaningful Aggregates in Sensor Networks.
In ICDE, 2009.

[6] E. Elnahrawy and B.Nath. Cleaning and querying noisy sensors. In WSNA,
2003.

[7] K. Georgoulas and Y. Kotidis. Random Hyperplane Projection using Derived
Dimensions. In MobiDE, 2010.

[8] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and Y. Theodoridis.
TACO: Tunable Approximate Computation of Outliers in wireless sensor
networks. In SIGMOD, 2010.

[9] Y. j. Wen, A. M. Agogino, and K.Goebel. Fuzzy Validation and Fusion for
Wireless Sensor Networks. In ASME, 2004.

[10] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom. Declarative
Support for Sensor Data Cleaning. In Pervasive, 2006.

[11] B. Karp and H. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In MOBICOM, 2000.

[12] Y. Kotidis, A. Deligiannakis, V. Stoumpos, V. Vassalos, and A. Delis. Robust
Management of Outliers in Sensor Network Aggregate Queries. In MobiDE,
2007.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny
Aggregation Service for ad hoc Sensor Networks. In OSDI Conf., 2002.

[14] M. Qin and R. Zimmermann. VCA: An Energy-Efficient Voting-Based
Clustering Algorithm for Sensor Networks. J.UCS, 13(1), 2007.

[15] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. TiNA: A Scheme
for Temporal Coherency-Aware in-Network Aggregation. In MobiDE, 2003.

[16] B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor networks. In
MobiHoc, 2007.

[17] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos. Online Outlier Detection in Sensor Data Using Non-Parametric
Models. In VLDB, 2006.

[18] X. Xiao, W. Peng, C. Hung, and W. Lee. Using SensorRanks for In-Network
Detection of Faulty Readings in Wireless Sensor Networks. In MobiDE, 2007.

[19] O. Younis and S. Fahmy. Distributed Clustering in Ad-hoc Sensor Networks: A
Hybrid, Energy-Efficient Approach. In INFOCOM, 2004.

[20] D. Zeinalipour, P. Andreou, P. Chrysanthis, G. Samaras, and A. Pitsillides. The
Micropulse Framework for Adaptive Waking Windows in Sensor Networks. In
MDM, 2007.

[21] Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for
wireless sensor networks: A survey. International Journal of IEEE
Communications Surveys and Tutorials, 12(2), 2010.

[22] Y. Zhuang, L. Chen, S. Wang, and J. Lian. A Weighted Moving Average-based
Approach for Cleaning Sensor Data. In ICDCS, 2007.

37

Future Directions in Sensor Data Management: A Panel
Discussion

Demetris Zeinalipour
University of Cyprus, Cyprus

dzeina@cs.ucy.ac.cy

ABSTRACT
We will soon celebrate 10 years of research and develop-
ment in the area of sensor networks. During this decade,
we have witnessed the emergence of specialized embedded
systems, operating systems, data-oriented management sys-
tems as well as programming languages for ad-hoc monitor-
ing of the environment at a high fidelity. All the advances
have brought us one step closer to the initial Smartdust vi-
sion. The first signs of data management approaches to cope
with the inherent complexities of sensor networks arose in
2003, with the release of prototype database systems and
the spin off of specialized research conferences (i.e., IPSN in
2003) and workshops (i.e., DMSN in 2004).

In the recent years, we have been witnessing a paradigm
shift from the initial target of sensor networks, which fo-
cused on low-power embedded sensing devices utilized for
environmental and habitant monitoring, to new domains in-
volving more powerful devices (such as smartphone devices)
and applications (such as people-oriented social networking
applications). We have also been witnessing the emergence
of complementary technologies such as stream processors,
cloud data analytic frameworks, semantic web technologies
and others. Although many of these frameworks have sim-
ilar assumptions and goals, it is not clear how these can
drive or be driven in the future by sensor data management
research.

The aim of this panel is to discuss: (1) to what extend
the vision of applying data management techniques to sen-
sor network research has been successful over the years (e.g.,
adoption of ideas proposed by the community); ii) to exam-
ine the significance of recent advances and to identify new
directions that can foster research in sensor data manage-
ment.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
DMSN ’10, September 13, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

List of Panelists :

• Yanlei Diao (University of Massachusetts
Amherst, USA)

• Le Gruenwald (National Science Founda-
tion, USA)

• Christian S. Jensen (Aarhus University, Den-
mark)

• Kian-Lee Tan (National University of Sin-
gapore, Singapore)

38

