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Background

* ‘Query answering using Views’ problem:
find answers to a query ¢ over a database
schema R using a set of views I = W1, Vo -}

over R.

* Example: R(name,dept,phone)

v,(n,d) : R(n,d,p) v,(d,p): R(n,d,p)
v,= | NAME | DEPT v,= | DEPT PHONE
LARRY | SALES SALES X1234

JOHN | SALES SALES X5678

HR X2222

g(p) : R(LARRY,d,p)



Background: Certain Answers

Let U be a finite universe of size n. Consider all
possible data instances over U
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Certain Answers: tuples that occur as answers
in all data instances consistent with



Example

v;(n,d) : R(n,d,p)

v,(d,p): R(n,d,p)

51 NAME DEPT DEPT PHONE
Vilis \{)
LARRY | SALES SALES X1234
JOHN SALES SALES X5678
HR X2222
g(p) : R(LARRY,d,p)
Data instances consistent with the views:
NAME DEPT PHONE NAME DEPT PHONE
LARRY SALES X1234 FRANK SALES X5678
JOHN SALES |X5678 LARRY |SALEsS [x1111 it dy
SUE HR X2222 JOHN |SALEs |x1234
SUE HR X2222




Example (contd.)

vy = NAME | DEPT V)= DEPT PHONE
LARRY | SALES SALES X1234

JOHN SALES SALES X5678

HR X2222

e No certain answers, but some answers are more

likely that others.
* Domain is huge, cannot just guess LARRY’S number.

* A data instance is much smaller. If we know average
employes per dept = §, then x1234 and xs678 have
0.2 probability of being answer.



Going beyond certain answers

* (Certain answers approach assumes complete
ignorance about the knowledge of how likely

is each possible database

e Often we have additional knowledge about the
data in form of various statistics

Can we use such information to find answers
to queries that are statistically meaningful?



Why Do We Care?

 Data Privacy: publishers can analyze the
amount of information disclosed by public views
about private information in the database

 Ranked Search: a ranked list of probable

answers can be returned for queries with no
certain answers.



Using Common Knowledge

* Suppose we have a priori distribution Pr over all
possible databases:

Pr:{D,, ... ,.D.} — [0,1]

* We can compute the probability of a tuple t
being an answer to ¢ using Priz € ¢) | V1]

Query Answering using views = Computing
conditional probabilities on a distribution
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Part 1

Query answering using views under some
specific distributions



Binomial Distribution

U : a domain of size n

We start from a simple case

- R(name,dept,phone) a relation of arity 3
- Expected size of Ris c

Binomial: Choose each of the n3 possible tuples
independently with probability p.

Expected size of R is ¢ = p = c/n3

Let u, denote the resulting distribution. For any
instance D,
Un[D} = pk(1-p)»’ -k, where k = DI
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Binomial: Example I

R(name,dept,phone) IRl = ¢, domain size = n
v : R(LARRY, -, )

q: RG, -, x1234)

unlqlvl=(c+1)/n = negligible if n is large
B i g vk = o

v gives negligible information about q when
domain is large
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Binomial: Example 11

R(name,dept,phone) Rl = ¢, domain size = n
v : R(LARRY, -, ), R(-, -, x1234)

q: R(LarRyY, -, x1234)

lim, s o Wnlqlvl=1/(1+c)

v gives non-negligible information about q,
even for large domains
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Binomial: Example II1

R(name,dept,phone) IRl = ¢, domain size = n
v : R(LARRY, SALES, -), R(-, saLEs, x1234)

q: R(LARRY, SALES, x1234)

lim, s o Uplqlvl=1

Binomial distribution cannot express more
interesting statistics.
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A Variation on Binomial

* Suppose we have following statistics on
R(name,dept,phone):

—  Expected number of distinct R.dept = ¢,
— Expected number of distinct tuples for each R.dept = c,

e Consider the following distribution up,

— For each xg € U, choose it as a R.dept value with
probability c;/n

— For each xq chosen above, for each (Xn,xp) & U2, include

the tuple (xn,xd,xp) in R with probability c,/n?
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Examples

R(name,dept,phone) |deptl=c,, Idept = name,phonel = c,, [Rl=c;c,

Example 1:
v: R(LARRY, -, -), R(-, -, x1234)
q: R(LARRY, -, x1234)
M{q v = 1/(C1C2+1)

Example 2:
v : R(LARRY, sALES, -), R(-, saLEs, x1234)
q: R(LARRY, SALES, x1234)
ulg v }=1/(c,+1)
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Part II : Representing Knowledge as
a Probability Distribution



Knowledge about data

e A set of statistics I' on the database
- cardinality statistics : cardg[Al = ¢

- fanout statistics: fanoutr|{A = Bl = ¢

* A set of integrity constraints X

- functional dependencies: R.A — R.B
- inclusion dependencies: R.AC R.B
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Representing Knowledge

Statistics and constraints are statements on the

probability distribution P
— cardR[Al = ¢ implies the following
Y. PID;} card(IT,(R)) = ¢
— fanoutR{A => B} implies a similar condition

— A constraint 2 implies that PID;} = 0 on data
instances D, that violate X

Problem: P is not uniquely defined by these

statements!
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The Maximum Entropy Principle

e Among all the probability distributions that satisty
> and I', choose the one with maximum entropy:

e Widely used to convert prior information into
prior probability distribution

e Gives a distribuion that commits the least to any
specific instance while satistying all the equations.
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Examples of Entropy
Maximization

* R(name,dept,phone) a relation of arity 3

e Example 1:
[' = empty, 2 ={card[R}=c}
Entropy maximizing distribution = Binomial

e Example 2:

I' = empty, 2 = { cardR{dept} = Cy,
fanoutg{dept = name,phonel = C2}

Entropy maximizing distribution = variation on
Binomial distribution we studies earlier.
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Query answering problem

Given a set of statistics 2 and constraints I, let
us . denote the maximum entropy distribution

assuming a domain of size n.

Problem: Given statistics 2, constraints I', and
boolean conjunctive queries q and v; compute
the asymptotic limit of us {qlvlasn — o
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Main Result

* For Boolean conjunctive queries g and v, the
quantity Uus - 1q | vl always has an asymptotic

limit and we show how to compute it.
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Glimpse into Main Result

* For any conjunctive query ), we show that
us r ,LQl is a polynomial of the form

Cl(l/n)d + Cz(l/n)d+1 Hith

o Mz,r,n{q | v] = Mz,r,n{qV]/ Mz,r,n{V] = ratio of two
polynomials.

* Only the leading coefhicient and exponent
matter, and we show how to compute them.
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Conclusions

e We show how to use common knowledge about
data to find answers to queries that are statistically
meaningful

- Provides a formal framework for studying database privacy
breaches using statistical attacks.

e We use the principle of entropy maximization to
represent statistics as a prior probability
distribution.

® The techniques are also applicable when the
contents of views are themselves uncertain.
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