
Maximal Vector Computation

in Large Data Sets

Parke Godfrey 1 Ryan Shipley 2 Jarek Gryz 1

1York University 2College of William and Mary
Toronto,CANADA Williamsburg,USA

30 August 2005

VLDB

Trondheim, Norway

Maximal Vector—Godfrey, Shipley, & Gryz – p. 1/29

I. Introduction
What is Skyline?

• an extension to
SQL

• filtering for the
Pareto-optimal
tuples

• a way to express
“best-match” &
preference queries

select . . .
from . . .
where . . .
group by . . .
skyline of D1 [min | max | diff], . . .,

Dk [min | Max | diff]
having . . .

[Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]

Maximal Vector—Godfrey, Shipley, & Gryz – p. 2/29

I. Introduction
What is Skyline?

• an extension to
SQL

• filtering for the
Pareto-optimal
tuples

• a way to express
“best-match” &
preference queries

select . . .
from . . .
where . . .
group by . . .
skyline of D1 [min | max | diff], . . .,

Dk [min | Max | diff]
having . . .

[Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]

• Have been∼30 skyline-related papers in DB-related
journals, conferences, & workshops since.

• Next two talks are on skyline, & one at PhD Workshop.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 2/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

A Skyline Example

Consider aHotel table with columnsname, address, dist
(distance to the beach),stars (quality rating), &price.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

X currently considering

X “trumps” current

X skyline

X not skyline

name stars dist price

Aga ?? 0.7 1,175
Fol ? 1.2 1,237
Kaz ? 0.2 750
Neo ? ? ? 0.2 2,250
Tor ? ? ? 0.5 2,550
Uma ?? 0.5 980

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29

The Maximal Vector Problem
Abstraction

Interest since the 1960’s.

tuples≈ vectors (or points)
in k-dim. space

Related to

nearest neighbours

convex hull

E.g.,〈stars, dist, price〉 7→ 〈x, y, z〉

Maximal Vector—Godfrey, Shipley, & Gryz – p. 4/29

The Maximal Vector Problem
Abstraction

Interest since the 1960’s.

tuples≈ vectors (or points)
in k-dim. space

Related to

nearest neighbours

convex hull

E.g.,〈stars, dist, price〉 7→ 〈x, y, z〉

Input Set:

• n vectors

• k dimensions

Vectors (points) are scattered in the unitk-cube,(0, 1)k.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 4/29

The Maximal Vector Problem
Abstraction

Interest since the 1960’s.

tuples≈ vectors (or points)
in k-dim. space

Related to

nearest neighbours

convex hull

E.g.,〈stars, dist, price〉 7→ 〈x, y, z〉

Input Set:

• n vectors

• k dimensions

Output Set:

• m maximal vectors

Vectors (points) are scattered in the unitk-cube,(0, 1)k.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 4/29

Our Goals & Accomplishments

1. To design a good relational-database algorithm for
finding the maximal vectors / skyline: LESS
• performance criteria?
• design choices?
• computational issues?

Maximal Vector—Godfrey, Shipley, & Gryz – p. 5/29

Our Goals & Accomplishments

1. To design a good relational-database algorithm for
finding the maximal vectors / skyline: LESS
• performance criteria?
• design choices?
• computational issues?

2. To understand the strengths and weaknesses of
the existing algorithms.
• deeper asymptotic analyses

What is the impact of the dimensionalityk?
• better analytic profiles

Maximal Vector—Godfrey, Shipley, & Gryz – p. 5/29

Our Goals & Accomplishments

1. To design a good relational-database algorithm for
finding the maximal vectors / skyline: LESS
• performance criteria?
• design choices?
• computational issues?

2. To understand the strengths and weaknesses of
the existing algorithms.
• deeper asymptotic analyses

What is the impact of the dimensionalityk?
• better analytic profiles

We discuss #2 first.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 5/29

II. Design & Analysis Considerations
Relational Performance Criteria

external
I/O conscious (too much data for main memory)

well behaved
compatible with a query optimizer
not CPU bound (!)

generic (At least one basic generic algorithm is needed!)
no indexes, no pre-computed information.

good properties
progressive, pipe-lineable
at worse, linear run-time (!)

Maximal Vector—Godfrey, Shipley, & Gryz – p. 6/29

Design Choices

divide-and-conquer (D&C) or scan-based
Can D&C be I/O conscious?
Can scan-based be efficient?

to sort or not to sort
Is sorting useful?
Is sorting too inefficient? (Not linear. . .)

comparison policy
Which vectors to compare next?
How to limit the number of comparisons?

Maximal Vector—Godfrey, Shipley, & Gryz – p. 7/29

A Model for Average-Case Analysis

1. independence : Dimensions are statistically
independent.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 8/29

A Model for Average-Case Analysis

1. independence : Dimensions are statistically
independent.

2. sparseness : Vectors (mostly) have distinct values
along any dimension.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 8/29

A Model for Average-Case Analysis

1. independence : Dimensions are statistically
independent.

2. sparseness : Vectors (mostly) have distinct values
along any dimension.

3. uniformity : The values along any dimension are
uniformly distributed.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 8/29

A Model for Average-Case Analysis

Component Independence (CI)

1. independence : Dimensions are statistically
independent.

2. sparseness : Vectors (mostly) have distinct values
along any dimension.

3. uniformity : The values along any dimension are
uniformly distributed.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 8/29

A Model for Average-Case Analysis

Uniform Independence (UI)

Component Independence (CI)

1. independence : Dimensions are statistically
independent.

2. sparseness : Vectors (mostly) have distinct values
along any dimension.

3. uniformity : The values along any dimension are
uniformly distributed.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 8/29

Expected Number of Maximals (m̂)

Under CI (independence & sparseness),

m̂1,n = 1

m̂k,n =
1

n
m̂k−1,n + m̂k,n−1

[Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]

[Godfrey 2004 (FoIKS)]

Maximal Vector—Godfrey, Shipley, & Gryz – p. 9/29

Expected Number of Maximals (m̂)

Roman harmonics:
H0,n = 1

H1,n =
n∑

i=1

1

i

Hk,n =

n∑

i=1

Hk−1,i

i

Hk,n ≈ 1
k! ln

kn

Under CI (independence & sparseness),

m̂1,n = 1

m̂k,n =
1

n
m̂k−1,n + m̂k,n−1

[Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]

[Godfrey 2004 (FoIKS)]

[Roman 2004 (AMM)]

Maximal Vector—Godfrey, Shipley, & Gryz – p. 9/29

Expected Number of Maximals (m̂)

Roman harmonics:
H0,n = 1

H1,n =
n∑

i=1

1

i

Hk,n =

n∑

i=1

Hk−1,i

i

Hk,n ≈ 1
k! ln

kn

Under CI (independence & sparseness),

m̂1,n = 1

m̂k,n =
1

n
m̂k−1,n + m̂k,n−1

m̂k,n = Hk−1,n

[Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]

[Godfrey 2004 (FoIKS)]

[Roman 2004 (AMM)]

Maximal Vector—Godfrey, Shipley, & Gryz – p. 9/29

III. Algorithms & Analyses
Existing Generic Algorithms

Divide-and-Conquer Algorithms
DD&C: double divide and conquer[Kung, Luccio, & Preparata 1975 (JACM)]

LD&C: linear divide and conquer

[Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]

FLET: fast linear expected time[Bentley, Clarkson, & Levine 1990 (SODA)]

SD&C: single divide and conquer

[Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]

Scan-based (Relational “Skyline”) Algorithms
BNL: block nested loops[Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]

SFS: sort filter skyline

[Chomicki, Godfrey, Gryz, & Liang 2003 (ICDE)]

[Chomicki, Godfrey, Gryz, & Liang 2005 (IIS)]

LESS: linear elimination sort for skyline[Godfrey, Shipley, & Gryz 2005 (VLDB)]

Maximal Vector—Godfrey, Shipley, & Gryz – p. 10/29

D&C: Comparisons per Vector

We knowm̂ (under CI), so we can modelandsolve a recurrence
relation that is a floor for a D&C algorithm’s average-case in
terms ofn andk. LD&C [BKST 1978 (JACM)]:

Maximal Vector—Godfrey, Shipley, & Gryz – p. 11/29

D&C: Comparisons per Vector

We knowm̂ (under CI), so we can modelandsolve a recurrence
relation that is a floor for a D&C algorithm’s average-case in
terms ofn andk. LD&C [BKST 1978 (JACM)]:

T (n) = 2T (n/2)

+ m̂k,nlg k−2
2 m̂k,n

...
≈ (k − 1)k−2n

Maximal Vector—Godfrey, Shipley, & Gryz – p. 11/29

D&C: Comparisons per Vector

We knowm̂ (under CI), so we can modelandsolve a recurrence
relation that is a floor for a D&C algorithm’s average-case in
terms ofn andk. LD&C [BKST 1978 (JACM)]:

T (n) = 2T (n/2)

+ m̂k,nlg k−2
2 m̂k,n

...
≈ (k − 1)k−2n

k (k − 1)k−2

5 64

7 7,776

9 2,097,152

Maximal Vector—Godfrey, Shipley, & Gryz – p. 11/29

D&C: Comparisons per Vector

We knowm̂ (under CI), so we can modelandsolve a recurrence
relation that is a floor for a D&C algorithm’s average-case in
terms ofn andk. LD&C [BKST 1978 (JACM)]:

T (n) = 2T (n/2)

+ m̂k,nlg k−2
2 m̂k,n

...
≈ (k − 1)k−2n

k (k − 1)k−2

5 64

7 7,776

9 2,097,152

#dimensions

2 4 6 8 10 12 14 16 18 0
10

20
30

40
50

60
70

80
90

100

1
100000
1e+10
1e+15
1e+20
1e+25
1e+30

ratio

lg(#
ve

cto
rs)

0

Maximal Vector—Godfrey, Shipley, & Gryz – p. 11/29

D&C: Comparisons per Vector

We knowm̂ (under CI), so we can modelandsolve a recurrence
relation that is a floor for a D&C algorithm’s average-case in
terms ofn andk. LD&C [BKST 1978 (JACM)]:

T (n) = 2T (n/2)

+ m̂k,nlg k−2
2 m̂k,n

...
≈ (k − 1)k−2n

k (k − 1)k−2

5 64

7 7,776

9 2,097,152

#dimensions

2 4 6 8 10 12 14 16 18 0
10

20
30

40
50

60
70

80
90

100

1
100000
1e+10
1e+15
1e+20
1e+25
1e+30

ratio

lg(#
ve

cto
rs)

0

DD&C [KLP 1975 (JACM)]:
(k − 1)k−3n

SD&C [BKS 2001 (ICDE)]:
ln 2√

π(k−1)
22k−4n

Maximal Vector—Godfrey, Shipley, & Gryz – p. 11/29

Block Nested Loops (BNL) Algorithm

window (W): A fixed size of main memory used to store
skyline-candidate vectors (tuples).

stream (S): The n vectors (tuples) resident on disk, to be
read in “one-by-one”.

for each ~v ∈ S
for each ~w ∈ W

if (~w � ~v)
continue // with next ~v

if (~v � ~w)
W := W − {~w}

if (¬∃~w ∈ W. ~w � ~v) // ~v survived
W := W ∪ {~v} // if there is room

O(?)
average case

Maximal Vector—Godfrey, Shipley, & Gryz – p. 12/29

Sort Filter Skyline (SFS) Algorithm

Have awindow(W) andstream(S), as withBNL.
SortS first (via an external sort routine): e.g.,

order by Dk desc, . . ., D1 desc
O(n lg n)
worst case

Then,

for each ~v ∈ S
for each ~w ∈ W

if (~w � ~v)
continue // with next ~v

if (~v � ~w)
W := W − {~w}

if (¬∃~w ∈ W. ~w � ~v) // ~v survived
W := W ∪ {~v} // if there is room

O(n)
average case
Thm. 8
(under UI &
sort onentropy)

Any ~w in the window is guaranteed to be maximal (skyline).

Maximal Vector—Godfrey, Shipley, & Gryz – p. 13/29

BNL vs SFS

> SFS makes fewer comparisons and takes fewer passes.

> SFS is better behaved “relationally”.

progressive
immune to previous ordering of input

< BNL does not need to sort!

(However, what is its average-caseO?)

Maximal Vector—Godfrey, Shipley, & Gryz – p. 14/29

BNL vs SFS

> SFS makes fewer comparisons and takes fewer passes.

> SFS is better behaved “relationally”.

progressive
immune to previous ordering of input

< BNL does not need to sort!

(However, what is its average-caseO?)

Our algorithmLESS will combine the best aspects of the
algorithms, particularly ofBNL & SFS.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 14/29

BNL vs SFS

> SFS makes fewer comparisons and takes fewer passes.

> SFS is better behaved “relationally”.

progressive
immune to previous ordering of input

< BNL does not need to sort!

(However, what is its average-caseO?)

BNLR & SFSR: Compare~v against window~w’s in a
randomorder.

BNL & SFS: Order window ~w’s intelligently to re-
duce #comparisons.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 14/29

Analyses of #Comparisons new!

BNLR:

n−1∑

i=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, i)dx1 . . . dxk

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

BNLR:

n−1∑

i=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, i)dx1 . . . dxk

0

1

x2

x
1

1

mttf : “mean time to failure”

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

BNLR:

n−1∑

i=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, i)dx1 . . . dxk

0

2

x1

x

1

1

mttf : “mean time to failure”

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

BNLR:

n−1∑

i=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, i)dx1 . . . dxk

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

BNLR:

∫ 1

z=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, zn)dx1 . . . dxkdz

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

BNLR:

∫ 1

z=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, zn)dx1 . . . dxkdz

SFSR w/o elimination from window:

∫ 1

z=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk−1, zn)dx1 . . . dxk−1dz

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

BNLR:

∫ 1

z=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, zn)dx1 . . . dxkdz

SFSR w/o elimination from window:

∫ 1

z=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk−1, zn)dx1 . . . dxk−1dz

SFSR w/ elimination from window:

∫ 1

z=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k−1(x1 · . . . · xk−1, zn)dx1 . . . dxk−1dz

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

BNLR:

∫ 1

z=0

∫ 1

xk=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk, zn)dx1 . . . dxkdz

SFSR w/o elimination from window:

∫ 1

z=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k(x1 · . . . · xk−1, zn)dx1 . . . dxk−1dz

SFSR w/ elimination from window:

∫ 1

z=0

∫ 1

xk−1=0
. . .

∫ 1

x1=0
m̂ttf k−1(x1 · . . . · xk−1, zn)dx1 . . . dxk−1dz

SFS effectively saves “one dimension” overBNL.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29

Analyses of #Comparisons new!

Results

m̂ttf k(x, n) ≈ Hk−1,n

Hk−1,xn

These converge in the limit.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 16/29

Analyses of #Comparisons new!

Results

m̂ttf k(x, n) ≈ Hk−1,n

Hk−1,xn

These converge in the limit.

Analytical solution matches observation.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 16/29

Analyses of #Comparisons new!

Results

m̂ttf k(x, n) ≈ Hk−1,n

Hk−1,xn

These converge in the limit.

Analytical solution matches observation.

Thm. Under CI,BNLR andSFSR areO(n) average case.

Proof.

lim
n→∞

∫ 1

z=0

∫ 1

xk=0
. . .

∫ 1

x1=0
m̂ttf k(. . . , zn)d . . . = 1

Maximal Vector—Godfrey, Shipley, & Gryz – p. 16/29

BNL & SFS
Comparisons per Vector

R

R

w/o

Rw/

100

SFS

200

300

400

500

600

10 100 1000 10000 100000

BNL

1e+06

#c
om

pa
ris

on
s

pe
r

ve
ct

or

#vectors

0

SFS

k = 7
Maximal Vector—Godfrey, Shipley, & Gryz – p. 17/29

BNL & SFS
Comparisons per Vector

R

R

w/

Rw/o

500

SFS

BNL
600

10 100 1000 10000 100000 1e+06
#vectors

#c
om

pa
ris

on
s

pe
r

ve
ct

or

BNF

SFS

0

100

200

300

400

SFS

k = 7
Maximal Vector—Godfrey, Shipley, & Gryz – p. 17/29

IV. The LESS Algorithm
Description

Combine best aspects of the algorithms, mainlyBNL & SFS.

modified external sort
block-sort pass

use a small window (as in BNL)
to eliminate ~v’s

merge passes
...

last merge pass
use a large window (as in SFS)
to filter for the skyline

skyline-filter passes (if needed)
...

Buffer Pool

E
F

 W
indow

Block for quicksort

...

block-sort pass
Buffer Pool

S
F

 W
indow

k

...

...1

2

OutputInputs

last merge pass

Maximal Vector—Godfrey, Shipley, & Gryz – p. 18/29

LESS: Performance

0

20

40

60

80

100

5 6 7

#I
/O

’s
 (

th
ou

sa
nd

s)

#dimensions

SFS
LESS

I/O’s

0

5

10

15

20

25

5 6 7
#dimensions

tim
e

(s
ec

s) LESS
SFS

time

n = 500, 000
EF window: 200 vectors
SF window: 76 pages,∼3,000 vectors
Pentium III, 733 MHz
RedHat Linux 7.3

Maximal Vector—Godfrey, Shipley, & Gryz – p. 19/29

LESS: Linear Average-Case
Summary

O(n) average-case run-time (under UI,Thm. 13)

• BNL-style filtering during the block-sort pass removes
enough so sort isO(n).

• SFS-style flitering during the last merge pass (and
subsequent filter-skyline passes) isO(n).

Improvements

• LESS improves overSFS & BNL on I/O’s.

• LESS improves overSFS & BNL on time; however, for
largerk’s (and, hence,m’s), this diminishes.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 20/29

V. Conclusions
Future Work

1. Devise yet better (generic) algorithms.

• A scan-based algorithm that iso(n2) worst-case?

• Can we bypass them2 bottleneck?
• Make “average-case” more general.

– Nemesis of skyline: anti-correlation.
– Remove uniformity assumption.

• Reduce further comparison load (CPU-boundness).

2. Study in depth index-based skyline algorithms.

• What aretheir asymptotic complexities?
• In what cases will a given index-based algorithm

outperform, say,LESS? Not outperform?

Maximal Vector—Godfrey, Shipley, & Gryz – p. 21/29

In Closing. . .

1. Asymptotic complexity does not tell all.
If you dig a little deeper, you often find surprises!

• The multiplicative constant matters.
• Even when the multiplicative constant is goodin the

limit, what happens in between?
• Must factor in “database” considerations.

2. Maximal-vector / skyline opens up new & useful
avenues for database systems.

• Adds a preference facility to the language.
• Provides a multi-objective operation.
• May be useful in other applications.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 22/29

§ Appendix

Extra Slides

Maximal Vector—Godfrey, Shipley, & Gryz – p. 23/29

Computing Skyline in (Plain) SQL

select C1, . . ., Cj , – columns to keep
D1, . . ., Dk, – skyline dimensions (MAX assumed)
E1, . . ., El – DIFF columns

from OurTable
except
select X.C1, . . ., X.Cj ,

X.D1, . . ., X.Dk,
X.E1, . . ., X.El

from OurTable X, OurTable Y
where Y.D1≥ X.D1 and . . . Y.Dk≥ X.Dk and

(Y.D1> X.D1 or . . . Y.Dk> X.Dk) and
Y.E1= X.E1 and . . . Y.El= X.El

CertainlyO(n2), even for average-case.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 24/29

Skyline Cardinality
harmonic numbers[Godfrey 2004 (FoIKS)]

1. Theharmonic ofn, for n > 0: Hn =
n∑

i=1

1

i

2. Thek-th order harmonic ofn, for integersk > 0 and

integersn > 0: Hk,n =
n∑

i=1

Hk−1,i

i

DefineH0,n = 1, for n > 0. DefineHk,0 = 0, for k > 0.

3. Thek-th hyper-harmonic ofn, for integersk > 0 and

integersn > 0: Hk,n =

n∑

i=1

1

ik

m̂k+1,n = Hk,n =
n∑

i1=1

i1∑

i2=1

. . .

ik−1∑

ik=1

1

i1i2 · · · ik
Maximal Vector—Godfrey, Shipley, & Gryz – p. 25/29

Skyline Cardinality
asymptotic[Godfrey 2004 (FoIKS)]

Thm.

Hk,n =
∑

c1,...,ck≥0 ∧

1·c1+2·c2+...+k·ck=k

k∏

i=1

Hci

i,n

ici · ci!

for k ≥ 1 andn ≥ 1, with theci’s as integers.

Follows from Knuth’s generalization via generating functions.

• Only H1,n (= Hn) diverges withn.

• EachHi,n for i > 1 converges.

• Thm. Hk,n is Θ((ln n)k/k!).

• Thm. m̂k,n is Θ((ln n)k−1/(k − 1)!).

Maximal Vector—Godfrey, Shipley, & Gryz – p. 26/29

Skyline Cardinality
examples[Godfrey 2004 (FoIKS)]

H2,n = 1
2H2

n + 1
2H2,n,

H3,n = 1
6H3

n + 1
2HnH2,n + 1

3H3,n, and

H4,n = 1
24H4

n + 1
3HnH3,n + 1

8H2
2,n + 1

4H2
nH2,n + 1

4H4,n.

. . .

Maximal Vector—Godfrey, Shipley, & Gryz – p. 27/29

D&C | +Sort
DD&C

1. Sort input set initially oneachdimension.

2. Recursively divide (sorted) input set (along one
dimension).

3. On merge, recursively callDD&C, but with one dimension
fewer.

worst-case:O(nlg k−2n)

theoreticians: Great!o(n2)!

engineers: Awful!lg k−2n can be pretty large!

And, of course, average case isΩ(knlg n), because we have to sort.

Maximal Vector—Godfrey, Shipley, & Gryz – p. 28/29

D&C | −Sort
LD&C

(Do not sort initially.)

1. Recursively divide input set.

2. On merge, callDD&C.

worst-case:O(nlg k−1n). Still o(n2)!

average-case:O(n). Linear!

Maximal Vector—Godfrey, Shipley, & Gryz – p. 29/29

D&C | −Sort
LD&C

(Do not sort initially.)

1. Recursively divide input set.

2. On merge, callDD&C.

worst-case:O(nlg k−1n). Still o(n2)!

average-case:O(n). Linear!

• So, is this a good algorithm?

• What is the “multiplicative constant”?
– What impact doesk have?
– How manycomparisons per vector(#CpV) are needed,

on average?

Maximal Vector—Godfrey, Shipley, & Gryz – p. 29/29

	RomanBox {Maximal Vector Computation}
	RomanBox {I.}~Introduction
	RomanBox {I.}~Introduction

	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example
	A Skyline Example

	The Maximal Vector Problem
	The Maximal Vector Problem
	The Maximal Vector Problem

	Our Goals & Accomplishments
	Our Goals & Accomplishments
	Our Goals & Accomplishments

	RomanBox {II.}~Design & Analysis Considerations
	Design Choices
	A Model for Average-Case Analysis
	A Model for Average-Case Analysis
	A Model for Average-Case Analysis
	A Model for Average-Case Analysis
	A Model for Average-Case Analysis

	Expected Number of Maximals ($widehat {M }$)
	Expected Number of Maximals ($widehat {M }$)

	Expected Number of Maximals ($widehat {M }$)

	RomanBox {III.}~Algorithms & Analyses
	D&C: Comparisons per Vector
	D&C: Comparisons per Vector
	D&C: Comparisons per Vector
	D&C: Comparisons per Vector
	D&C: Comparisons per Vector

	Block Nested Loops (�nl)
Algorithm
	Sort Filter Skyline (sfs)
Algorithm
	�nl vs sfs
	�nl vs sfs
	�nl vs sfs

	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}

	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}
	phantom {psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}} quad Analyses of #Comparisons quad psovalbox [fillstyle=solid,fillcolor=yellow]{	iny
ed em new!}

	�nl & sfs
	�nl & sfs

	RomanBox {IV.}~The LESS Algorithm
	LESS: Performance
	LESS: Linear Average-Case
	RomanBox {V.}~Conclusions
	In Closing$ldots $
	RomanBox {§} Appendix
	Computing Skyline in (Plain)
SQL
	 Skyline Cardinality
	 Skyline Cardinality
	Skyline Cardinality
	D&C Tbar {�oldmath $+$}Sort
	D&C Tbar {�oldmath $-$}Sort
	D&C Tbar {�oldmath $-$}Sort

