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Introduction Indexing Video (Sports Data) Query by Humming

Introduction

@ Euclidean Distance
e No alignment
@ Dynamic Time Warping (DTW)
e Local alignment
@ Uniform Scaling (US)
@ Global scaling
@ Scaled and Warped Matching (SWM)
e Both global scaling and local alignment are important!
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Introduction Indexing Video (Sports Data) Query by Humming

Indexing Video (Sports Data)
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Introduction Indexing Video (Sports Data) Query by Humming

Indexing Video (Sports Data)

[0 Euclidean Distance

@ Mapping part of the flight of one
sequence to the takeoff drive in
the other

[J Dynamic Time Warping (DTW)
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Introduction Indexing Video (Sports Data) Query by Humming

Indexing Video (Sports Data)

Euclidean
A ||||
[ “| 1) Uniform Scaling (US)

@ Best match when we stretch the
shorter sequence by 112%
@ Poor local alignment at takeoff
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Introduction Indexing Video (Sports Data) Query by Humming

Query by Humming

@ Search large music collections by providing an example of
the desired content, by humming (or singing, or tapping) a
shippet

@ Humans cannot be expected to reproduce an exact
fragment of a song

@ Query must be made invariant to key
e Wrong tempo
e Users may insert or delete notes

@ Existing approaches

e Do DTW multiple times, at different scalings

e Do DTW with relatively short song snippets
@ Less sensitive to uniform scaling problem
@ Less discriminating power
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Introduction

Indexing Video (Sports Data) Query by Humming

Query by Humming

A. W. C. Fu, E. Keogh, L. Y. H. Lau and C. A. Ratanamahatana

@ Happy birthday to you
o At very different tempos

@ DTW doesn't produce the desired
alignment

@ No global scaling

@ US produces better global
alignment, but serious local
misalignments

@ No local alignment

@ Only SWM produces the correct
alignment

e US aligns globally while DTW
corrects the local misalignments
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Problem
Problem Definition

@ Given

e A database D of M variable lengths data sequences
e Aquery Q

e Ascaling factor I, 1 > 1

@ A time warping constraint r

Problem

Assume the data sequences can be longer than the query
sequence Q. Find the best match to Q in database, for any
rescaling in a given range, under the Dynamic Time Warping
distance with a global constraint. By best match we mean the
data sequence with the smallest distance from Q.
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Preliminaries Time Warping Distance (DTW) Uniform Scaling (US)

Time Warping Distance (DTW)

Definition (Time Warping Distance (DTW))
Given two sequences C = C1,Cy,--- ,Chand Q = Q1,Q2, - - ,Qm, the
time warping distance DTW is defined recursively as follows:

DTW(¢, ¢) =0
DTW(C, ¢) = DTW(¢,Q) = oo
DTW(C, RestQ))

DTW(C, Q) = Dpase(First(C), First(Q)) + min DTW(Res{C), Q)
DTW(Res{C), RestQ))

where First(C) = C;, Res{C) = C,,Cg, -+ ,Cy, ¢ is the empty
sequence, and Dy,se denotes the distance between two entries.
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Preliminaries Time Warping Distance (DTW) Uniform Scaling (US)

Warping Matrix

@ An example warping matrix aligning the time series
e {1,2,2,4,5} and
e {1,1,2,3,5,6}

5[27]27]13] 5|1 | 2
allin|1a| 4|1 2| 6
2| 2] 2/ 0] 1]10]26
2 1] 1] 0] 1]10]26
100 1] 5|21]46
L L i a[ 2] 3] 5] 6]
DTW(Res(C), Q) DTW(C, Q)

DTW(Res{C), RestQ)) | DTW(C, RestQ))
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Preliminaries Time Warping Distance (DTW) Uniform Scaling (US)

Warping Matrix

@ An example warping matrix aligning the time series
e {1,2,2,4,5} and
e {1,1,2,3,5,6}

5127 |27 |13 511 2
4111 |11 4| 1 2 6
2 2 21 0 1110 ]| 26
2 1 1|10 1|10 | 26
1)l 0 0 1 5121 46
[t 1] 2[ 3] 5] 6

@ The highlighted entries denote the warping path.
@ The DTW distance is 2. (the value at the top-right entry)
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Constraints on the Warping Path

@ Sakoe-Chiba Band @ Itakura Parallelogram
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Constrained DTW (cDTW)

Definition (Constrained DTW (cDTW))

Given two sequences C = C1,C5,--- ,Chand Q = Q1,Q2,--- ,Qm, and the
time warping constraint r, the constrained time warping distance cDTW is

defined recursively as follows:
. : N Dbase(Cth) if|i_”§r
Dist(Ci, Qj) = { oo otherwise
cDTW(o, ¢,r) =0
cDTW(C, ¢,r) = cDTW($,Q,r) = 00
cDTW(C, RestQ),r)

cDTW(C, Q, r) = Dist,(First(C), First(Q)) + min { cDTW(RestC),Q,r)
cDTW(Res{C), Res{Q),r)

where ¢ is the empty sequence, First(C) = C;, Res{C) = C;,,Cgs,--- ,Cp, and
Dpase denotes the distance between two entries.
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Constraints and Enveloping Sequences

Sakoe-Chiba Band Itakura Parallelogram
—— Data Sequence / ’ —— Data Sequence
—— Sakoe-Chiba Band P —— ltakura Parallelogram
4
/
64 0 8 16 24 32 40 48 56 64
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Preliminaries Time Warping Distance (DTW) Uniform Scaling (US)

Constraints and Enveloping Sequences

Definition (Enveloping Sequences for DTW)

Let UW = UWq, UW5, - - - , UWp, and
LW = LWy, LW, - - - , LW,

UWi — maX(Ci—h e aCH-r) and
LW; = min(Ci_;,--- ,Ci4r)

Considering the boundary cases, the above can be rewritten as

UW,; = m“3’-)((Cmax(1,i—r)’ T ’Cmin(i'“’”)) and
LWi = min(Cmax(l,ifr% e aCmin(iJrr,n))
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Lower Bounding DTW

Definition (Lower Bounding DTW)

m [ (Q —UW)? if Qi > UW;
LBw(Q,C) =) ¢ (Qi—Lw)? ifQ <Lw,

i=1 | O otherwise
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Uniform Scaling (US)

Definition (Uniform Scaling (US))

Given two sequences Q = Q1,--- ,Qmand C =Cy,--- ,C, and
a scaling factor bound I, > 1. Let C(q) be the prefix of C of
length g, where [m/I] < g <Imand C(m,q) be a rescaled
version of C(q) of length m,

C(m,q)i = C(q)fi.q/m) Where 1 <i <m
min(Im,n)
q=[m/I]
where D(X, Y ) denotes the Euclidean distance between two
sequences X and Y.
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Lower Bounding US

Definition (Enveloping Sequences for US)

We create two sequences UC = UCq,--- ,UC, and
LC =LC4, -+ ,LCq, such that

UC; = max(Cyi/m,- -+, Crin)
LCi = min(Cyi/y,- -+, Crin)

Definition (Lower Bounding US)

m [ (Q —UGC)? ifQ > UG
LBs(Q,C) =) { (Q—LC)? ifQ <LC

i=1 0 otherwise
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SWM Tightness  Pruning Power Query Time Varying Scaling Factor

Scaling and Time Warping (SWM)

Definition (Scaling and Time Warping (SWM))

Given two sequences Q = Q,--- ,QnandC =C,,--- ,Cp, a
bound on the scaling factor I,| > 1 and the Sakoe-Chiba Band
time warping constraint r which applies to sequence length m.
Let C(q) be the prefix of C of length q, where

[m/I] < q < min(Im,n) and C(m,q) be a rescaled version of
C(q) of length m,

C(m,q)i = C(a)fi.q/m) Where 1 <i <m

min(Im,n)
SWM(C,Q,l,r) = r?inm cDTW(C(m,q),Q,r)
g=|m
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Enveloping Sequences for SWM

Definition (Enveloping Sequences for SWM)

Ui = max(Crmax(x,[i/M—r")> " > Cmin([il]+r,n))
Li = min(Cax(w,i/1=r)> > Cmin([il]+r,n))

Definition (Lower Bounding SWM)

(Qi —U)? ifQi >,
LB(Q,C) =) ¢ (Qi—L)? ifQi<L

m
i=1 | O otherwise
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An illustration of the SWM envelopes

Query Q
u
Time Series C
L
0 50 100 150 200 250 3000 50 100 150 200 250 300
(b) (d)
uc LB(C, Q)
LC
0 50 100 150 200 250 3000 50 100 150 200 250 300
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An illustration of the SWM envelopes

Time Series C

0 50 100 150 200 250 300
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An illustration of the SWM envelopes

ucC

LC
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A.W. C. Fu, E. Keogh, L. Y. H. Lau and C. A. Ratanamahatana Scaling and Time Warping in Time Series Querying



SWM Tightness  Pruning Power Query Time Varying Scaling Factor

An illustration of the SWM envelopes
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An illustration of the SWM envelopes
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The Lower Bounding Lemma

Lemma (Lower Bounding Lemma)

For any two sequences Q and C of length m and n respectively,
given a scaling constraint of {1/I,1}, where | > 1, and a
Sakoe-Chiba Band time warping constraint of r’ on the original
(unscaled) sequence C, the value of LB(Q, C) lower bounds
the distance of SWM(C, Q,1,r’).

Proof Sketch.
© The matching warping path wx = (i, )k defines a mapping
between the indices i and j. Each such mapping
constitutes term t = (Qi,Cj)2 to the required distance.

@ We can show that the i-th term t;, in our lower bounding
distance LB(Q, C) can be matched with the term t
resulting in a one-to-one mapping, with t, <'t. O
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Tightness of Lower Bounds

Definition
Consider a lower bound LB(Q, C) for a distance D(Q, C) of the

form
m [ (Q—U)? ifQ>U;
LB(Q,C) =) ¢ (Qi—-L)? ifQ <L

i=1 | O otherwise

We say that the lower bound is tight, if there exists a set of
sequence pairs so that for each pair {Q, C} in the set,
@ D(Q.C) =LB(Q,C), and
@ The U; and L; values for some i, j are used (in the
(Qi — Uj)? or (Qj — Lj)? term) at least once in computing
the lower bounds in the set.
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Tightness of LBy

Lemma (Tightness of LByy)

The lower bound LBy, (Q, C) for the DTW distance with the Sakoe-Chiba Band
constraint is tight.

Consider DTW with a Sakoe-Chiba Band constraint of r = 1.
Hence in the warping path entry (i,j),j —1 <i <j+ 1.

¢/
.l
QA Q

Itis easy to see that D(Q,C) = LBy (Q,C), and D(Q’,C’) = LBw (Q’,C).

For Q,C, Q, < LW, and hence LW, is used in the computation of LBy, (Q, C).
For Q’,C’, Q, > UW,, hence UWj is used in the computation of

LBw (Q',C/). O
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Tightness of LBg

The lower bound LBs(Q, C) for the distance between Q, C with a scaling
factor between 1/ and | is tight.

Consider scaling between 0.5 and 2.
Hence | = 2.

S B N W B~ O

It is easy to see that D(Q,C) = LBs(Q, C), and D(Q’,C’) = LBg(Q’,C’).

For Q,C, LC; > Q; and all LC; are used in the computation of LB5(Q, C).
For Q’,C’, UC{ < Q/ and all UC/ are used in the computation of

LBs(Q’,C). O
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Tightness of LB

Lemma (Tightness of LB)

The lower bound LB(Q, C) for the distance between Q. C with a scaling
factor bound | and time warping with the Sakoe-Chiba Band constraint r’ is
tight.

Proof.

Consider a Sakoe-Chiba Band constraint of r’ = 1 and a scaling factor
between 0.5 and 2. Hence | = 2.

3 C; C; C3 Cy

2 Ql\\.ml\
1] Q2 Qs A
0 Qs

€5 G

It is easy to see that SWM(Q, C,I,r’') = LB(Q,C), and

SWM(Q’,C’,1,r") = LB(Q’,C’).

For Q,C, Q2 < L, and L is used in the computation of LB(Q, C).

For Q’,C’, Q4 > UZ and U} is used in the computation of LB(Q’, C’). O
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SWM Tightness Pruning Power Query Time Varying Scaling Factor

Average Pruning Power

-
T
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Length of Original Data

Average Pruning Power
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Pruning Power
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Query Time (second)
[6)]
o

Tightness Pruning Power Query Time Varying Scaling Factor

Query Time of Brute Force Search
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Tightness Pruning Power Query Time Varying Scaling Factor

Query Time of Search by Pruning
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Pruning Power vs. Scaling Factor

1 L
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SWM Tightness Pruning Power Query Time Varying Scaling Factol

Average Pruning Power vs. Scaling Factor
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Conclusion
Conclusion

Reviewed existing time series similarity measures

Showed that these measures are inappropriate or
insufficient for many applications.

Proposed Scaled and Warped Matching (SWM)
Derived a lower bounding function for SWM

Experimentally showed the effectiveness of the lower
bounding function

000 ©0
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