Answering Queries from Statistics and Probabilistic Views

Nilesh Dalvi and Dan Suciu, University of Washington.

Background

- 'Query answering using Views' problem: find answers to a query q over a database schema R using a set of views $V = \{v_1, v_2 \cdots\}$ over R.
- Example: R(name,dept,phone)

$$v_1(n,d): R(n,d,p)$$
 $v_1=egin{array}{c|c} \textbf{NAME} & \textbf{DEPT} \\ LARRY & SALES \\ JOHN & SALES \\ \end{array}$

 $v_2(d,p)$: R(n,d,p)

q(p): R(LARRY,d,p)

Background: Certain Answers

Let U be a finite universe of size n. Consider all possible data instances over U

$$D_4$$

$$D_{m}$$

Data instances consistent with the views V

Certain Answers: tuples that occur as answers in all data instances consistent with V

Example

 $v_1(n,d) : R(n,d,p)$

V₁ = NAME DEPT

LARRY SALES

JOHN SALES

q(p) : R(LARRY,d,p)

 $v_2(d,p)$: R(n,d,p)

Data instances consistent with the views:

 $D_1=$

NAME	DEPT	PHONE
LARRY	SALES	x1234
Јони	SALES	x5678
SUE	HR	x2222

 $D_2=$

NAME	DEPT	PHONE
NAME	DEPI	PHONE
FRANK	SALES	x5678
LARRY	SALES	x1111
Јони	SALES	x1234
SUE	HR	x2222

•••••

Example (contd.)

$\mathbf{v}_1 =$	NAME	DEPT
STATE.	LARRY	SALES
	Јони	SALES

$\mathbf{v_2} = \begin{bmatrix} \mathbf{v_2} \end{bmatrix}$	DEPT	PHONE
2	SALES	x1234
	SALES	x5678
	HR	x2222

- No certain answers, but some answers are more likely that others.
- Domain is huge, cannot just guess Larry's number.
- A data instance is much smaller. If we know average employes per dept = 5, then x1234 and x5678 have 0.2 probability of being answer.

Going beyond certain answers

- Certain answers approach assumes complete ignorance about the knowledge of how likely is each possible database
- Often we have additional knowledge about the data in form of various statistics

Can we use such information to find answers to queries that are *statistically meaningful*?

Why Do We Care?

• Data Privacy: publishers can analyze the amount of information disclosed by public views about private information in the database

• Ranked Search: a ranked list of probable answers can be returned for queries with no certain answers.

Using Common Knowledge

• Suppose we have a priori distribution Pr over all possible databases:

Pr:
$$\{D_1, ..., D_m\} \rightarrow \{0, 1\}$$

• We can compute the probability of a tuple t being an answer to q using $\Pr\{(t \in q) \mid V\}$

Query Answering using views = Computing conditional probabilities on a distribution

Part I

Query answering using views under some specific distributions

Binomial Distribution

U: a domain of size n

We start from a simple case

- R(name,dept,phone) a relation of arity 3
- Expected size of R is c

Binomial: Choose each of the n³ possible tuples independently with probability p.

Expected size of R is $c \Rightarrow p = c/n^3$

Let μ_n denote the resulting distribution. For any instance D,

 $\mu_n[D] = p^k(1-p)^{n^3-k}$, where k = |D|

Binomial: Example I

R(name,dept,phone)

|R| = c, domain size = n

v: R(LARRY, -, -)

q: R(-, -, x1234)

 $\mu_n[q \mid v] \approx (c+1)/n = \text{negligible if n is large}$ $\lim_{n \to \infty} \mu_n[q \mid v] = 0$

v gives negligible information about q when domain is large

Binomial: Example II

R(name,dept,phone) |R| = c, domain size = n

v: R(LARRY, -, -), R(-, -, x1234)

q: R(LARRY, -, x1234)

 $\lim_{n\to\infty} \mu_n[q \mid v] = 1/(1+c)$

v gives non-negligible information about q, even for large domains

Binomial: Example III

R(name, dept, phone) |R| = c, domain size = n

v: R(LARRY, SALES, -), R(-, SALES, X1234)

q: R(LARRY, SALES, X1234)

 $\lim_{n\to\infty} \mu_n[q \mid v] = 1$

Binomial distribution cannot express more interesting statistics.

A Variation on Binomial

- Suppose we have following statistics on R(name,dept,phone):
 - Expected number of distinct R.dept = c₁
 - Expected number of distinct tuples for each R.dept = c_2
- \bullet Consider the following distribution μ_n
 - For each x_d ∈ U, choose it as a R.dept value with probability c_1/n
 - For each x_d chosen above, for each $(x_n,x_p) \in U^2$, include the tuple (x_n,x_d,x_p) in R with probability c_2/n^2

Examples

R(name,dept,phone) $|dept|=c_1$, $|dept| \Rightarrow name,phone| = c_2$, $|R|=c_1c_2$

Example 1:

```
v : R(LARRY, -, -), R(-, -, x1234)
q : R(LARRY, -, x1234)
\mu[q | v] = 1/(c_1c_2+1)
```

Example 2:

```
v : R(LARRY, SALES, -), R(-, SALES, x1234)

q : R(LARRY, SALES, x1234)

\mu[q|v] = 1/(c_2+1)
```

Part II: Representing Knowledge as a Probability Distribution

Knowledge about data

- A set of statistics Γ on the database
 - cardinality statistics : card_R[A] = c
 - fanout statistics: fanout_R $\{A \Rightarrow B\} = c$
- A set of integrity constraints Σ
 - functional dependencies: R.A → R.B
 - inclusion dependencies: $R.A \subseteq R.B$

Representing Knowledge

Statistics and constraints are statements on the probability distribution P

- cardR{A} = c implies the following

$$\Sigma_i P[D_i] card(\Pi_A(R^{D_i})) = c$$

- fanoutR{A ⇒ B} implies a similar condition
- A constraint Σ implies that $P[D_i] = 0$ on data instances D_i that violate Σ

Problem: P is not uniquely defined by these statements!

The Maximum Entropy Principle

- Among all the probability distributions that satisfy Σ and Γ , choose the one with maximum entropy.
- Widely used to convert prior information into prior probability distribution
- Gives a distribuion that commits the least to any specific instance while satisfying all the equations.

Examples of Entropy Maximization

- R(name,dept,phone) a relation of arity 3
- Example 1:

 $\Gamma = \text{empty}, \ \Sigma = \{ \text{card}[R] = c \}$ Entropy maximizing distribution = Binomial

• Example 2:

 Γ = empty, Σ = { card \mathbb{R} {dept} = \mathbb{C}_1 , fanout \mathbb{R} {dept \Rightarrow name,phone} = \mathbb{C}_2 } Entropy maximizing distribution = variation on Binomial distribution we studies earlier.

Query answering problem

Given a set of statistics Σ and constraints Γ , let $\mu_{\Sigma,\Gamma,n}$ denote the maximum entropy distribution assuming a domain of size n.

Problem: Given statistics Σ , constraints Γ , and boolean conjunctive queries q and v, compute the asymptotic limit of $\mu_{\Sigma,\Gamma,n}[q \mid v]$ as $n \to \infty$

Main Result

• For Boolean conjunctive queries q and v, the quantity $\mu_{\Sigma,\Gamma,n}[q \mid v]$ always has an asymptotic limit and we show how to compute it.

Glimpse into Main Result

• For any conjunctive query Q, we show that $\mu_{\Sigma,\Gamma,n}\{Q\}$ is a polynomial of the form

$$c_1(1/n)^d + c_2(1/n)^{d+1} + ...$$

- $\mu_{\Sigma,\Gamma,n}[q \mid v] = \mu_{\Sigma,\Gamma,n}[qv]/\mu_{\Sigma,\Gamma,n}[v] = ratio of two polynomials.$
- Only the leading coefficient and exponent matter, and we show how to compute them.

Conclusions

- We show how to use common knowledge about data to find answers to queries that are statistically meaningful
 - Provides a formal framework for studying database privacy breaches using statistical attacks.
- We use the principle of entropy maximization to represent statistics as a prior probability distribution.
- The techniques are also applicable when the contents of views are themselves uncertain.

Questions?