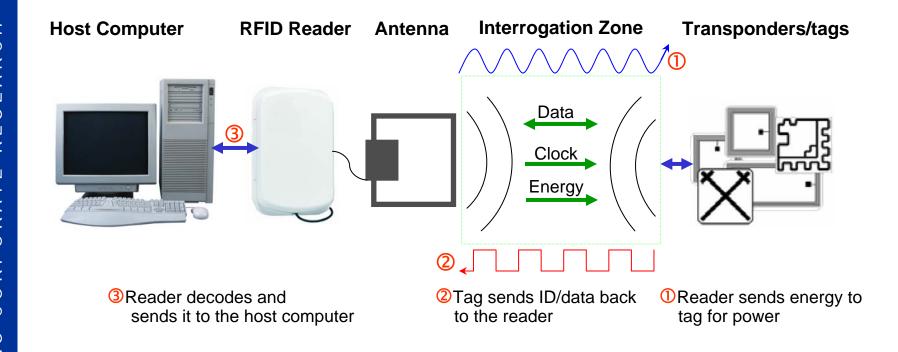
SIEMENS

Temporal Management of RFID Data

Peiya Liu and Fusheng Wang

Integrated Data Systems Department Siemens Corporate Research Princeton, New Jersey

31st International Conference on Very Large Databases August 31, 2005


Outline

- Overview of RFID Technology
- Temporal Data Modeling of RFID Data
- Querying RFID Data
- Automatic Data Acquisition and Transformation
- Partitioning-Based Archiving
- Siemens RFID Middleware
- Related Work
- Conclusion

What is RFID

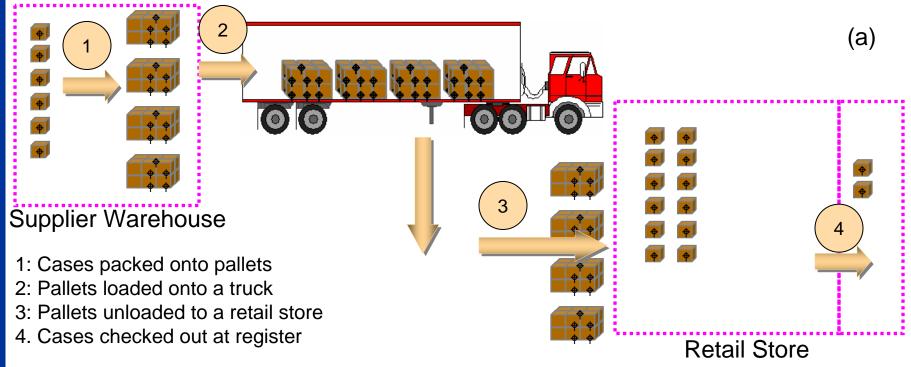
- RFID is an Automatic Identification and Data Capture (AIDC) technology that uses radio-frequency waves to transfer data between a reader and a movable object to identify, categorize, and track the object
- RFID is fast, reliable, and does not require line of sight or contact between reader/sensor and the tagged object
- Gradually adopted and deployed
 - Supply chain management/logistics: Wal-Mart, Metro Group, DOD
 - Retail: Future Store Initiative
 - Anti-counterfeiting and security: FDA, Homeland Security
 - Healthcare: Siemens's bracelet, smart medicine
 - ...

How RFID Works

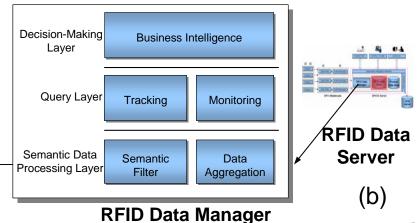
- Reader sends energy to tag for power
- Tag sends ID/data back to the reader
- Reader decodes and sends it to the host computer

Benefits of RFID Technology

- RFID tags are identified by an unique ID around the world, defined by the EPC standard
- Through automatic data collection, RFID technology can achieve:
 - Greater visibility an product velocity across supply chains
 - More efficient inventory management
 - Easier product tracking and monitoring
 - Reduced product counterfeiting and theft
 - Much reduced labor cost
- To achieve these benefits:
 - RFID observations need to be automatically filtered, interpreted and semantically transformed into business logic, so they can be quickly integrated into business applications


Characteristics of RFID Data

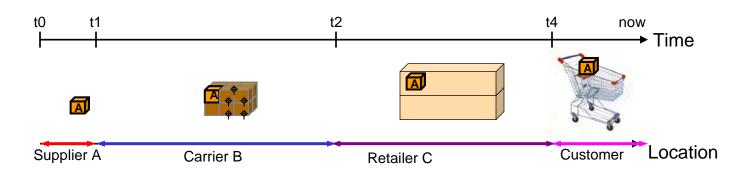
- Temporal and history oriented
 - Observations generate new events, and carry state changes
 - Location and aggregation change along the time
 - → Expressive data model needed
- Inaccurate data and implicit semantics
 - Noisy data and duplicate readings
 - Observations imply location changes, aggregations, and business processes
 - → Automated data filtering and transformation needed
- Streaming and large volume
 - Large data are collected and preserved for tracking and monitoring
 - → Scalable storage scheme needed, to assure efficient queries and updates
- Integration
 - RFID data need to be integrated into existing applications
 - → Minimum effort required


Our Contributions

- An expressive temporal-based data model
- Effective complex query support for tracking and monitoring
- Partitioning-based archiving provides effective storage and assures update performance
- Rules-based framework for automatic data filtering and transformation
- Adaptable and portable RFID data management system:
 Siemens RFID Middleware

A Sample RFID-enabled Supply Chain System

Reader	D	1	2	3	4
RFID Tables					
SENSOR	X				
OBJECT		X	X		
LOCATION	X				
TRANSACTION					X
OBSERVATION		X	X	X	X
CONTAINMENT		X	X	X	
OBJECTLOCATION		X	X	X	X
TRANSACTIONITEM					X
SENSORLOCATION	Х				

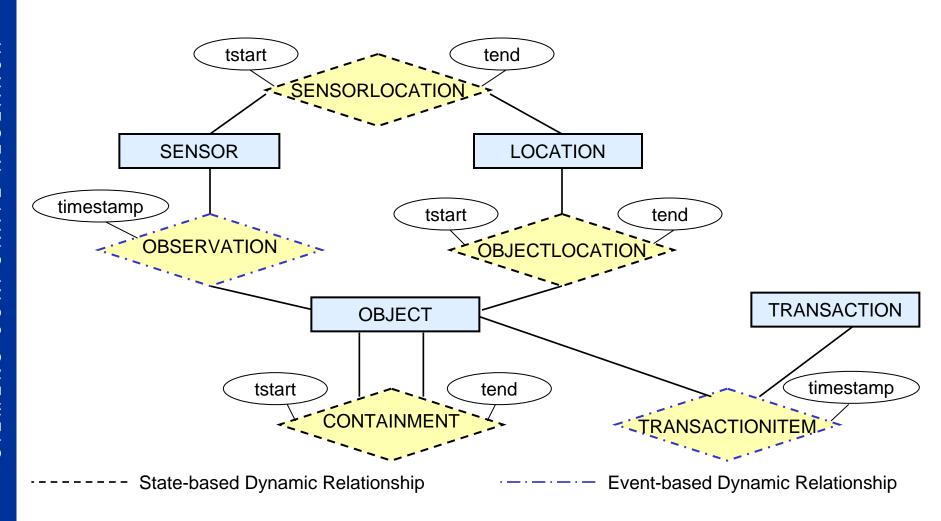

D: deployment

Fundamental Entities in RFID Systems

- Objects
 - EPC-tagged objects: e.g., items, cases, pallets, trucks, patients
- Sensors/readers
 - Each reader (or its antenna) is also uniquely identified by an EPC
- Locations
 - Symbolized locations to represent where an object is/was
- Transactions
 - Business transactions involving EPC tags
 - Not considered in many RFID applications

Dynamic Interactions between RFID Entities

- State changes
 - Object location change (object + location)
 - Object containment relationship change (object + object)
 - Reader location change (reader + location)
- New events
 - Observations (reader + object)
 - Transacted items (transaction + object)
- e.g., object location change history:


Dynamic Relationship ER Model (DRER)

- RFID entities are static and are not altered in the business processes
- RFID relationships: dynamic and change all the time
- Dynamic Relationship ER Model
 - Simple extension of ER model

Two types of dynamic relationships added:

- Event-based dynamic relationship. A *timestamp* attribute added to represent the occurring timestamp of the event
- State-based dynamic relationship. tstart and tend attributes added to represent the lifespan of a state

Dynamic Relationship ER Model (DRER) (cont'd)

Dynamic Relationship ER Model (DRER) (cont'd)

Static entity tables

OBJECT (epc, name, description) SENSOR (sensor_epc, name, description)

LOCATION (location_id, name, owner) TRANSACTION (transaction_id, transaction_type)

Dynamic relationship tables

TRANSACTION (transaction_id, transaction_type)

OBSERVATION (sensor_epc, value, timestamp)

SENSORLOCATION (sensor_epc, location_id, position, tstart, tend)

TRANSACTIONITEM (transaction_id, epc, timestamp)

OBJECTLOCATION:

ерс	location_id	tstart	tend
urn:epc:id:gid:1.1.1	L001	2004-10-30 17:33:00.000	2004-11-01 10:35:00.000
urn:epc:id:gid:1.1.1	L002	2004-11-01 10:35:00.001	2004-11-07 11:00:00.000
urn:epc:id:gid:1.1.1	L003	2004-11-07 11:00:00.001	2004-11-08 15:30:00.009
urn:epc:id:gid:1.1.1	L004	2004-11-08 15:30:00.010	9999-12-31 23:59:59.999

CONTAINMENT:

ерс	parent_epc	tstart	tend	
urn:epc:id:gid:1.1.1	urn:epc:id:gid:1.2.1	2004-11-01 10:33:00.100	2004-11-07 11:00:00.000	
urn:epc:id:gid:1.1.2	urn:epc:id:gid:1.2.1	2004-11-01 10:33:00.110	2004-11-07 11:00:00.010	
urn:epc:id:gid:1.2.1	urn:epc:id:gid:1.3.1	2004-11-01 10:35:00.001	2004-11-07 10:59:00.000	

Tracking and Monitoring RFID Data

 RFID object tracking: find the location history of object "EPC"

```
SELECT * FROM OBJECTLOCATION WHERE epc='EPC'
```

 Missing RFID object detection: find when and where object "mepc" was lost

 RFID object identification: a customer returns a product "XEPC". Check if the product was sold from this store

```
SELECT * FROM OBJECTLOCATION
WHERE epc='XEPC' AND location_id='L003'
```

Tracking and Monitoring RFID Data (cont'd)

 RFID object snapshot query: find the direct container of object "EPC" at time T

```
SELECT parent_epc FROM CONTAINMENT
WHERE epc='EPC' AND tstart <= 'T' AND tend >= 'T'
```

 RFID object temporal slicing query: find items sold to customers in the last hour

```
SELECT epc FROM OBJECTLOCATION
WHERE location_id = 'L04' AND tend = 'UC'
AND tstart <= sysdate-(1/24)
```

RFID object temporal join query: this case of meat is tainted.
 What other cases have ever been put in the same pallet with it?

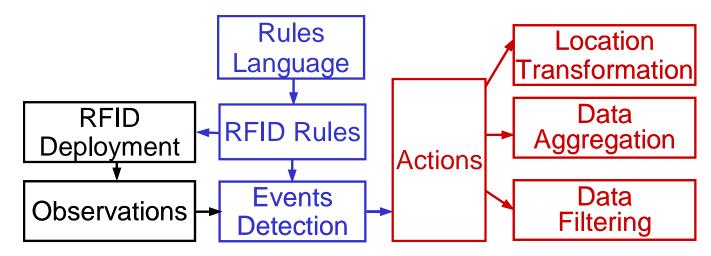
```
SELECT c2.epc FROM CONTAINMENT c1, CONTAINMENT c2
WHERE c1.parent_epc = c2.parent_epc
AND c1.epc = 'TEPC'
AND overlaps(c1.tstart,c1.tend,c2.tstart,c2.tend)
```

Tracking and Monitoring RFID Data (cont'd)

 Temporal aggregation of RFID data: find how many items loaded into the store "L003" on the day of 11/09/2004

```
SELECT count(epc)FROM OBJECTLOCATION
WHERE location_id = 'L003'
   AND tstart <= '2004-11-09 00:00:00.000'
AND tend >= '2004-11-09 00:00:00.000'
```

 RFID object containment query: sibling search: find all objects contained in object "PEPC"


```
WITH RECURSIVE all_sub(parentepc, epc) AS
( SELECT parentepc, epc FROM CONTAINMENT
  WHERE parentepc = 'PEPC'
  UNION
  SELECT a.parentepc, c.epc
  FROM all_sub a, CONTAINMENT c
  WHERE a.epc = c.parentepc
)
SELECT *
```

RFID Data Transformation

- RFID data acquisition
 - Two modes: inventory mode for multiple tag detection at once, and sequential mode
 - Data are susceptible to interference (especially from water and metal)
- Acquired data need to be automatically transformed into high level semantic data, through:
 - RFID data filtering: data smoothing to remove noise, and duplicate detection to remove duplicates
 - Location transformation: observations transformed into location changes
 - Data aggregation: observations transformed into semantic relationship among RFID objects, such as containment

Rules-based RFID Data Transformation

- Location changes are triggered by primitive readings from certain readers
- Data aggregation is through sequence of operations following certain patterns
- Rules detect the patterns through event detection, and lead to modifications in the database
- Rules defined through a declarative event and constraint specification language

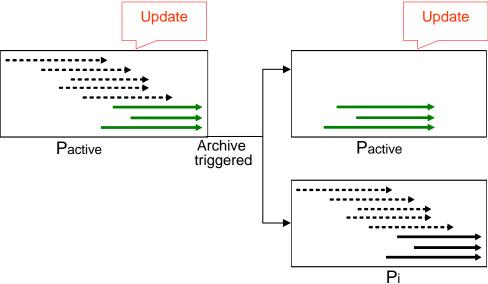
Rules for Data Transformation and Aggregation

Rules for data filtering

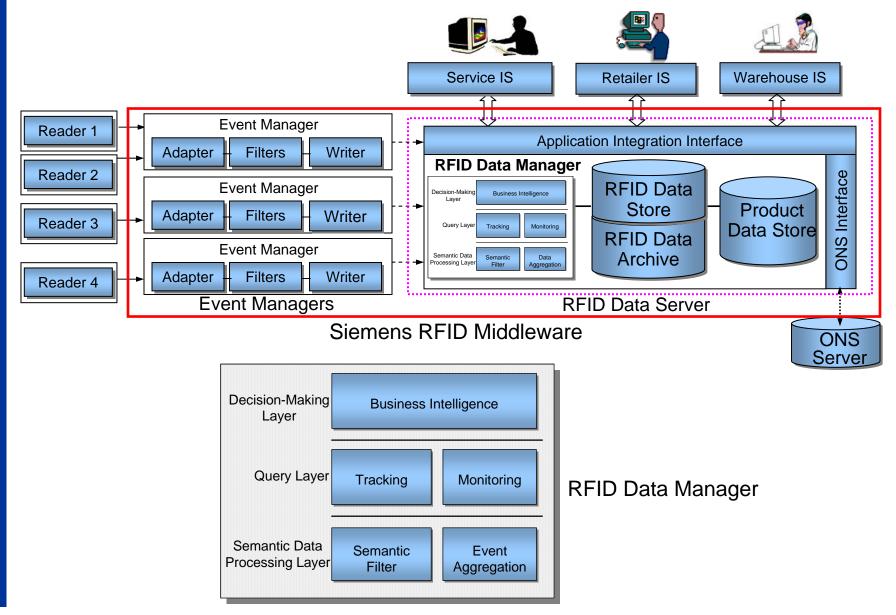
```
OBSERVATION(Rx, e, Tx), OBSERVATION(Ry, e, Ty),
Rx <> Ry, within(Tx, Ty, T) ->
   DROP:OBSERVATION(Rx, e, Tx)
```

Rules for location transformation

```
OBSERVATION("R2", e, t) -> UPDATE:OBJECTLOCATION(e, "L002", t, "UC")
```


Rules for data aggregation

```
seq(s,"r2",Tseq);OBSERVATION("r2", e, t) ->
INSERT:CONTAINMENT(seq(s,"r2",Tseq),e,t,"UC")
```


- Data generation from rules actions
 - States and events modifications in the databases (link)
 - In particular, when a parent container is updated with a location change, the locations of all its contained objects will be updated

Data Partitioning

- Increase of data volumes slows down queries
- Data have a limited active cycle
 - Non-active objects can be periodically archived into history segments
 - Active segments with a high active object ratio is used for updates
- This partition technique assures efficient update and queries

Siemens RFID Middleware

Middleware Components

- Event Managers a set of event managers
 - Adapter: software component to communicate readers
 - Filter: preliminarily filter raw reading data
 - Writer: route data to different targets
- RFID Data Server
 - RFID Data Manager: filtering, aggregation, modeling, queries and decision support
 - RFID Data Store: schemas and storage of RFID data
 - RFID Data Archive: history archive of RFID data
 - Application integration interface: integrate with business applications
 - ONS integration interface: exchange of product-level information

Future Work

- Data management for all types of RFID data
 - Support different EPC classes and reader/location scenarios

Reader/Location	Tag Type	Class 0,1 Read-only	Class 2 Reader-write	Class 3 Sensor-write (Semi-Passive)
Fixed Reader	Fixed Location	A	F	G
Moveable Reader	No Location	В	-	-
	Discrete Location	С	-	-
	Continuous Location	D	-	-
Wit	h Operation	E	-	-

- Support rules with data stream management systems
 - While standalone rule engine can process RFID data, data stream management systems provide many benefits for complex event processing
- Data analysis of RFID data
 - RFID data have unique IDs and are ordered, thus additional information can be mined

Related Work

- RFID Platforms
 - Sun EPC Network
 - SAP Auto-ID Infrastructure
 - Oracle Sensor Edge Server
 - IBM WebSphere RFID Premises Server
 - UCLA's WinRFID Middleware
 - Microsoft RFID Middleware
- These platforms serve as the bridges between the RFID physical world and the rest of the software infrastructure, but the high level RFID data modeling is up to applications

Conclusion

- We propose a general and expressive temporal-oriented data model for RFID data
- The data model is shown to be quite powerful on supporting RFID data tracking and monitoring
- The rules-based framework enables automatic RFID data filtering, transformation, and aggregation, to generate semantic high level data
- The Siemens RFID Middleware brings all these technologies together into an integrated RFID data management system
- The system is general and can be adapted into different RFID applications, thus substantially reduces the cost of managing and integrating RFID data into business applications

Questions & Answers