CXHist: An On-line Classification-Based Histogram
for XML String Selectivity Estimation

Min Wang
IBM T. J. Watson Research Center

Joint work with
Lipyeow Lim (IBM T. J. Watson)
Jeffrey S. Vitter (Purdue University)

September 1, 2005

> W

O

Outline

. Motivation: Selectivity Esimation for XML Data

Related Work

. Intuition for Classification-based Histograms

CXHist: the Method

. Experiments

. Conclusions

Query Optimization in Database Systems

Overview of cost-based query optimization.

Selectivity Estimator

Statistics
Estimate
. _ Selectivity
QEP 1
Plan QEP 2 Query Best
Query Q Enumeration Optimizer QEP
QEP k Query
L _ | Execution

Engine

Query
Result

Gathering Statistics

Off-line Methods

Gather lossy
> Statistics Compression

Database

On-line Methods

Gather/Update
Statistics

il
.

Query Query
Query Q Execution Result

On-line Statistics Gathering

On-line methods for gathering statistics are especially attractive,
because they

1. Avoid off-line scans of the data,
2. Adapt to dynamically changing data, and

3. Adapt to changing or non-uniform query workload character-
istics.

Selectivity estimation for XML data

<A>

<C
v4
<D>
v3
</ D>
</ C
</ B>

vl
</ B>

</ A>

XML doc — XML tree.

e XML data are conceptually trees
e Queries are path expressions, eg.,
— simple: //B/C/D
— single-value: //B/C/D=v3
— multi-value: //B/C=v4/D=v3
— subtree: /A[/B=v1]/B/C=v4
e Query processing via
— index (maps path to nodes)
— tree traversal
— combination
e Cost evaluation of QEP requires
estimating number of nodes that
match a path expression.

Related Work

Method Query Leaf Values On/Off-line
Cor. Subpath Tree (ICDE'01) subtree (sub)string Off-line
Markov Table (VLDB'01) linear — Off-line
XPathLearner (vLDB’02) linear string On-line
XSketch (SIGMOD'02) subtree numeric Off-line
Statix (SIGMOD'02) subtree numeric Off-line

Position Hist. (EDBT'02) ancestor string Off-line

XML String Selectivity Estimation

T he problem we solve: How to estimate selectivity of string
predicates on the value part of a path-value pair? Substring
& exact match predicates.

Number of distinct root-to-node paths is relatively small (~ 102).
Number of distinct path-value pairs is huge (~ 10°).
XPathLearner does not support substring predicates

Suffix tree based methods are too costly and tend to under-
estimate for string equality predicates.

Intuition for Classification-based Histograms

Query sel
/A/B/C/D=boy | 1
/B/C/D 3
/B/D 1
/B=a* 5
Query Workload

Intuition for Classification-based Histograms

Query sel

/A/B/C/D=boy | 1 »

/B/C/D 3

/B/D 1

_a* N Q0.0 »

/B=a 5 < Q)\()\ @ \Q)//‘Z’
) \
o

Query Workload v

Intuition for Classification-based Histograms

Query sel

/ABIC/D=boy | 1 | wy >

/B/C/D 3

/B/D 1

/B=a* 5 S PP 2 PP s
R o S %"
Q Q

Query Workload \s

Intuition for Classification-based Histograms

Query sel
/ABIC/D=boy | 1 | wy >
/B/C/D 3
/B/D 1 |
/B=a* 5 S O 2 PP o
& e e o %0
Q Q
Query Workload \s

Intuition for Classification-based Histograms

Query sel
/AB/C/ID=boy | 1 | wiy =)
/B/C/D 3
/B/D 1 |
/B=a* 5 S L0 3 s PP o
o ¢ B
Q Q
Query Workload % \3

=

Intuition for Classification-based Histograms

Query sel
/A/B/C/D=boy | 1 » »
/B/C/D 3
/B/D 1 |
/B=a* 5 o* OO0 » + QO Q o~\
X 0 % 7
e © o oo OF
Q Q
Query Workload % \3
Classifier

Intuition for Classification-based Histograms

Query sel
/AB/C/D=boy | 1 | wly =)
/B/C/D 3
/B/D 1 |
/B=a* 5 PP 3 PP

& e O o'e”

Q Q'
Query Workload \3

= = e Use Naive Bayesian

Classifiers (NBC)
e Learn NBC in an on-
Classifier line manner

Bayesian Classifiers (BC)

e Goal: learn the mapping from feature vectors to bucket IDs.

e Model features as r.v.'s X = X1,..., X, bucket ID as r.v. B,
and the mapping as a joint probability distribution.

e Given any feature vector #, the bucket is computed as
b = argmax P(B=b|X=%)
beB

= arg max P(B=b)P(X=z|B=b).
beB

e Naive BC assumes independence of features X, given B.

10

A CXHist Histogram

consists of a set of buckets and each bucket b stores:

1. sum(b), the sum of the selectivities of all the query feedback
that is associated with bucket b,

2. cnt(b), one plus the number of query feedback seen so far
that is associated with bucket b,

3. {P(X;|B=b) : i =1,...,k}, a set of query feature probabil-
ity distributions. One distribution is stored for each feature
random variable Xj.

11

Modeling Queries

e Query type: exact match & substring predicates on values
reachable by given path ID.

e A query is modeled as a set of features. E.g. The exact
match query (5,@GLIM$) can be modeled using a pathID fea-
ture with value 5 and a series of 2-gram features with values
@L, LI, IM, M$.

e Each feature is associated with a random variable (X;). E.g.
T for the pathID, and G; for the 2-gram features.

e \We assume stationarity for &,;, so that we only need to store
one distribution for all the G;.

12

Estimating Selectivity using CXHist

e Map the given query to its feature vector & = (z1,...,7})
e Models features and bucket as a joint probability distribution.

e Find the bucket for b for # using the naive bayesian classifier,

n
b =argmaxs P(B=b) |[P(X;=xz;|B=b) ;.
bel3 it

e Compute the selectivity as

13

Example

e Query: (5,@0LIM) — (5,@L, LLIM)

B |sum| cnt

0 3 3

1 |20 2 e Compute associated bucket,

B | T | N(T,B) . 2 2 2 2 2 2

o |5 | » P(B=0|X) x = X=—X=-X=-X—=—= ——

s s | 3 2 8 8 8 192
P(B=1|X) 1><1><1><1><1 !

B G | N(G,B) — 3 1 Y 2 2 Q1

g 3 1 3 3 3 31

0 LI 2

0 | m | 2 e Compute selectivity as

0 M$ 2

1T @ 1 20

P T est(l) = — = 10.

1 IM 1 2

14

Initializing CXHist

. Clustering. If a sample query workload is available, use the
MaxDiff or the Lloyd-Max quantization algorithm.

. Uniform intervals. E.g. {0, 10,20, 30,...}.
. Exponential intervals. E.g. {1,2,4,8,16,...}.

. Uniform-exponential hybrid. E.g., for 10 buckets and 5 ex-
ponential values in the interval [1,66], we could use
{1,2,4,8,16,26,36,46,56,66}.

15

Updating CXHist with Query Feedback

e If no classification error, increment feature distributions, bucket
sum and count associated with the query feature vector .

e Otherwise the classification is wrong, b #+ bx, which implies
that posterior probability P(B=bx|X) is not the maximum.

e Perform some number of iterations of gradient descent so
that P(B=bx|X) becomes the maximum.

e Each step of gradient descent, we update the count w; =
N(Xzzxz,B:b*) using,

WD 0 OFEE)
L L 8?1]2' ’

16

Worked Example

sum

ol w (v (= | m

N(G,B)

Consider a 5-bucket CXHist (left)
and the following query workload:

No. | Path ID | String | Selectivity
1 0 QLIMS$ 2
2 1 OQMIN 20
3 0 QLIM 10
4 0 QLIM$ 2
5 0 IM 18

17

sum

ol w (v (= | m

Worked Example :

B | G | N(G,B)

Query 1

Query (0,QLIMS$),0 =2

Feature distributions are empty

— posterior is flat

— defaults to B=1

— o =1 (50% rel. err.).
Update

— closest bucket is B = 2.
— update bucket counts.

— increment feature counts.

Posterior is max at B = 2.

18

Worked Example : Query 1

B |sum| cnt e Query (0,8LIM$),0 = 2
ﬁ e Feature distributions are empty
a ol — posterior is flat
4 | 8| 1 — defaults to B=1
5 |16 | 1 — o =1 (50% rel. err.).
e Update

h — closest bucket is B = 2.

— update bucket counts.

— increment feature counts.

e Posterior is max at B = 2.

19

Worked Example :

B |sum| cnt B | G | NG,B)
1 1 |1 2 |@L 1
2 4 | 2 2 | LI 1
3 4 |1 2 |IM 1
4 8 | 1 2 |M$ 1
5 16 | 1
B | T | N(T,B)
2 |0 1

Query 2

Query (1,@MIN),c = 20
Posterior is flat

— defaultsto B=1

— =1 (95% rel. err.).
Update:

— closest bucket is B = 5.
— uUpdate bucket counts.

— increment feature counts.

Posterior is max at B = 5.

20

sum

cnt

~w (v [= |
(TR N NG N

_ = N [=

N(T,B)

Worked Example :

N(G,B)

@L

LI

Do | m

M$

[G (S G [

Query 2

Query (1,@MIN),oc = 20
Posterior is flat

— defaultsto B=1

— o0 =1 (95% rel. err.).
Update:

— closest bucket is B = 5.
— uUpdate bucket counts.

— increment feature counts.

Posterior is max at B = 5.

21

Worked Example :

B |sum| cnt B | G | NG,B)
1 1 |1 2 |@L 1
2 4 | 2 2 | LI 1
3 4 |1 2 |IM 1
4 8 | 1 2 |M$ 1
5 |36 |2 5 |@M 1
5 | Ml 1
B | T | N(T,B) 5 |IN 1
2 |0 1

Query 3

Query (0,QLIM),c = 10

— Posterior is max at B =2

— 0 =2 (80% rel. err.).
Update:

— closest bucket is B = 4.
— update bucket counts.

— increment feature counts.

Posterior is max at B = 4.

22

sum

cnt

w [N [|

Worked Example :

N(G,B)

@L

LI

M$

@M

MI

N(T,B)

(62 I I 2 T G 2 I I A T I\ I A T I \O I s o

R U (S G O I U I Gy

Query 3

Query (0,QLIM),c = 10

— Posterior is max at B =2

— 0 =2 (80% rel. err.).
Update:

— closest bucket is B = 4.
— update bucket counts.

— increment feature counts.

Posterior is max at B = 4.

23

sum

cnt

ol W (v (= o

DN = N =

Worked Example :

N(G,B)

@L

—_—

LI

M$

@M

MI

N(T,B)

@L

LI

Ao |0

o |= O |-

A (BB OO0 O DD DN D

P G R O = U [Gy e U R G B U (S Gy

Query 4

Query (0,@LIMS$),0 =2
Posterior is max at B =2
— o =2 (0 error).
Update:

— no classification error.
— update bucket counts.

— increment feature counts.

No further updates needed.

24

Worked Example : Query 4

e Query (0,GLIMS$),0 =2
e Posterior is max at B =2
— o =2 (0 error).

1 1] 1
3 4 | 1

v 2 e Update:
5 36 | 2 5 |[@M 1 . .
= 1 — no classification error.
5 |IN : — update bucket counts.
4 |@L| 1 — increment feature counts.
4 |LI 1 e No further updates needed.
4 |0 1 4 |IM 1

25

sum

cnt

18

ol W (v (= o

DN = W=

Worked Example :

N(G,B)

@L

\V)

LI

M$

@M

MI

N(T,B)

@L

LI

Ao |0

o |= O |-

A (BB OO0 DNDIND D

Query 5

Query (0,IM),c = 18
Posterior is max at B =2
— 0 =2 (89% rel. err.).
Update:

— closest bucket is B = 5.
— update bucket counts.

— since posterior is O at B = 5,

increment feature counts.

But max is still not B = 5!
Do gradient descent.

26

Worked Example : Query 5

G | N(G,B)

®
=
N

alw (v |- |
o
D= | [=

Ao |0
o |- o |+
N

I-'>
AN N o|ad(d(dd | m
<

Query (0,IM),c = 18
Posterior is max at B =2
— 0 =2 (89% rel. err.).
Update:

— closest bucket is B = 5.
— update bucket counts.

— since posterior is O at B = 5,

increment feature counts.

But max is still not B = 5!
Do gradient descent.

27

Worked Example : Query 5

sum

cnt

A lw (N (= |m

18

N(G,B)

@L

\V)

LI

M$

@M

MI

@L

LI

Ao |W
o |- o |+

A (A OO0 DD DN D

e Query (0,IM),c = 18
e Gradient descent:
— Let w;=N(T=0,B=5) and
wg=N(G=IM, B=5)
— Compute the deltas,

Awy = —0.034
Awqg = —0.052.

— Normalizing, we have
e Max is now B = 5l

28

Worked Example : Query 5

B |[sum| cnt B | G | NG,B)
1 1 |1 2 |@L 2
2 6 | 3 2 |LI 2
3 4 | 1 2 |IM 2
4 18 | 2 2 |M$ 2
Elslel] s lem|
5 | Ml 1
B | T | N(T,B) 5 |IN 1
2 |0 2 4 |@L 1
5 |1 1 4 | LI 1
4 | 0 1 4 |IM 1

e Query (0,IM),c = 18
e Gradient descent:
— Let w;=N(T=0,B=5) and
wg=N(G=IM, B=5)
— Compute the deltas,

Aw; = —0.034
Awg = —0.052.

— Normalizing, we have
Awy =1, Awg = 1.5
e Max is now B = 5l

29

Pruning CXHist

e \When histogram size reaches triggersize bytes, the histogram
is pruned down to targetsize bytes.

e Small counts in the feature distribution are discarded/pruned.
— Small counts suggest less frequent use.

— Small counts are less likely to affect the maximum point
of the posterior.

30

Experiments

Dataset : DBLP XML data. 5M leaf nodes (path-string pairs),
2M are distinct.

Workload generation : sample from 2M distinct pairs using
Gaussian distribution.

Query workload type : exact match, substring match and mixed.

Comparisons : one pruned suffix tree (PST) per pathlD, com-
pressed histogram (CH).

Metric : on-line average relative error.

31

Accuracy vs Memory: Exact Match

OARE vs Memory (triggersize) for Workload lle OARE vs Memory (triggersize) for Workload lle
T 8 T
< PST —— = CH(585,3,") ——
& 8000 | CH(585,3,) 1 & CH(585,4,")
5 CXHIST(3,30,18,%) -~ 5 78l CXHist(3,30,18,*)
= \ = : CXHist(4,30 18*) e
L \ L
o 6000 | | ©
T \ 8 76 I
[} . o | T B "
% 4000 — o % :
& & 74¢
Zz 2000 r z
_“E’ _“E’ 72 - .
1 1 1 1 7 1 1 1 1
0 500000 1e+06 1.5e+06 2e+06 2.5e+0¢ 0 50000 100000 150000 200000
Memory (bytes) Memory (bytes)
Overview Detailed

CH is slightly better than CXHist for exact match workload.

32

Accuracy vs Memory: Substring Match

OARE vs Memory (triggersize) for Workload Ils

300 .
Q CH(417,3,") —+—
& CH(417,4,%)
- CXH|St(3,30’1 8,*) 77777 I
ug-l 250 /\ CXH'St(4,30,18,*) . |
(0]
> —
% 200 \\\\\ |
o _
[0) _
g 150 |
)
>
e
é’ 100 |
; R — o é
50

0 10000 20000 30000 40000 50000 60000
Memory (bytes)

CXHist is more accurate for substring match workload.

Selectivity Distribution in Workload

Sorted Query Selectivity for Workload lle Sorted Query Selectivity for Workload lls
| Workload I 300000 - Workload |
5000 | orkload lle orkload Ils
250000 r
4000
200000 r
= =
= 3000 | =
5 S 150000
o o
[0 [0
@ 2000 | ® 100000
1000 B 7 50000 -
0 7\L Il Il Il Il 0 7\ Il Il Il Il
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Query Number Query Number
Exact Match Workload Substring Match Workload

Exact match workload is more skewed than substring match
workload.

34

Accuracy Partitioned by Selectivity

OARE by Selectivity for Workload lle OARE by Selectivity for Workload Iis

160 \ \ \ \

120

CH(12.5%,3,25%) =

CH(12.5%,3,25%§ =
140 | CXHist(3,30,18,25%) =& -

CXHist(3,30,18,25%) ==

5 5
L a . |l E
o :\0\100 Fraction of Workload —~ Y < Fraction of Workload —~— |
£ 5 80 g% 1527 353 736 357 258 287 763 276 204 367
° g 2§ 100 [1
o< 60 T3x g
o0 O o
o= 2=
> © (S
< ¢ <>E c 40|
©.2 20 P
=5 25 0y
5L 0 N

= 34 5 6 7 8 9 10 O~ 1 2 3 4 5 6 7 8 9 10

Query Selectivity Query Selectivity
Exact Match Workload Substring Match Workload

Performance of CXHist is consistent, but CH performs poorly on
substring workload.

35

Accuracy of CXHist on Mixed Workload

OARE vs Memory (triggersize) for Workload 1Im

120
< CH(1003,3,) —+—
S 410 | CH(1003,4,%) < |
5 CXHist(3,30,18,%) -
5 100 | CXHist(4,30,18,) &
2
5 90 r
o)
o 80 +
@
(@)}
S 70
:?:’ Koo Do X
T 60|
£
I 50 -
S S R R—— PR a
40

0 50000 100000 150000 200000 250000 300000
Memory (bytes)

Workload: a mixture of 5000 substring queries and 5000 exact
match queries.

36

Conclusions

e CXHist is a new type of histogram that uses feature distrib-
utions and Bayesian classification techniques to capture the
mapping between queries and their selectivity.

e CXHist is on-line: it gathers statistics from query feedback
rather than from costly data scans, and hence adapts to
changes in workload characteristics and in the underlying
data.

e CXHist is general and not limited to XML data: it can be
used for multidimensional string data in relational databases
as well.

e CXHist can be easily implemented and deployed in practice.

37

