
Automated Statistics Collection in DB2 UDB

A. Aboulnaga* P. Haas* M. Kandil+ S. Lightstone+ G. Lohman* V. Markl* I. Popivanov+ V. Raman*

 *IBM Almaden Research Center +IBM Toronto Development Lab
 650 Harry Road 8200 Warden Avenue
 San Jose, CA Markham, ON
 USA Canada

{aashraf, phaas, lohman, marklv, ravijay}@us.ibm.com, {mkandil, light, ivannp}@ca.ibm.com

Abstract
The use of inaccurate or outdated database statistics by
the query optimizer in a relational DBMS often results
in a poor choice of query execution plans and hence
unacceptably long query processing times. Configura-
tion and maintenance of these statistics has tradition-
ally been a time-consuming manual operation, requir-
ing that the database administrator (DBA) continually
monitor query performance and data changes in order
to determine when to refresh the statistics values and
when and how to adjust the set of statistics that the
DBMS maintains. In this paper we describe the new
Automated Statistics Collection (ASC) component of
IBM® DB2® Universal Database™ (DB2 UDB). This
autonomic technology frees the DBA from the tedious
task of manually supervising the collection and
maintenance of database statistics. ASC monitors both
the update-delete-insert (UDI) activities on the data as
well as query feedback (QF), i.e., the results of the
queries that are executed on the data. ASC uses these
two sources of information to automatically decide
which statistics to collect and when to collect them.
This combination of UDI-driven and QF-driven
autonomic processes ensures that the system can
handle unforeseen queries while also ensuring good
performance for frequent and important queries. We
present the basic concepts, architecture, and key
implementation details of ASC in DB2 UDB, and
present a case study showing how the use of ASC can
speed up a query workload by orders of magnitude
without requiring any DBA intervention.

1. Introduction
 Query optimizers employ database statistics to determine
the best execution strategy for a query. This metadata

usually includes the number of rows in a table, the num-
ber of distinct values for a column, the most frequent
values in a column, and, for numeric data, the distribution
of data values in a column (usually stored as a set of
quantiles). The optimizer uses these statistics to compute
the cardinality (i.e., number of rows processed) at each
intermediate step of a query execution plan. Advanced
optimizers also use joint statistics on groups of columns
within a table in order to deal with possible correlations
between column values.

The presence of inaccurate or outdated statistics
causes the optimizer to inaccurately estimate the
cardinalities and costs of the steps in a query plan, which
can result in a poor choice of plan and lead to
unacceptably long query processing times. Unfortunately,
it is all too easy for the statistics in a DBMS to deteriorate
over time. In general, database statistics are not
incrementally updated during data manipulations such as
insert, update, delete, and load, because such incremental
maintenance is too expensive. Statistics for tables with
high data change rates are therefore very likely to be out
of date. Even if the statistics are refreshed frequently, they
may still lead to inaccurate cost estimates if the
configuration parameters for the statistics are not set
properly. Examples of such parameters include the
number of frequent values and the number of quantiles to
maintain. These parameters depend heavily on the
statistical properties of the data, which can change over
time.

Previous commercial database systems have required
the DBA to manually configure and schedule the
collection and maintenance of statistics, a tedious and
time-consuming task. In this paper we describe the new
Automated Statistics Collection (ASC) component of
DB2 UDB, which has been developed as part of a general
effort to incorporate autonomic technology into DB2
UDB products [LLZ02, LSZ03]. The ASC subsystem
frees the DBA from the burden of statistics management.
ASC monitors update-delete-insert (UDI) activity on the
data tables in order to detect outdated statistics. ASC also
monitors query feedback (QF), i.e., the results of the
queries that are executed on the data, in order to detect

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1158

and adjust for outdated or improperly configured
statistics. Based on this information, ASC decides which
statistics to gather, at what level of detail to gather them,
and when to gather them, without requiring any DBA
intervention.

The novel features of ASC include (1) the
simultaneous use of both a “UDI-driven” autonomic
process that monitors UDI activity (including load
operations) on tables and a “QF-driven” feedback loop
that monitors estimated and actual results of query
executions, (2) methods for deciding if the data in a table
has changed sufficiently to require a refresh of the
statistics, (3) methods for deciding which statistics to
gather and at what level of detail to gather them based on
monitored query results, and (4) methods for scheduling
statistics collection that combine and prioritize the
recommendations from the UDI-driven and QF-driven
analyses.

Neither a UDI-driven nor a QF-driven approach is
sufficient by itself. UDI-driven approaches are proactive
and therefore can handle unforeseen queries, but may not
concentrate enough effort on maintaining statistics that
are critical to the users’ workload. QF-driven approaches
are reactive and require some learning time, but focus on
the most critical statistics, and hence use system resources
very efficiently. ASC combines the strengths of both
approaches, proactively collecting basic statistics on every
table periodically so as to be prepared for queries that
have not been anticipated, and reactively refining
statistics as required by the workload so as to be well
prepared for the most important queries.

The remainder of the paper is organized as follows: in
Section 2 we describe the overall ASC architecture. Sec-
tions 3 and 4 focus respectively on the UDI-driven and
QF-driven approaches to detection of outdated and in-
accurate statistics. In Section 5 we describe how the ASC
scheduler combines and prioritizes the recommendations
from both the UDI-driven and the QF-driven autonomic
components in order to schedule the actual statistics col-
lection. Section 6 presents a case study using a realistic
workload of queries on a database of car-accident records.
Section 7 surveys related work. Section 8 presents conclu-
sions and gives an outlook on future work.

2. Automated Statistics Collection
We first review some basic facts about the collection and
use of statistics in DB2 UDB. We then describe the
modifications to DB2 UDB that comprise the ASC
component.

2.1 Statistics in DB2

DB2 UDB stores in the system catalog [IBM04] the
statistics pertinent to each table, including overall
properties of the table, detailed information about the
columns in the table, and information about any indexes
on columns of the table. The DB2 UDB optimizer uses

the information in the catalog when selecting a query
plan. Table 1 summarizes the statistical information used
by the optimizer and the names of the tables in the DB2
UDB SYSTAT schema that store the information.

The DB2 RUNSTATS utility collects the statistics and
populates the system catalog tables. RUNSTATS is
executed on a per table basis, and for any given table the
user can specify the specific columns and indexes on
which statistics are to be created. For each table in a
database schema, the system catalog records the most
recent time that RUNSTATS has been executed on the
table. The exact configuration parameters for
RUNSTATS on each table (i.e., the set of columns on
which to gather statistics, the number of quantiles and
frequent values to collect for a column, the set of column-
group statistics to maintain, etc.) are recorded in a
RUNSTATS profile. RUNSTATS profiles are stored in the
system catalog (in the SYSSTAT.PROFILE table) and
can be modified through the RUNSTATS command and
queried through SQL.

2.2 ASC Architecture

The ASC component introduces both a UDI-driven and a
QF-driven autonomic process into the DB2 UDB system.
The first process monitors table activity and recommends
execution of RUNSTATS on a table whenever UDI or
LOAD statements against this table have changed the data
distribution so that the present statistics for that table are
substantially outdated. The second process monitors query
results on a table. The process modifies the RUNSTATS
profile for the table and recommends execution of
RUNSTATS whenever it detects either that configuration
parameters have been set improperly or that the statistics
are outdated. The scheduler component combines the
output of these two processes and triggers the execution
of RUNSTATS on appropriate sets of tables and at
appropriate times. In general, the scheduler causes
RUNSTATS to be executed on one or more tables during
a maintenance iteration that is concentrated within a
specified time period called a maintenance window. The

Table Name Content
tables number of rows in a table
columns number of distinct values for that

column
indexes number of distinct index keys,

clustering of the table with respect
to. the index, physical properties of
the index

coldist quantiles and frequent values of a
column

colgroups distinct number of values for a group
of columns

Table 1: DB2 Statistics

1159

frequency and length of maintenance windows can be
controlled by the DBA.

Figure 1 depicts the overall architecture of the ASC
component. The left side of the figure depicts
functionality that is implemented in the DB2 UDB engine,
i.e., the query processor with optimizer and plan
execution, the data manipulation language (DML)
processor, and the monitors that facilitate several of the
autonomic capabilities of DB2 UDB. The right side of the
figure depicts a pair of analyzers and a scheduler that
have been added to the DB2 Health Monitor to realize
automated statistics collection. The analyzers periodically
investigate the output of the monitors and recommend to
the scheduler a set of tables on which to collect statistics.

The upper portion of the figure pertains to the UDI-
driven autonomic process. When changing the data in a
table according to a UDI or LOAD statement, the DML
processor not only modifies the database, but also sends
information to an activity monitor (AM) that records the
number of changes against each table using a UDI-
counter. The activity analyzer (AA) uses this information
to determine whether statistics on an active table have
changed enough to justify statistics collection for this
table. The AA also estimates the degree to which activity
on a table has altered the data distribution; the scheduler
uses such estimates to prioritize tables for statistics
collection. To avoid starvation, “critical” tables that have
experienced UDI activity but have been ignored over
many past maintenance iterations eventually receive top
priority for statistics collection.

The lower portion of the figure pertains to the QF-
driven autonomic process. This process observes query
activity by using a plan monitor (PM), which stores the
best plan together with the optimizer’s cardinality

estimate for each intermediate result. During plan
execution, a run-time monitor (RM) observes the actual
cardinalities. All of this compile-time and run-time
information is stored in a query feedback warehouse
(QFW) in the form of relational tables. A query feedback
analyzer (QFA) periodically reviews these tables in order
to generate modifications to the RUNSTATS profiles.
The QFA bases these modifications on the discrepancy
between actual and estimated cardinalities. Besides
modifying RUNSTATS profiles, QFA communicates to
the scheduler its findings about tables with modified
RUNSTATS profiles and tables with outdated statistics,
so that the scheduler can properly prioritize the automatic
execution of RUNSTATS.

The statistics-collection process, like any other back-
ground maintenance task, must not significantly impede
more important business-critical tasks. Therefore, the
scheduler executes each RUNSTATS task as a “throttled”
background process in order to guarantee that the user
workload is not slowed down by more than a specified
amount. During a maintenance window, RUNSTATS
tasks are allocated a large portion of the available system
resources. If there are tables that still need to be processed
when the maintenance window ends, then processing
continues, but RUNSTATS is throttled back so that the
maximum allowable impact on query performance is lim-
ited to a small value (typically around 7%). When it is
time to start the next maintenance window, any
RUNSTATS tasks that are under way are first allowed to
complete. To throttle the maintenance process, the sched-
uler exploits the general mechanism in DB2 UDB for
adaptively tuning resource consumption during process
execution [PRH+03a, PRH+03b]. This mechanism, which
rests on control-theoretic techniques, is used to manage

Data

Query

Optimizer

Best
Plan

Plan Execution

Plan Monitor
(PM)

Runtime Monitor
(RM)

Query Feedback
Warehouse (QFW)

Query Feedback
Analyzer (QFA)

Database

Statistics

Scheduler

RUNSTATS

Activity Analyzer
(AA)

RUN
STATS
Profile

Activity
Monitor (AM) UDI Counter

DB2 Engine

DB2 Health Monitor

DML Processor

Result

Data

Query

Optimizer

Best
Plan

Plan Execution

Plan Monitor
(PM)

Runtime Monitor
(RM)

Query Feedback
Warehouse (QFW)

Query Feedback
Analyzer (QFA)

Database

Statistics

Scheduler

RUNSTATS

Activity Analyzer
(AA)

RUN
STATS
Profile

Activity
Monitor (AM) UDI Counter

DB2 Engine

DB2 Health Monitor

DML Processor

Result

Figure 1: ASC Architecture

1160

other expensive maintenance processes such as database
backup and table reorganization.

3. Detecting Stale Statistics via Data Activity
The UDI-driven autonomic process analyzes both the
number of UDI and load operations and the changes in
data values to determine whether the statistics on a table T
have changed sufficiently so that statistics collection is
justified. The process takes as input a list G of tables to be
checked, as provided by the scheduler, and its output is a
prioritized list of tables D, where D is a subset of G.

Figure 2 illustrates the overall detection process. As
can be seen, the activity analyzer comprises two
components. The data activity checker (DAC) is first
executed to ensure that only tables with a reasonably large
amount of data activity are considered for statistics
collection. Each table in G that is not eliminated by the
DAC is inserted into D. The list D is then passed to a
change analyzer (CA). For each table T in D, the CA
estimates for each “analyzable” column in T the degree of
change in the data distribution since RUNSTATS was last
executed on T; a column is analyzable if quantile statistics
for the column are maintained in the system catalog. If no
analyzable column in T evidences a significant degree of
change, then T is removed from D.

After execution of the CA, the list D contains
essentially only those tables having both significant data
activity and significant changes in data values in at least
one column. This list is then passed to the scheduler. We
now describe the various components of the detection
process in more detail.

3.1 Activity Monitor

The task of the activity monitor (AM) is to quantify the
update activity for each table. It monitors both the loading
of data into tables and UDI operations on tables. The AM
maintains a UDI-counter for each table. The counter is
increased by 1 whenever an existing row is updated or
deleted, or a new row is inserted. The counter is set to 0
when the table is created, and is reset to 0 whenever
RUNSTATS is executed on the table.

The UDI-counter is stored in the table descriptor
together with other internal data structures. It is usually
cached in memory and flushed to disk using the same

discipline as for the rest of the data structures. Therefore,
maintenance of the UDI-counter rarely causes extra I/O
operations.

3.2 Data-Activity Checker

The DAC is the first process invoked when searching
for outdated statistics because the presence of data
activity is necessary in order for statistics to change. Lack
of data activity means statistics need not be updated
unless the QF-driven process gives a different indication,
i.e., unless the QFA modifies the configuration
parameters for some statistics or detects outdated
statistics. This multi-tier approach significantly reduces
the number of maintenance tasks performed over time.
Tables with either low data activity or marginal changes
to the statistics are ignored, so that system resources can
be devoted to maintaining the most important tables.

The DAC first verifies that the table-related data
structures are cached in memory. Their absence from the
cache means that the table has not been used recently; it
follows that the table has low data activity and can be
ignored. Otherwise, the table is considered to be a
candidate for statistics collection, and the DAC inspects
the UDI-counter maintained for that table. If the UDI-
counter suggests that at least τ% of the rows have been
modified, this table is passed on to the change analyzer to
further investigate whether statistics on this table need to
be collected. The current implementation of DAC uses a
value of τ = 10.

It is possible that in some unusual cases a small
number of records in a given table are changed, but the
data values in these records are altered so drastically that
query performance is affected. In this case, the table may
not be detected by the DAC, and hence the AA. If this
table is referenced in the query workload, however, then it
will be detected by the QFA.

3.3 Change Analyzer

For each table T in its input list D, the CA takes a small
sample from T and computes a synopsis data structure S =
S(T), where S comprises histograms of the marginal data

Database
Scheduler

Data Activity
Checker (DAC)

Change Analyzer
(CA)

Activity
Monitor (AM) UDI Counter

Statistics

Database
Scheduler

Data Activity
Checker (DAC)

Change Analyzer
(CA)

Activity
Monitor (AM) UDI Counter

Statistics

Figure 2: UDI-Driven Autonomic Process

A2
A3

A4
A5 A6

A7 A8

A9

A10

A11

A12

Figure 3: Computing the Change Value

1161

distribution for each analyzable column. We have found
that a sample consisting of about 2000 pages of table data,
selected using page-level Bernoulli sampling, provides
sufficient statistical precision for our purposes; see
[PIHS96, IMHB04]. The CA also obtains an analogous
synopsis R = R(T) based on the (possibly outdated)
marginal data distributions that are stored in the system
catalog. For each analyzable column, the CA then
measures the “distance” between the histograms. The CA
deletes table T from D, i.e., declares the change in data
values to be insignificant, if and only if the distance for
each analyzable column lies below a specified threshold.
If the change is significant for at least one analyzable
column, then the CA leaves table T in D and, as described
below, assigns to T a priority that the scheduler can use to
determine when to update T relative to other tables.

For a fixed analyzable column T.C (assumed to
contain numeric data) the CA uses a normalized L1
distance to measure the change in the data distribution.
Specifically, denote by eY(T.C ≤ v) the cardinality
estimate for the predicate T.C ≤ v (i.e., the estimated
number of rows in T that satisfy the predicate) based on
synopsis Y, and by l and u the smallest and largest bucket
boundary points that appear in R and S. Then

1change(. , ,) (.) (.)
| |

u

R Sl
T C R S e T C v e T C v dv

u l
= ≤ − ≤

− ∫ .

Observe that change(T.C,R,S) can be interpreted as the
average absolute discrepancy in cardinality estimates
over a family of one-sided inequality predicates.

Suppose that the histogram of T.C values is repre-
sented by a set of bucket boundaries (typically quantiles)
in both synopses R and S. Then change(T.C,R,S) can be
computed in a simple manner using essentially a “line
sweep” algorithm. Specifically, determine the union of the
two sets of bucket boundaries, and observe that

(.)Re T C v≤ and (.)Se T C v≤ are linear and nondecreasing
functions of v over each subinterval defined by a pair of
successive bucket boundary points. Thus, the integral

| (.) (.) |R SI
e T C v e T C v dv≤ − ≤∫ can be represented as the

area of the region that lies between two piecewise-linear
curves; see, for example, the shaded region in Figure 3,
where the dashed lines correspond to the combined bucket
boundaries. This area can in turn be expressed as a sum of
areas of simple trapezoids and triangles, each of which is
quick and easy to compute. Summing these areas and
dividing by l u− yields the value of change(T.C, R, S) .

If change(T.C,R,S) > θ for at least one column, where
θ is an empirically determined threshold value, then the
CA concludes that data distribution has changed,
identifies table T as a candidate for statistics collection,
and assigns to T a priority equal to maxC change(T.C,R,S).

The CA can also use the foregoing measurement
technique to quantify the change in data values as
measured by successive sets of catalog statistics. Dividing
this change value by the amount of time between the
corresponding executions of RUNSTATS yields an
estimate of the data change rate. As described in Section
5, the scheduler uses such rate-of-change estimates to
project the next time at which a table will be due for
statistics maintenance.

4. Detecting Poor Statistics from Queries
The QF-driven autonomic process monitors query
execution and records estimation errors in the QFW. The
QFA analyzes the data in the QFW to determine which
tables have outdated statistics, whether and how the
frequent values for columns on a particular table should
be reconfigured, and which (intra-table) correlation

RUN
STATS
Profile

Plan Monitor
(PM)

Runtime Monitor
(RM)

Query Feedback
Warehouse (QFW)

Table Card
Analyzer (TCA)

Scheduler

Simple Predicate
Analyzer (SPA)

Correlation
Analyzer (COA)

Modify RUNSTATS
Profile Frequent Values

Outdated Stats

Correlations

RUN
STATS
Profile

Plan Monitor
(PM)

Runtime Monitor
(RM)

Query Feedback
Warehouse (QFW)

Table Card
Analyzer (TCA)

Scheduler

Simple Predicate
Analyzer (SPA)

Correlation
Analyzer (COA)

Modify RUNSTATS
Profile Frequent Values

Outdated Stats

Correlations

Figure 4: QF-driven Autonomic Process

1162

statistics should be created in order to reduce estimation
errors in the future. As shown in Figure 4, the QFA
comprises three components. The table cardinality
analyzer (TCA) detects whether statistics are outdated by
comparing the estimated and actual size of a table. The
simple-predicate analyzer (SPA) uses estimated and
actual cardinalities of simple equality predicates to
determine the number of frequent values that should be
used when creating the statistics for a particular column.
The correlation analyzer (COA) uses cardinality
information about tables, simple equality predicates, and
conjunctive predicates to determine the set of column-
group statistics to recommend to the scheduler. The
output of the QFA is a prioritized list of tables Q that
require statistics collection, along with the configuration
parameter changes for the statistics of each table. The list
Q is sent to the scheduler, and the configuration changes
are stored in the RUNSTATS profiles.

4.1 The QFW and Its Maintenance

The QFW (see Figure 5) is populated periodically using
the information generated by the PM and the RM. For
each query, the PM records, at compile time, the
predicates in the query (i.e., the column names, relational
operators, and values) along with the optimizer’s
cardinality estimate for each predicate. The RM records
run-time information about each query that includes the
actual cardinalities for each table and predicate, as well as
the actual values of parameter markers or host variables
used in a query.

The data in the QFW is organized into relational
tables. The feedback query table stores each query in its
entirety, along with a skeleton query plan.

The feedback predicate table stores detailed predicate
information. In our current implementation, the QFW
stores information for simple predicates of the form
COLUMN ⊕ ‘literal’ (where ⊕ is a relational
operator such as “=” or “<”), as well as compound
predicates that reference a single table and are
conjunctions of simple predicates. During the planning
and processing of a query containing a compound
predicate that comprises 1N ≥ “Boolean factors” (i.e.,
conjuncts), the PM and RM have the opportunity to
observe actual and estimated cardinalities for one or more
“sub-predicates,” each consisting of the conjunction of a

subset of the N Boolean factors. Each such sub-predicate
generates an entry in the feedback predicate table that
includes the table referenced by the sub-predicate, the
number of Boolean factors, and the estimated and
observed cardinality.

The feedback column table contains an entry for each
Boolean factor that appears in the feedback predicate
table. Each entry includes the column name, relational
operator, and literal of the predicate. The literal may come
from either PM (in case of hard-coded predicates) or RM
(in case of parameter markers or host variables).

The recommendations of the QFA concerning out-
dated statistics, frequent values, and correlations are also
stored in the QFW. The recommendation column table
contains column information for these recommendations,
i.e., the column name and number of frequent values. The
recommendation column-group table stores similar infor-
mation but for column groups rather than individual col-
umns.

The QFW is an autonomic component of DB2 UDB in
its own right. It automatically purges old data, when
necessary, and it never grows beyond a DBA-specified
size.

4.2 Operation of the QFA

The QFA processes the query feedback stored in the QFW
and generates recommendations for correcting cardinality
estimation errors in the future. The QFA proceeds by
measuring, classifying, aggregating, and prioritizing the
differences between optimizer-based cardinality estimates
and actual cardinalities. Cardinalities considered include
those for table size, for simple equality predicates of the
form COLUMN = ‘literal’, and for pairwise
conjuncts of simple equality predicates. The QFA
determines the cause of each estimation error by
sequentially executing the table cardinality analyzer, the
simple-predicate analyzer, and then the correlation
analyzer. The QFA then aggregates the errors for each
column and table, prioritizes the tables, and
communicates its results to the scheduler and to the
RUNSTATS profiles. We describe each of these
operational phases in more detail below.

4.2.1 Table Cardinality Analyzer
The TCA simply compares the actual cardinality of each
table in the feedback warehouse with the estimated
cardinality based on the system catalog statistics. A
discrepancy indicates that the statistics for this table are
out of date. (This analysis is similar in spirit to the use of
the UDI-counter by the DAC.)

4.2.2 Simple-Predicate Analyzer
For each column represented in the QFW, the SPA
examines the errors in the simple equality predicates that
reference the column to check whether the number of
frequent values maintained for the column in the system

QueryQuery PredicatePredicate

ColumnColumn

Column
Group

Column
Group

ColumnColumn

Feedback Recommendation

Figure 5: Tables in the QFW

1163

catalog is sufficient. If not, then the SPA automatically
recommends an appropriate number of frequent values to
maintain. Note that following such a recommendation
also results in bringing the frequent-value statistics up to
date. Because some of the statistics in the catalog are
collected using random-sampling techniques, the QFA
considers only those QFW entries where the observed
error exceeds the expected error from normal sampling
fluctuations.

Use of frequent-value statistics minimizes estimation
errors arising from skew in the column-value frequencies.
It is difficult, however, for a DBA to manually determine
the "right" number of frequent values to track. The
automated approach used by the SPA is as follows. First
the SPA scans the QFW and the system catalog to
compile a list of all “known” value frequencies for the
column. These include:

 The frequencies fv1 .. fvn of the currently
maintained frequent values, as recorded in the
system catalog.

 The frequencies cfv1 … cfvm of all values for
which there is a relevant error record in the QFW.
These values can be considered as candidate
frequent values to maintain.

 An average frequency assigned to each of the
remaining “rare” (i.e., infrequent) values,
computed using a uniformity assumption from the
estimated number of rows in the table and the
number of distinct values in the column.

When multiple frequency estimates are available for a
given column value, the SPA uses the most recent one.

Figure 6 illustrates the frequency list as a bar graph, in
descending order of frequency. Suppose that the table has
d distinct values in total, and a total cardinality of C. Then
the successive bar heights are f1, f2 ,... fm+n, countrare,
countrare, … , countrare (d – m – n times), where

1 2, , , m nf f f +… is {fv1, … fvn, cfv1, ... cfvm} arranged in
descending order, and

1 2() ()/rare m ncount C f f f d m n+= − − − − − −" .
SPA now determines the number K of frequent values to
maintain, where n K m n≤ ≤ + . If DB2 UDB maintains K

frequent values, then, when estimating cardinalities, the
optimizer uses the exact count for these values and an
average count of

() ()1 /K
rare ii

newcount C f d K
=

= − −∑

for each of the remaining values. The total absolute
estimation error over all possible simple equality
predicates is

1
() | |

() | | .

m n
i rarei K

rare rare

AbsError K f newcount

d m n count newcount

+

= +
= −

+ − − −
∑

The first term represents the contribution due to the
m n K+ − known frequencies that DB2 UDB chooses not
to retain, and the second term is the contribution from the
remaining values. Observe that AbsError(K) is decreasing
in K. To determine the number of frequent values to
maintain, we initially set K = n and then increase the
value of K until either AbsError(K) falls below a
specified threshold or min(,)K m n β= + , where β is a
pre-specified upper bound on the number of frequent
values to maintain.

4.2.3 Correlation Analyzer
The COA focuses on pairwise correlations between
columns in a table, because experiments indicate that the
marginal benefit of correcting for higher-order
correlations is relatively small; see [IMHB04]. For each
pair of columns that appear jointly in a QFW record, the
COA compares the actual selectivity of each conjunctive

current frequent value

candidate frequent value

K
countrare

m+n

count

value

current frequent value

candidate frequent value

K
countrare

m+n

count

value

current frequent value

candidate frequent value

K
countrare

m+n

count

value

current frequent value

candidate frequent value

K
countrare

m+n

count

value

Figure 6: Frequencies Used by SPA

// G, P, D, Q, C are lists of tables
// T is a table
G := tables to be checked by AA during the initial
 maintenance iteration
P, D, Q, C := {}
while(true)
{
 // Call the AA on the Tables in G
 D := AA(G);
 // Call the Query Feedback Analyzer
 Q := QFA();
 // prioritize D and Q based on the ranking criteria
 // and merge with list of critical tables C
 P := prioritizeMerge(D, Q, C);
 while (still time in maintenance window)
 {
 T := Pop(P); // T is table in P with highest priority
 execute RUNSTATS on T
 and estimate the data change rate;
 }
 // Construct list for next maintenance interval
 (G, C) := constructDueTables()
 sleep until the next maintenance window;
}

Figure 7: Scheduling Algorithm

1164

predicate to the product of the actual selectivity of the
Boolean factors of the conjunct, assuming that this
information is available. For example, suppose that simple
equality predicates 1p and 2p are evaluated while
processing a query, along with the conjunctive predicate
 1 2p p∧ . Denote by α1, α2, and α12 cardinalities for these
queries that are observed during execution of the query,
and denote by m the cardinality of the entire table. Then
the COA deems the independence assumption to be valid
if and only if

12

1 2
1 1

mα
α α

− Θ ≤ ≤ + Θ,

where (0,1)Θ ∈ is a small pre-specified parameter.
Otherwise, the COA declares that a correlation error of
absolute magnitude 12 1 2(/)mα α α− has occurred.

 The analysis becomes more complicated when one or
more of the actual cardinalities are not available, as is
often the case in practice. The COA deals with the
problem by estimating the missing information and
adjusting the error-detection threshold and estimate of the

error magnitude accordingly. Details of the complete
algorithm will appear in a forthcoming paper.

4.2.4 Synthesizing the Final Outputs
The QFA processes feedback records as described above,
grouped either by column name or, for records involving
column pairs, by column-group identifier, where a
column-group identifier comprises the pair of column
names enumerated in lexicographic order. The QFA then
sums up the absolute errors for each column and column
group, and records the column-wise or group-wise error in
the appropriate recommendation table. Next, the QFA
identifies those columns and column groups that are
responsible for the most severe errors. QFA modifies the
RUNSTATS profiles so that RUNSTATS will increase
the number of frequent-value statistics for each identified
column and create joint statistics for each identified
column group when it is next executed on the table that
contains the column or column group. Finally, the QFA
computes the total error for each table by combining the
errors for table cardinality, cardinality of simple
predicates, and cardinality of pairwise conjunctive
predicates, weighing each error by its frequency (number
of queries experiencing this error as stored in the QFW).
Based on these table-wise errors, the QFA sends to the
scheduler a list Q of tables on which to execute
RUNSTATS.

5. Scheduling the Collection of Statistics
The scheduler drives the statistics-collection process.

During periodic maintenance iterations (with correspond-
ing maintenance windows), the scheduler invokes the AA
and QFA, and combines the output D of the AA and the
output Q of the QFA to create a combined prioritized list
P of tables to be processed. The scheduler also invokes
RUNSTATS as a throttled background process to collect
statistics on those tables having the highest priority.
Figure 7 displays the overall scheduling algorithm. As can
be seen from Figure 7, the prioritizeMerge and
constructDueTables procedures form the heart of the
scheduling algorithm. We discuss these procedures in the
following subsections.

The DBA can control the behavior of autonomic
background activities by configuring the scheduler. For
example, the DBA can limit the scope of automated
statistics collection to certain tables, or can exclude
certain tables from automatic maintenance. The DBA can
also specify the maintenance window. Finally, the DBA
can also control whether the scheduler should invoke
QFA, AA, or both, and specify the maximum allowable
disk space for the QFW. Figure 8 shows the GUI for
specification of the maintenance window.

5.1 Prioritizing Tables for Processing
Prioritizing tables for processing is an important and
challenging task. For large databases with potentially

Figure 8: Specifying the Maintenance Window

1165

thousands of tables and terabytes of data, selecting the
wrong tables for statistics collection might mean that very
needy tables will have to wait an unreasonable length of
time, with detrimental effects on query performance.

The scheduler classifies tables into five distinct
“urgency” classes. A table is useful with respect to
statistics refresh if more than 0% but less than 50% of the
rows have experienced some data change since the last
statistics refresh on the table. A table is needed if it has
been recommended for processing by the QFA. A
pressing table has had 50% or more rows experiencing
change since the last statistics refresh. An urgent table is
both needed and either pressing or useful. A critical table
is a table that has been starved: either the UDI-counter is
positive but an excessive number of maintenance
iterations have passed since the last statistics refresh, or
RUNSTATS has never been executed on the table.
Critical tables are always inserted into the list P of tables
to be processed in the current maintenance window and
are given top priority in this list. If a table falls into
multiple classes, then the most urgent of the classes
defines the table’s final categorization.

The scheduler prioritizes critical tables above urgent
tables, urgent tables above pressing tables, and so forth.
The tables are then prioritized within each class, resulting
in a priority queue that specifies the order in which tables
are selected for statistics refresh; see Figure 9.

Useful tables are prioritized within their class by the
percentage of rows changed, and similarly for pressing
tables. Tables within both the needed and urgent classes
are prioritized by a combination of their frequency count
and aggregated estimation error. The frequency count of
a table is the number of error records in the QFW that
reference the table, and measures a table’s relative
importance within the workload. Aggregated estimation
error is the table-wise error that is computed by the QFA,
as described in Section 4.2.4. Finally, critical tables are
ranked by their data change rate, as defined in Section 5.2
below; tables with no rate-of-change information (because
RUNSTATS has been executed on the table less than two
times) receive top priority. This ranking scheme ensures
that a single table never appears more than once in the
queue.

The rationale for the ranking scheme is as follows. It
is useful to refresh statistics on tables that experience low
to moderate data change, but which have not been

detected by QFA as impacting the workload, in case these
tables are accessed by the workload in the future. Such
refresh activity should be subject to preemption by more
important tasks. Tables that are known to be accessed by
the workload and have obsolete statistics clearly need a
statistics update. Tables that have experienced massive
data change will almost surely cause massive query
optimization problems if their statistics are not refreshed,
and are also likely to show up in the workload, so that
there is a pressing need for a statistics update. If such
tables have actually shown up in the workload and
generated significant estimation errors, then processing
these tables becomes even more urgent. Finally, we allow
the scheduler to identify tables as critical in order to avoid
starvation problems in which tables experience UDI
operations or lack statistics altogether, but are deferred
indefinitely.

5.2 Constructing the List of Due Tables

After RUNSTATS has been executed on a table T, the
newly collected statistics N for T are stored in the system
catalog. The scheduler now invokes the CA to estimate
the rate of change of the statistics, using N and the
previous set of statistics R for T. (See the discussion at the
end of Section 3.3.) Based on this rate of change, the
scheduler determines the next maintenance iteration at
which T will be due for consideration by AA.

Prior to the first maintenance iteration, the list G of
input tables to the AA is initialized to contain all of the
tables in the database that are subject to automatic
statistics collection. (Recall that the DBA can limit the
scope of ASC to a subset of the tables.) At the end of
each maintenance window, the constructDueTables
procedure (see Figure 7) is invoked to create the list G of
tables that are due to be checked by AA in the next
iteration. This function also constructs the list C of tables
that are now critical (as previously defined).

6. A Case Study using a DMV Database
We illustrate the effect of ASC on query processing using
a case study on a database that stores information about
car accidents in various countries. The statistics
maintenance is completely controlled by ASC: no
statistics are configured or collected by the DBA at any

T4 T5 T6 T7T3T2T1 T8 T 9

UsefulPressingUrgentCritical Needed

Next table
iterator.

Figure 9: Priority Queue for Scheduler

1166

time. The study consists of running and timing a typical
workload of 11 reporting queries on the database both
before and after the execution of the various components
of ASC. Specifically, the case study consists of running
the workload after each of the following steps:

A. Initial loading of the database
B. Execution of ASC (AA only)
C. Insertion of additional accidents that occurred in

Canada
D. Execution of ASC (AA only)
E. Execution of ASC (QFA only)

We refer to the set of queries executed after step A as
“query-group A,” the queries executed after step B as
“query-group B,” and so forth. We modified the operation
of ASC in steps D and E above in order to investigate the
benefits of QFA over and above those of AA.

We carried out the case study using a one-CPU 333
Mhz PowerPC 604® system with 512 MB memory, two
8.5 GB disks, running AIX® 4.3.3. ML11. The DMV
database has a size of 1.5 GB and consists of four major
tables: ACCIDENTS, CAR, OWNERS, and owner
DEMO-GRAPHICS. These tables use the following
schema:

• Car (ID, Make, Model, Color, Year, OwnerID)
• Owner (ID, Name, City, State, Country1, Country2,

Country3)
• Demographics (ID, Age, Salary, Assets, OwnerID)
• Accident (ID, Year, SeatBeltOn, With, Driver,

Damage, CarID)

Of particular interest are the column pairs

(COUNTRY3, CITY) in the owner table and (MAKE,
MODEL) in the car table. The columns in each pair are
related by a functional dependency, and each pair is
referenced in queries 10 and 11 via predicates of the form
(MAKE = ‘Honda’) AND (MODEL = ‘Accord’)
AND (CITY = ‘Toronto’) AND (COUNTRY3 =
‘Canada’). Figure 10 shows the improvement in
workload performance after statistics have been generated
by ASC. Query-group A was executed using default
statistics, whereas query-group B was able to take
advantage of detailed distribution statistics on the
individual columns. Note that whereas most queries
experience a performance benefit, query 10 experiences a
major regression. The reason behind this regression is that
query 10 contains several predicates that reference
correlated columns.

Figure 11 shows query performance after inserting
further accidents for Canada into the database. Note that
the results in Figure 10 and Figure 11 are not comparable
because the queries used to obtain Figure 11 are executed
against a larger data set.

Query-group C in Figure 11 uses the outdated
statistics collected prior to the insertions. Query-group D
uses updated statistics, but with no changes to the
previous statistics configuration. Query-group E uses

statistics that are both updated and reconfigured. The
correlations that caused the regression for query 10 in
Figure 10 are detected when the QFA is executed at Step
E, appropriate column-group statistics are collected, and
the performance of query 10 improves dramatically. The
performance improvements displayed in Figure 11 for
queries 10 and 11 illustrate the strength of combining the
UDI-driven and the QF-driven approaches: the orders-of-
magnitude speedup of query 10 results primarily from the
collection of column-group statistics by the QFA, whereas
query 11 benefits mostly from the updating of single-
column distribution statistics triggered by the execution of
the AA at Step D.

Overall, the case study demonstrates the effectiveness
of the autonomic technology in DB2 UDB. The use of
ASC resulted in orders-of-magnitude speedups without
requiring any intervention by a DBA. Even though
autonomic features do not come for free, the overhead of
ASC is negligible. In our case study, the use of ASC
increased query execution times by 1-2%, primarily
because of monitoring overhead. As the analyzers are
executed during off-peak times in throttled background
processes, their overhead did not really impact the
operational DBMS. For example, at a time when the
DBMS had previously processed 20,000 queries, the QFA

17
.9

26
.7

13
.3

12
.4

4.
5 4.
8

14
.3

12
.9

12
.5

21
.8 22
.4

23
.9

10
.4

8.
9 10

.2

9.
5

8.
9

15
.2

1.
4

0.
9

1.
2

0

25

50

1 2 3 4 5 6 7 8 9 10 11
Query

R
es

po
ns

e
Ti

m
e (A) Initial Load

(B) After ASC (AA only)

>100

Figure 10: Performance after Loading

67
.2

76
.5

93
.2

23
.9

2.
2 2.
9

14
.1 17

.2

16
.6

13
6.

4

70
.0

92
.5

25
.0

18
.3

13
0.

5

20
.4

58
.3

71
.3

86
.2

22
.7

2.
2

2.
6

13
.5 17

.1

14
.8

13
.1 18

.1

14
.4 19

.3

58
.8

2.
7

2.
0

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11
Query

R
es

po
ne

 T
im

e

(C) After inserting Accidents for Canada

(D) After ASC (AA only)

(E) After ASC (QFA only)

>900

Figure 11: Performance after Inserting Additional
Accident Records

1167

required less than a minute to analyze the QFW and
recommend statistics. Both the performance benefit and
the ease of use of this autonomic feature thus easily
justify this overhead.

7. Related Work
There have been five major approaches toward
automating statistics maintenance in database systems:
UDI-driven change detection, static query-workload
analysis, QF-driven maintenance, mining-type approach-
es, and piggybacking.

Several industrial products have delivered statistics-
refresh automation features based on detection of UDI
operations. These include DB2 UDB for the iSeries™
server [IBM02], Microsoft® SQL Server [MICR04], and
Oracle 10g [ATLB03]. These products essentially
automate statistics refresh on all tables where the
percentage of UDI operations exceeds a threshold. Our
approach provides three major extensions to this
technology. First, we combine UDI measurement with a
histogram analysis to reduce maintenance overhead.
Secondly, we combine the UDI-driven process with a QF-
driven process to provide a solution that is at once both
proactive, preparing the system for unforeseen queries,
and reactive to problems with the current system
workload. Finally, we provide a prioritization scheme to
rank tables so that, within a reasonable time interval,
multiple tables can have their statistics refreshed, and the
maintenance effort is concentrated on the most important
tables.

Static query-workload analysis is based solely on the
form of the queries and does not exploit run-time
feedback. Primary examples of this approach are given by
the SQL Server technique described in Chaudhuri and
Narasayya [CN01] and the work of Bruno and Chaudhuri
on SITS [BC02]. Both of these techniques analyze the
query workload in order to select a set of statistics to
maintain, such as multidimensional histograms on base
data or query expressions. In contrast, our approach
exploits run-time feedback and focuses on very simple
statistics that are quick and easy to collect, maintain, and
exploit. Although our statistics are relatively simple, we
can effectively detect and model correlations between
columns.

Use of QF-driven techniques in DB2 UDB was
originally described in [SLMK01]. The proposed
approach compares estimated and actual cardinalities to
create adjustment factors that can be applied in the future
to improve selectivity estimates. Our current work builds
on these ideas by (1) adding the QFW mechanism for
aggregating and prioritizing the feedback information, (2)
adding the QF-driven methods for modifying the
RUNSTATS profiles and recommending tables for
processing, thereby improving selectivity estimates in a
manner that does not require major modifications to
existing query optimizers, and (3) integrating the QF-

driven methods with a UDI-driven approach. Other QF-
driven methods include the work in [AC99] and [BCG01],
where query feedback is used to incrementally build a
multidimensional histogram that can be used to estimate
the selectivity of conjunctive predicates. Unlike the
current work, these algorithms do not discover correlation
between columns; the set of columns over which to build
the histogram must be specified a priori.

Mining-type approaches attempt to discover correlated
columns by systematically enumerating sets of potentially
correlated columns and statistically analyzing the data.
These techniques do not take into account the amount of
change activity on the tables, and so are even more
proactive than UDI-driven techniques. The CORDS
system described in [IMHB04] exemplifies this approach.
To make the detection efficient and scalable, CORDS
applies candidate-pruning techniques together with
random sampling. CORD can detect correlations between
columns in the same or in different tables. Other proposed
mining algorithms build sophisticated data synopses such
as “probabilistic relational models,” Markov-network-
based histogram models, and Bayesian network models,
which are then used to improve selectivity estimates.
These latter techniques, as they currently stand, do not
appear to scale well to very large databases, however,
which limits their potential use in commercial systems;
see [IMHB04] for a more detailed discussion. Lim et al.
[LWV03] propose a QF-driven variant of the synopsis
approach, called SASH, but this technique also suffers
from scalability problems. We note that mining-type
techniques such as CORDS (as well as static query-
workload analysis) can potentially be used in conjunction
with the methods described in the current paper.

Piggybacking was proposed as a technique for
automated statistics collection by Zhu et al. [ZDS+98].
The idea is to collect statistics based on observing the data
that is scanned during normal DML processing.
Piggybacking avoids the asynchronous background
refresh of table data statistics used by DB2 UDB for
iSeries, DB2 UDB, Oracle 10g, and SQL Server.
However, this technique suffers from a serious drawback.
Although the overhead for any one SQL statement may be
small, the cumulative overhead can be significant, and
this adverse impact on query processing is present at all
times. Our asynchronous approach to statistics refresh
avoids these problems.

8. Conclusions
Our novel methodology for automating the collection of
database statistics removes from the DBA the burden of
manual statistics maintenance. The ASC learns which
statistics are needed for good query performance and
collects these statistics in background mode and at
appropriate times, without requiring any DBA
intervention. The two autonomic processes that comprise
the ASC subsystem monitor UDI and query activity to

1168

determine which statistics to collect and when to collect
them, automatically determining the number of frequent
values to maintain for each column and the appropriate set
of column-group statistics to store in the system catalog.
Statistics collection takes place as a throttled background
process, ensuring minimal impact on mission-critical
queries.

ASC is implemented in DB2 UDB v8.2. Our case
study using the ACCIDENTS database has shown ASC to
be effective in improving query performance over time, in
some cases by orders of magnitude.

In future work, we plan to enhance QFA to also
recommend the number of quantiles to maintain for a
column, and perhaps to recommend more sophisticated
column-group statistics such as limited bivariate
histogram information. We are also exploring extensions
of our techniques to column groups of order 3 and higher.
We are also investigating approaches to directly use the
query feedback to alter statistics as opposed to triggering
RUNSTATS. Moreover, we are looking at ways of
enhancing the UDI-driven and QF-driven techniques with
mining-type methods such as CORDS [IMHB04]. A
further interesting enhancement of autonomic function
would be to automatically determine the maintenance
intervals, perhaps by monitoring the number of critical
tables in the system. Autonomic techniques for allocating
and de-allocating CPU and disk resources would further
enhance the technology described in this paper.

References
[AC99] A. Aboulnaga and S. Chaudhuri. Self-tuning

histograms: Building histograms without looking at data.
Proc. 1999 ACM SIGMOD, 181-192, June, 1999.

[ATLB03] M. Ault, M. Tumma, D. Liu, D. Burleson. Oracle
Database 10g New Features: Oracle10g Reference for
Advanced Tuning and Administration. Rampant TechPress,
2003.

[BCG01] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a
multidimensional workload-aware histogram. Proc. 2001
ACM SIGMOD, 211-222, June 2001.

[BC02] N.Bruno, S. Chaudhuri. Exploiting statistics on query
expressions for optimization. Proc. 2002 ACM SIGMOD,
263-274, June, 2002.

[CN01] S. Chaudhuri, V. Narasayya. Automating statistics
management for query optimizers. IEEE Trans. Knowl. Data
Engrg., 13(1), 7-20, 2001.

 [IBM02] DB2 Universal Database for iSeries - Database
Performance and Query Optimization. IBM Corp., 2002.

[IBM04] DB2 v8.2 Performance Guide. IBM Corp., 2004.
[IMHB04] I. F. Ilyas, V. Markl, P. J. Haas, P. G. Brown, A.

Aboulnaga. CORDS: Automatic discovery of correlations
and soft functional dependencies. Proc. 2004 ACM
SIGMOD, June 2004. To appear.

[LLZ02] S. Lightstone, G. Lohman, D. Zilio. Toward
autonomic computing with DB2 Universal Database.
SIGMOD Record, 31(3), 2002.

[LSZ03] S. Lightstone, B. Schiefer, D. Zilio. Autonomic
computing for relational databases: the ten year vision. Proc.

IEEE Workshop Autonomic Computing Principles and
Architectures (AUCOPA '03), 2003.

 [LWV03] L. Lim, M. Wang, and J. S. Vitter. SASH: A self-
adaptive histogram set for dynamically changing

 workloads. Proc. 29th VLDB, 369-380, 2003.
 [MICR04] SQL Server 2000 Books Online v8.00.02.

Microsoft Corp., 2004.
 [PIHS96] V. Poosala, Y. Ioannidis, P. Haas, E. Shekita.

Improved histograms for selectivity estimation of range
predicates. Proc. 1996 ACM SIGMOD, 294-305, June 1996.

[PRH+03a] S. Parekh, K. Rose, J. Hellerstein , S. Lightstone,
M. Huras , V. Chang. Managing the Performance Impact of
Administrative Utilities. IBM Research Report RC22864,
IBM Corp., 2003

[PRH+03b] S. Parekh, K. Rose, J. Hellerstein, V. Chang, S.
Lightstone, M. Huras. A general approach to policy-based
management of the performance impact of administrative
utilities. Proc. 14th IFIP/IEEE Intl. Workshop Distributed
Systems: Operations and Management (DSOM ‘03), 20-22,
October, 2003.

 [SLMK01] M. Stillger, G. M. Lohman, V. Markl, M. Kandil.
LEO - DB2's LEarning Optimizer. Proc. 27th VLDB, 19-28,
2001.

[ZDS+98] Q. Zhu, B. Dunkel, N. Soparkar, S. Chen, B.
Schiefer, T. Lai. A piggyback method to collect statistics
for query optimization in database management systems.
Proc. 1998 Conf. Centre for Advanced Studies on
Collaborative Research (CASCON ’98), 25, 1998.

Trademarks

AIX, DB2, DB2 Universal Database, IBM, iSeries, and PowerPC 604

are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

Microsoft is a registered trademark of Microsoft Corporation in the

United States, other countries, or both.

Other company, product, and service names may be trademarks or

service marks of others.

Further Information

Further up-to-date information about DB2 and IBM Data Management

Solutions can be found at: http://www.software.ibm.com/data/

1169

