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Focus of this tutorial
� DB workload execution on a modern computer
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DBMS can run MUCH faster if they use 
new hardware efficiently
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Trends in processor performance
� Scaling # of transistors, innovative microarchitecture
� Higher performance, despite technological hurdles!

Processor speed doubles every 18 months
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Trends in Memory (DRAM) Performance
� Memory capacity increases exponentially
� DRAM Fabrication primarily targets density

� Speed increases linearly

Larger but not as much faster memories
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The Memory/Processor Speed Gap

Trip to memory = thousands of instructions!
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100G

New Hardware

� Caches trade off capacity for speed
� Exploit instruction/data locality
� Demand fetch/wait for data

[ADH99]:
� Running top 4 database systems
� At most 50% CPU utilization

But wait a minute…
Isn’t I/O the bottleneck??? MemoryMemory
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Modern storage managers

� Several decades work to hide I/O
� Asynchronous I/O + Prefetch & Postwrite
� Overlap I/O latency by useful computation

� Parallel data access
� Partition data on modern disk array [PAT88]

� Smart data placement / clustering
� Improve data locality
� Maximize parallelism
� Exploit hardware characteristics

…and larger main memories fit more data
� 1MB in the 80’s, 10GB today, TBs coming soon

DB storage mgrs efficiently hide I/O latencies
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Why should we (databasers) care?
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Database workloads under-utilize hardware
New bottleneck: Processor-memory delays
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Breaking the Memory Wall

Wish for a Database Architecture:
� that uses hardware intelligently
� that won’t fall apart when new computers arrive
� that will adapt to alternate configurations

Efforts from multiple research communities 
� Cache-conscious data placement and algorithms
� Instruction stream optimizations
� Novel database software architectures
� Novel hardware designs (covered briefly)
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Detailed Outline
� Introduction and Overview
� New Hardware

� Execution Pipelines
� Cache memories

� Where Does Time Go?
� Measuring Time (Tools and Benchmarks)
� Analyzing DBs: Experimental Results

� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing Alorithms
� Instruction Stream Optimizations
� Staged Database Systems

� Newer Hardware
� Hip and Trendy

� Query co-processing
� Databases on MEMStore

� Directions for Future Research
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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This Section’s Goals

� Understand how a program is executed
� How new hardware parallelizes execution
� What are the pitfalls

� Understand why database programs do not take 
advantage of microarchitectural advances

� Understand memory hierarchies
� How they work
� What are the parameters that affect program behavior
� Why they are important to database performance
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Outline

� Introduction and Overview
� New Hardware
� Execution Pipelines
� Cache memories

� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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Sequential Program Execution

Sequential Code

� Precedences: overspecifications
� Sufficient, NOT necessary for correctness

i1: xxxx

i2: xxxx

i3: xxxx

i1

i2

i3

Instruction-level Parallelism (ILP)

i1 i2 i3

� pipelining
� superscalar execution

Modern processors do both!
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fetch decode execute memory write

Pipelined Program Execution
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Pipeline Stalls (delays)
� Reason: dependencies between instructions 
� E.g.,  Inst1: r1 ← r2 + r3

Inst2: r4 ← r1 + r2

F D E M W
F D E M W

t0 t1 t2 t3 t4 t5
Inst1
Inst2

F D E M W

Read-after-write (RAW)

DB programs: frequent data dependencies

F D E M W
F D E M W

t0 t1 t2 t3 t4 t5
Inst1
Inst2 E Stall

F E MD Stall D

peak ILP = d

Peak instruction-per-cycle (IPC) = CPI = 1
Inst3
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Higher ILP: Superscalar Out-of-Order

F D E M W
t0 t1 t2 t3 t4 t5

Inst1…n

Peak instruction-per-cycle (IPC)=n (CPI=1/n)

F D E M W
F D E M W

Inst(n+1)…2n

Inst(2n+1)…3n

at most n

peak ILP = d*n

� Out-of-order (as opposed to “inorder”) execution:
� Shuffle execution of independent instructions
� Retire instruction results using a reorder buffer

DB: 1.5x faster than inorder [KPH98,RGA98]
Limited ILP opportunity
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Even Higher ILP: Branch Prediction
� Which instruction block to fetch?
� Evaluating a branch condition causes pipeline stall

C?
� IDEA: Speculate branch while 

evaluating C!
� Record branch history in a buffer, 

predict A or B
9If correct, saved a (long) delay!
0If incorrect, misprediction penalty

=Flush pipeline, fetch correct 
instruction stream

� Excellent predictors (97% accuracy!)
� Mispredictions costlier in OOO

� 1 lost cycle = >1 missed instructions!
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if C goto B

A: xxxx
xxxx
xxxx
xxxx

B: xxxx
xxxx
xxxx
xxxx
xxxx
xxxxDB programs: long code paths => mispredictions
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Outline

� Introduction and Overview
� New Hardware
� Execution Pipelines
� Cache memories

� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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Larger

Faster

Memory Hierarchy
� Make common case fast
� common: temporal & spatial locality
� fast: smaller, more expensive memory

� Keep recently accessed blocks (temporal locality)
� Group data into blocks (spatial locality)

Registers

Caches

Memory

Disks
DB programs: >50% load/store instructions
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Cache Contents

� Keep recently accessed block in “cache line”

address state data

� On memory read
if incoming address = a stored address tag then 
� HIT: return data

else 
� MISS: choose & displace a line in use
� fetch new (referenced) block from memory into line
� return data

Important parameters:
cache size, cache line size, cache associativity
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Cache Associativity
� means # of lines a block can be in (set size)
� Replacement: LRU or random, within set

Fully-associative
a block goes in 

any frame

Direct-mapped
a block goes in 

exactly one 
frame

Set-associative
a block goes in 
any frame in 

exactly one set

0
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Line                        Set/Line                       Set

lower associativity ⇒ faster lookup
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Miss Classification (3+1 C’s)

� compulsory (cold)
� “cold miss” on first access to a block

— defined as: miss in infinite cache

� capacity 
� misses occur because cache not large enough

— defined as: miss in fully-associative cache

� conflict
� misses occur because of restrictive mapping strategy
� only in set-associative or direct-mapped cache

— defined as: not attributable to compulsory or capacity

� coherence
� misses occur because of sharing among multiprocessors

Cold misses are unavoidable
Capacity, conflict, and coherence misses can be reduced
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Lookups in Memory Hierarchy

references
missesratemiss

#
# =EXECUTION PIPELINE

MAIN MEMORY

L1 I-CACHE L1 D-CACHE

L2 CACHE

Trips to memory are most expensive

$$$

� L1: Split, 16-64K each.
As fast as processor (1 cycle)

� L2: Unified, 512K-8M
Order of magnitude slower than L1

� Memory: Unified, 512M-8GB
~400 cycles (Pentium4)

(there may be more cache levels)



13

@Carnegie Mellon
Databases

25©2004 Anastassia Ailamaki

Miss penalty

� L1D: low miss penalty, if L2 hit 
(partly overlapped with OOO 
execution)

enalty)avg(miss pmiss rate*ttavg hitaccess +=)(

EXECUTION PIPELINE

MAIN MEMORY

L1 I-CACHE L1 D-CACHE

L2 CACHE

DB: long code paths, large data footprints

$$$
� L2: High penalty (trip to memory)

� means the time to fetch and deliver block

� L1I: In critical execution path.
Cannot be overlapped with OOO 
execution.

� Modern caches: non-blocking
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Typical processor microarchitecture

I-Unit E-Unit

L1 I-Cache L1 D-Cache

L2 Cache (SRAM on-chip)

D-TLBI-TLB

Regs

Main Memory (DRAM)

Processor

L3 Cache (SRAM off-chip)

Will assume a 2-level cache in this talk

TLB: Translation Lookaside Buffer 
(page table cache)
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Summary: New Hardware

� Fundamental goal in processor design: max ILP
� Pipelined, superscalar, speculative execution
� Out-of-order execution
� Non-blocking caches
� Dependencies in instruction stream lower ILP

� Deep memory hierarchies
� Caches important for database performance
� Level 1 instruction cache in critical execution path
� Trips to memory most expensive

� DB workloads on new hardware
� Too many load/store instructions
� Tight dependencies in instruction stream
� Algorithms not optimized for cache hierarchies
� Long code paths
� Large instruction and data footprints
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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This Section’s Goals

� Hardware takes time: how do we measure time?
� Understand how to efficiently analyze 

microarchitectural behavior of database workloads
� Should we use simulators? When? Why?
� How do we use processor counters?
� Which tools are available for analysis?
� Which database systems/benchmarks to use?

� Survey experimental results on workload 
characterization
� Discover what matters for database performance
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Measuring Time (Tools and Benchmarks)
� Analyzing DBs: Experimental Results

� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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Simulator vs. Real Machine
Real machine

� Limited to available 
hardware counters/events

� Limited to (real) hardware 
configurations 

� Fast (real-life) execution
� Enables testing real: large & 

more realistic workloads
� Sometimes not repeatable

� Tool: performance counters

Real-machine experiments to locate problems
Simulation to evaluate solutions

Simulator
� Can measure any event

� Vary hardware configurations

� (Too) Slow execution
� Often forces use of scaled-

down/simplified workloads
� Always repeatable

� Virtutech Simics, SimOS, 
SimpleScalar, etc.
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Hardware Performance Counters

� What are they?
� Special purpose registers that keep track of programmable events
� Non-intrusive counts “accurately” measure processor events
� Software API’s handle event programming/overflow
� GUI interfaces built on top of API’s to provide higher-level analysis

� What can they count?
� Instructions, branch mispredictions, cache misses, etc.
� No standard set exists

� Issues that may complicate life
� Provides only hard counts, analysis must be done by user or tools
� Made specifically for each processor

� even processor families may have different interfaces
� Vendors don’t like to support because is not profit contributor
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Evaluating Behavior using HW Counters
� Stall time (cycle) counters
� very useful for time breakdowns
� (e.g., instruction-related stall time)

� Event counters
� useful to compute ratios
� (e.g., # misses in L1-Data cache)

� Need to understand counters before using them
� Often not easy from documentation
� Best way: microbenchmark (run programs with pre-

computed events)
� E.g., strided accesses to an array
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Example: Intel PPRO/PIII

RESOURCE_STALLSResource stalls
PARTIAL_RAT_STALLSDependence stalls

IFU_IFETCH_MISSL1 Instruction misses
ITLB_MISSTLB misses

BR_MISS_PRED_RETIREDBranch mispredictions
BR_INST_DECODEDBranches

IFU_MEM_STALLInstruction-related stalls
L2_LINES_INL2 Misses

DCU_LINES_INL1 Data (L1D) misses
DATA_MEM_REFSL1 Data (L1D) accesses

INST_RETIREDInstructions
CPU_CLK_UNHALTEDCycles

“time”

Lots more detail, measurable events, statistics
Often >1 ways to measure the same thing
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Producing time breakdowns

� Determine benchmark/methodology (more later)
� Devise formulae to derive useful statistics
� Determine (and test!) software
� E.g., Intel Vtune (GUI, sampling), or emon
� Publicly available & universal (e.g., PAPI [DMM04])

� Determine time components T1….Tn
� Determine how to measure each using the counters
� Compute execution time as the sum

� Verify model correctness
� Measure execution time (in #cycles)
� Ensure measured time = computed time (or almost)
� Validate computations using redundant formulae
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Computation

Memory

Branch
Mispredictions

Hardware
Resources

Overlap opportunity:
Load A
D=B+C
Load E

Execution Time = Computation + StallsExecution Time = Computation + Stalls - Overlap

Execution Time Breakdown Formula

Stalls

[ADH99]
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Computation

Memory

Branch
Mispredictions

Hardware
Resources

Memory Stalls = Σn(stalls at cache level n)

Where Does Time Go (memory)?

Instruction lookup 
missed in L1I, hit in L2L1I

Data lookup missed in 
L1D, hit in L2L1D

Instruction or data lookup 
missed in L1, missed in 
L2, hit in memory

L2

[ADH99]
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What to measure?
� Decision Support System (DSS:TPC-H)
� Complex queries, low-concurrency
� Read-only (with rare batch updates)
� Sequential access dominates
� Repeatable (unit of work = query)

� On-Line Transaction Processing (OLTP:TPCC, ODB)
� Transactions with simple queries, high-concurrency
� Update-intensive
� Random access frequent
� Not repeatable (unit of work = 5s of execution after rampup)

Often too complex to provide useful insight
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Microbenchmarks

� What matters is basic execution loops
� Isolate three basic operations:
� Sequential scan (no index)
� Random access on records (non-clustered index)
� Join (access on two tables)

� Vary parameters:
� selectivity, projectivity, # of attributes in predicate
� join algorithm, isolate phases
� table size, record size, # of fields, type of fields

� Determine behavior and trends
� Microbenchmarks can efficiently mimic TPC microarchitectural

behavior! 
� Widely used to analyze query execution

Excellent for microarchitectural analysis

[KPH98,ADH99,KP00,SAF04]
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Shore: YES!

On which DBMS to measure?
� Commercial DBMS are most realistic
� Difficult to setup, may need help from companies

� Prototypes can evaluate techniques
� Shore [ADH01] (for PAX), PostgreSQL[TLZ97] (eval)

� Tricky: similar behavior to commercial DBMS? 

Execution time breakdown
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Memory stall time breakdown 

0%

20%

40%

60%

80%

100%

A B C D Shore
DBMS

M
em

or
y 

st
al

l t
im

e 
(%

)

L1  Data L2 Data L1 Instruction L2 Instruction

[ADH02]



21

@Carnegie Mellon
Databases

41©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Measuring Time (Tools and Benchmarks)
� Analyzing DBs: Experimental Results

� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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DB Execution Time Breakdown
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[ADH99,BGB98,BGN00,KPH98]

� PII Xeon
� NT 4.0
� Four DBMS: 

A, B, C, D

At least 50% cycles on stalls      
Memory is major bottleneck

Branch mispredictions increase cache misses!
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Join (no index)
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clustered index scan
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� PII Xeon running NT 4.0, used performance counters
� Four commercial Database Systems: A, B, C, D

DSS/OLTP basics: Cache Behavior

non-clustered index
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[ADH99,ADH01]

Bottlenecks: data in L2, instructions in L1
Random access (OLTP): L1I-bound

@Carnegie Mellon
Databases

44©2004 Anastassia Ailamaki

Why Not Increase L1I Size?

� L1I: in critical execution path
� slower L1I: slower clock

�Trends:
L1-I cache

Max on-chip
L2/L3 cache

‘96 ‘00 ‘04‘98 ‘02
Year Introduced

10 KB

100 KB

1 MB

10 MB

C
ac

he
 s

iz
e

� Problem: a larger cache is typically a slower cache
� Not a big problem for L2

L1I size is stable
L2 size increase: Effect on performance?

[HA04]
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Increasing L2 Cache Size
� DSS: Performance improves as L2 cache grows
� Not as clear a win for OLTP on multiprocessors

� Reduce cache size ⇒ more capacity/conflict misses
� Increase cache size ⇒ more coherence misses
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Larger L2: trade-off for OLTP

[BGB98,KPH98]
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Summary: Where Does Time Go?
� Goal: discover bottlenecks
� Hardware performance counters ⇒ time breakdown
� Tools available for access and analysis (+simulators)
� Run commercial DBMS and equivalent prototypes
� Microbenchmarks offer valuable insight

� Database workloads: more than 50% stalls
� Mostly due to memory delays
� Cannot always reduce stalls by increasing cache size

� Crucial bottlenecks
� Data accesses to L2 cache (esp. for DSS)
� Instruction accesses to L1 cache (esp. for OLTP)
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Memory

BBranch
Mispredictions

RHardware
Resources

D-cache D

I-cache I

DBMS

DBMS + Compiler

Compiler + Hardware

Hardware

How to Address Bottlenecks

Next: Optimizing cache accesses
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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This Section’s Goals

� Survey techniques to improve locality
� Relational data
� Access methods

� Survey new query processing algorithms
� Present a new database system architecture
� Briefly explain Instruction Stream Optimizations 

� Show how much good understanding of the 
platform can achieve
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing
� Instruction Stream Optimizations
� Staged Database Systems

� Newer Hardware
� Hip and Trendy
� Directions for Future Research
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Current Database Storage Managers

� Same layout on disk/memory
� Multi-level storage hierarchy
� different devices at each level
� different “optimal” access on 

each device
� Variable workloads and 

access patterns
� OLTP: Full-record access
� DSS: Partial-record access
� no optimal “universal” layout

non-volatile storage

main 
memory

CPU 
cache

Goal: Reduce data traffic in memory hierarchy
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PAGE HEADER 1237RH1

30Jane RH2 4322 John

45

•••

RH4

7658 Susan 52

•

RH3 Jim 201563

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameSSNRID

R

� NSM (n-ary Storage Model, or Slotted Pages)

Records are stored sequentially
Attributes of a record are stored together

“Classic” Data Layout on Disk Pages
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NSM in Memory Hierarchy

DISK

PAGE HEADER

7658 Susan 52

1237 Jane

Jim 20

4322 John 4530 1563

CPU CACHEMAIN MEMORY

PAGE HEADER

7658 Susan 52

1237 Jane

Jim 20

4322 John 4530 1563

4322 Jo30 Block 1

hn 45 1563 Block 2
7658Jim 20 Block 3

Susan 52 Block 4

� Optimized for full-record access
� Slow partial-record access

� Wastes I/O bandwidth (fixed page layout)
� Low spatial locality at CPU cache

Query accesses all attributes (full-record access)
Query evaluates attribute “age” (partial-record access)

BEST select name
from R
where age > 50
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Decomposition Storage Model (DSM)

37Dan8791

43Leon2534

52Susan7658

20Jim1563

45John4322

30Jane1237

AgeNameEID

Partition original table into n 1-attribute sub-tables

[CK85]
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12371PAGE HEADER

4322 1563 76583 42

John Jim Suzan

Jane1PAGE HEADER

3 42

30

45 20 52

1PAGE HEADER

3 4

2

376

435

524

203

452

301

AgeRID

R387916

25345

76584

15633

43222

12371

EIDRID

R1

Dan6

Leon5

Suzan4

Jim3

John2

Jane1

NameRID

R2 8KB

8KB

8KB

Partition original table into n 1-attribute sub-tables
Each sub-table stored separately in NSM pages

Decomposition Storage Model (DSM)
[CK85]
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DSM in Memory Hierarchy

John Jim Suzan

Jane1PAGE HEADER

3 4

2

DISK

301PAGE HEADER 2 45

20 523 4 5 43

12371PAGE HEADER

4322 1563 76583 42

MAIN MEMORY

301PAGE HEADER 2 45

20 523 4 5 43
CPU CACHE

block 1301 2 45

block 220 523 4 5

John Jim Suzan

Jane1PAGE HEADER

3 4

2

12371PAGE HEADER

4322 1563 76583 42

Query accesses all attributes (full-record access)
Query accesses attribute “age” (partial-record access)

CostlyCostly

� Optimized for partial-record access
� Slow full-record access

� Reconstructing full record may incur random I/O

BEST

select name
from R
where age > 50
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Repairing NSM’s cache performance

We need a data placement that…
� Eliminates unnecessary memory accesses
� Improves inter-record locality
� Keeps a record’s fields together
� Does not affect NSM’s I/O performance

and, most importantly, is…

low-implementation-cost, high-impact
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1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

•••

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

• •••

NSM PAGE PAX PAGE

Idea: Partition data within page for spatial locality

Partition Attributes Across (PAX)

mini
page

[ADH01]
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PAX in Memory Hierarchy

1563
PAGE HEADER 1237 4322

7658

Jane John Jim Susan

30 45 2052

DISK

1563
PAGE HEADER 1237 4322

7658

Jane John Jim Susan

30 45 2052

MAIN MEMORY CPU CACHE

block 152 45 2030

� Optimizes CPU cache-to-memory communication
� Retains NSM’s I/O (page contents do not change)

cheap

Partial-record access in memory
Full-record access on diskBEST

BEST select name
from R
where age > 50

[ADH01]
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PAX Performance Results (Shore)
Cache data stalls
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Hardware
Resource

Branch
Mispredict

Memory

Computation
Query:
select avg (ai) 
from R   
where aj >= Lo 

and aj <= Hi

PII Xeon 
Windows NT4 
16KB L1-I&D, 
512 KB L2, 
512 MB RAM

� Validation with microbenchmarks:
� 70% less data stall time (only compulsory misses left)
� Better use of processor’s superscalar capability

� TPC-H performance: 15%-2x speedup in queries
� Experiments with/without I/O, on three different processors

[ADH01]

PAX eliminates unnecessary trips to memory
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Dynamic PAX: Data Morphing

� PAX random access: more cache misses in record
� Store attributes accessed together contiguously
� Dynamic partition updates with changing workloads
� Optimize total cost based on cache misses
� Partition algorithms: naïve & hill-climbing algorithms

� Fewer cache misses
� Better projectivity and scalability for index scan queries
� Up to 45% faster than NSM & 25% faster than PAX

� Same I/O performance as PAX and NSM
� Future work: how to handle conflicts?

[HP03]
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Alternatively: Repair DSM’s I/O behavior

� We like DSM for partial record access
� We like NSM for full-record access
Solution: Fractured Mirrors [RDS02]

1. Get data placement right

Sparse 
B-Tree on ID

4 A4 A51 A1 A2  A3

3

2. Faster record reconstruction
Lineitem (TPCH) 1GB

0
20
40
60
80

100
120
140
160
180

1 2 3 4 6 8 10 12 14
No. of Attributes

Se
co

nd
s

NSM
Page-at-a-time
Chunk-Merge

Instead of record- or page-at-a-time…
Chunk-based merge algorithm!

1. Read in segments of M pages ( a “chunk”)
2. Merge segments in memory
3. Requires (N*K)/M disk seeks
4. For a memory budget of B pages, each 

partition gets B/N pages in a chunk
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Fractured Mirrors
3. Smart mirroring

� Achieves 2-3x speedups on TPC-H
� Needs 2 copies of the database
� Future work:
� A new optimizer
� Smart buffer pool management
� Updates

Disk 1 Disk 2

NSM Copy DSM Copy

Disk 1 Disk 2

NSM Copy DSM Copy
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Summary (no replication)

PAXPAX

fullfull--record record 
accessaccess

MemoryMemory--disk Performancedisk PerformanceCacheCache--memory Performancememory Performance

DSMDSM

NSMNSM

partial record partial record 
accessaccess

partial record partial record 
accessaccess

fullfull--record record 
accessaccess

Page layoutPage layout

☺☺ // ☺☺ //

// ☺☺ // ☺☺
☺☺ ☺☺ ☺☺ //

Need new placement method: 
� Efficient full- and partial-record accesses
� Maximize utilization at all levels of memory hierarchy

Difficult!!! Different devices/access methods
Different workloads on the same database
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Clotho

Operators

Main-memory 
Manager

Lachesis
Storage Manager
Lachesis

Storage Manager

Atropos
LV Manager
Atropos

LV Manager

disk array

disk 0 disk 1

Buffer
pool

page hdr

The Fates Storage Manager
� IDEA: Decouple layout!

non-volatile storage

main 
memory

CPU 
cache

[SAG03,SSS04,SSS04a]

data directly placed 
via scatter/gather I/O

Memory does not need to store full NSM pages
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Clotho: memory stores PAX minipages
DISK select EID from R where AGE>30

1563

PAGE HEADER

1237 4322 7658

30 45 2052

Jane John Jim Susan

MAIN MEMORY
2534

PAGE HEADER

2865 1015 8791

Tom Jerry Jean Kate

31 54 3325

PAGE HEADER (EID &AGE)

15631237 4322 7658

30 52 45 20

25342865 1015 8791

31 25 54 33

In-memory “skeleton”
(Tailored to query)

On-disk page:
� PAX-like layout
� Block boundary aligned

� Just the data you need
� Query-specific pages!
� Great cache performance

� Decoupled layout
� Fits different hardware

� Low reconstruction cost
� Done at I/O level
� Guaranteed by Lachesis 

and Atropos [SSS04]

[SSS04]

New buffer pool manager handles sharing
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CSM: best-case performance of DSM and NSM
Table scan time
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NSM
DSM
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Table: a1 … a15 (float)

Query: select a1, …
from R     
where a1 < Hi

[SSS04]

TPC-H: Outperform DSM by 20% to 2x
TPC-C: Comparable to NSM (6% lower throughput)

CSMCSM

fullfull--record record 
accessaccess

MemoryMemory--disk Performancedisk PerformanceCacheCache--memory Performancememory Performance

partial record partial record 
accessaccess

partial record partial record 
accessaccess

fullfull--record record 
accessaccess

Page layoutPage layout

☺☺ ☺☺ ☺☺ ☺☺
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Data Placement: Summary

� Smart data placement increases spatial locality
� Research targets table (relation) data
� Goal: Reduce number of non-cold cache misses

� Techniques focus grouping attributes into cache lines 
for quick access

� PAX, Data morphing: Cache optimization techniques
� Fractured Mirrors: Cache-and-disk optimization
� Fates DB Storage Manager: Independent data layout 

support across the entire memory hierarchy
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Main-Memory Tree Indexes

� T Trees: proposed in mid-80s for MMDBs [LC86]
� Aim: balance space overhead with searching time 
� Uniform memory access assumption (no caches)

� Main-memory B+ Trees: better cache performance 
[RR99]

� Node width = cache line size (32-128b)
� Minimize number of 

cache misses for search
� Much higher than traditional

disk-based B-Trees
� So now trees are too deep

How to make trees shallower?
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Reducing Pointers for Larger Fanout

� Cache Sensitive B+ Trees (CSB+ Trees)
� Layout child nodes contiguously
� Eliminate all but one child pointers
� Double fanout of nonleaf node

B+ Trees CSB+ Trees
K1 K2

K3 K4 K5 K6 K7 K8

K1 K3K2 K4

K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4

35% faster tree lookups
Update performance is 30% worse (splits)

[RR00]
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What do we do with cold misses?

� Answer: hide latencies using prefetching
� Prefetching enabled by
� Non-blocking cache technology
� Prefetch assembly instructions
� SGI R10000, Alpha 21264, Intel Pentium4

Main MemoryCPU L2/L3
CacheL1

Cache

pref 0(r2)
pref 4(r7)
pref 0(r3)
pref 8(r9)

Prefetching hides cold cache miss latency
Efficiently used in pointer-chasing lookups!
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Prefetching B+ Trees
� (pB+ Trees) Idea: Larger nodes
� Node size = multiple cache lines (e.g. 8 lines)
� Later corroborated by [HP03a]

� Prefetch all lines of a node before searching it

� Cost to access a node only increases slightly
� Much shallower trees, no changes required

Time

Cache miss

[CGM01]

>2x better search AND update performance
Approach complementary to CSB+ Trees!
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Prefetching B+ Trees

� Goal: faster range scan

� Leaf parent nodes contain addresses of all leaves
� Link leaf parent nodes together
� Use this structure for prefetching leaf nodes

Leaf parent nodes

pB+ Trees: 8X speedup over B+ Trees

[CGM01]
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Fractal Prefetching B+ Trees
� What if B+-tree does not fit in memory?
� (fpB+ Trees) Idea: Combine memory & disk trees

� Embed cache-optimized trees in disk tree nodes
� fpB+ Trees optimize both cache AND disk
� Key compression to increase fanout [BMR01]
Compared to disk-based B+ Trees, 80% faster in-
memory searches with similar disk performance

[CGM02]
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Bulk lookups: Buffer Index Accesses
� Optimize data cache performance
� Similar technique in [PMH02]

� Idea: increase temporal locality by delaying 
(buffering) node probes until a group is formed

� Example: NLJ probe stream: (r1, 10) (r2, 80) (r3, 15)

r110
keyRID

(r1, 10)

buffer

root

B C

D E

(r1,10) is buffered
before accessing B

r110
keyRID

(r2, 80)

r2 80

B C

(r2,80) is buffered
before accessing C

r110
keyRID

(r3, 15)

r2 80

B C
r315

B is accessed,
buffer entries are

divided among children

[ZR03a]

3x speedup with enough concurrency
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Access Methods: Summary

� Optimize B+ Tree pointer-chasing cache behavior
� Reduce node size to few cache lines
� Reduce pointers for larger fanout (CSB+)
� “Next” pointers to lowest non-leaf level for easy prefetching (pB+)
� Simultaneously optimize cache and disk (fpB+)
� Bulk searches: Buffer index accesses

Additional work:
� Cache-oblivious B-Trees [BDF00]
� Optimal bound in number of memory transfers
� Regardless of # of memory levels, block size, or level speed

� Survey of techniques for B-Tree cache performance [GL01]
� Existing heretofore-folkloric knowledge
� Key normalization/compression, alignment, separating keys/pointers

Lots more to be done in area – consider 
interference and scarce resources
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Query Processing Algorithms

Idea: Adapt query processing algorithms to caches
Related work includes:
� Improving data cache performance
� Sorting
� Join

� Improving instruction cache performance
� DSS applications
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Sorting

� In-memory sorting / generating runs
� AlphaSort

� Use quick sort rather than replacement selection
� Sequential vs. random access
� No cache misses after sub-arrays fit in cache 

� Sort (key-prefix, pointer) pairs rather than records
� 3x cpu speedup for the Datamation benchmark

L2
cache

L1

Quick Sort
Replacement-selection

[NBC94]
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Hash Join

� Random accesses to hash table
� Both when building AND when probing!!!

� Poor cache performance
� ≥ 73% of user time is CPU cache stalls  [CAG04]

Approaches to improving cache performance
� Cache partitioning – maximizes locality
� Prefetching – hides latencies

Build 
Relation

Probe 
Relation

Hash Table
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Reducing non-cold misses

� Idea: Cache partitioning (similar to I/O partitioning)
� Divide relations into cache-sized partitions
� Fit build partition and hash table into cache
� Avoid cache misses for hash table visits

1/3 fewer cache misses, 9.3% speedup
>50% misses due to partitioning overhead

Build Probe

cache

[SKN94]
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Hash Joins in Monet

� Monet main-memory database system [B02]
� Vertically partitioned tuples (DSM)

� Join two vertically partitioned relations
� Join two join-attribute arrays [BMK99,MBK00]
� Extract other fields for output relation [MBN04]

Build Probe

Output

[B02]
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Monet: Reducing Partition Cost
� Join two arrays of simple fields (8 byte tuples)
� Original cache partitioning is single pass
� TLB thrashing if # partitions > # TLB entries
� Cache thrashing if # partitions > # lines in cache

� Solution: multiple passes
� # partitions per pass is small
� Radix-cluster [BMK99,MBK00]
� Use different bits of hashed keys for

different passes
� E.g.  In figure, use 2 bits of hashed 

keys for each pass

� Plus CPU optimizations
� XOR instead of %
� Simple assignments instead of memcpy

2-pass partition
Up to 2.7X speedup on an Origin 2000

Results most significant for small tuples

[BMK99,
MBK00]
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Monet: Extracting Payload

� Two ways to extract payload:
� Pre-projection: copy fields during cache partitioning
� Post-projection: generate join index, then extract fields

� Monet: post-projection
� Radix-decluster algorithm for good cache performance

� Post-projection good for DSM
� Up to 2X speedup compared to pre-projection

� Post-projection is not recommended for NSM
� Copying fields during cache partitioning is better

[MBN04]

Paper presented in this conference!
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Optimizing non-DSM hash joins

foreach probe tuple
{

(0)compute bucket number;
(1)visit header;
(2)visit cell array;
(3)visit matching build tuple;

}

Hash
Bucket

Headers

Hash Cell 
(hash code, build tuple ptr)

Build
Partition

0
1
2
3 0
1
2
3

t
i
m
e

Cache 
miss 
latency

Idea: Exploit inter-tuple parallelism

[CAG04]

Simplified probing algorithm
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Group Prefetching

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

a group

foreach group of probe tuples {
foreach tuple in group {

(0)compute bucket number;
prefetch header;

}
foreach tuple in group {
(1)visit header;

prefetch cell array;
}
foreach tuple in group {
(2)visit cell array;

prefetch build tuple;
}
foreach tuple in group {
(3)visit matching build tuple;

}
}

[CAG04]
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Software Pipelining
Prologue;
for j=0 to N-4 do {

tuple j+3:
(0)compute bucket number;

prefetch header;
tuple j+2:
(1)visit header;

prefetch cell array;
tuple j+1:
(2)visit cell array;

prefetch build tuple;
tuple j:
(3)visit matching build tuple;

}
Epilogue;

prologue

epilogue

j

j+3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

[CAG04]
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Prefetching: Performance Results

� Techniques exhibit similar performance
� Group prefetching easier to implement
� Compared to cache partitioning:
� Cache partitioning costly when tuples are large (>20b)
� Prefetching about 50% faster than cache partitioning
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� 9X speedups over 
baseline at 1000 
cycles

� Absolute numbers 
do not change!

[CAG04]
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DSS: Reducing I-misses
� Demand-pull execution model: one tuple at a time
� ABABABABABABABABAB…
� If A + B > L1 instruction cache size
� Poor instruction cache utilization!

� Solution: multiple tuples at an operator
� ABBBBBAAAAABBBBB…

� Modify operators to support block of tuples [PMA01]
� Insert “buffer” operators between A and B [ZR04]
� “buffer” calls B multiple times
� Stores intermediate tuple pointers to serve A’s request
� No need to change original operators

A

B
Query Plan

12% speedup for simple TPC-H queries

[PMA01,ZR04]
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Concurrency Control
� Multiple CPUs share a tree
� Lock coupling: too much cost
� Latching a node means writing
� True even for readers !!!
� Coherence cache misses due to              

writes from different CPUs

� Solution: 
� Optimistic approach for readers
� Updaters still latch nodes
� Updaters also set node versions
� Readers check version to ensure correctness

Search throughput: 5x (=no locking case)
Update throughput: 4x

[CHK01]
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Query processing: summary

� Alphasort: use quicksort and key prefix-pointer
� Monet: MM-DBMS uses aggressive DSM
� Optimize partitioning with hierarchical radix-clustering
� Optimize post-projection with radix-declustering
� Many other optimizations

� Traditional hash joins: aggressive prefetching
� Efficiently hides data cache misses
� Robust performance with future long latencies

� DSS I-misses: group computation (new operator)
� B-tree concurrency control: reduce readers’ latching
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Instruction-Related Stalls

� 25-40% of execution time [KPH98, HA04]
� Recall importance of instruction cache: In the 

critical execution path!

EXECUTION PIPELINE

L1 I-CACHE L1 D-CACHE

L2 CACHE

Impossible to overlap I-cache delays
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� Goal: improve DSS I-cache performance
� Idea: Predict next function call using small cache

� Example: create_rec
always calls find_ , 
lock_ , update_ , and 
unlock_ page in same 
order

� Experiments: Shore on SimpleScalar Simulator
� Running Wisconsin Benchmark

Call graph prefetching for DB apps
[APD03]

Beneficial for predictable DSS streams
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� SIMD: Single – Instruction – Multiple – Data       
In modern CPUs, target multimedia apps

� Example: Pentium 4,                                        
128-bit SIMD register                                     
holds four 32-bit values

� Assume data stored columnwise as contiguous 
array of fixed-length numeric values (e.g., PAX)

� Scan example:

X3 X2 X1 X0

Y3 Y2 Y1 Y0

OP OP OP OP

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

if x[n] > 10
result[pos++] = x[n]

x[n+3] x[n+2] x[n+1] x[n]

10 10 10 10

> > > >

0 1 0 0

8 12 6 5

original scan code

SIMD 1st phase:
produce bitmap
vector with 4
comparison results
in parallel

[ZR02]DB operators using SIMD
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DB operators using SIMD
� Scan example (cont’d)

� Parallel comparisons, fewer branches ⇒ fewer mispredictions

0 1 0 0

SIMD 2nd phase:
if bit_vector == 0, continue
else copy all 4 results, increase pos when bit==1

keep this result

[ZR02]

Superlinear speedup to # of parallelism
Need to rewrite code to use SIMD

Aggregation operation (1M records w/ 20% selectivity)
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STEPS: Cache-Resident OLTP

� Targets instruction-cache performance for OLTP
� Exploits high transaction concurrency
� Synchronized Transactions through Explicit 

Processor Scheduling: Multiplex concurrent 
transactions to exploit common code paths

[HA04]

code 
fits in
I-cache

context-switch
point

CPU
00101
1001
00010
1101
110
10011
0110
00110

thread A

CPU executes code

CPU performs context-switch

00101
1001
00010
1101
110
10011
0110
00110

thread B

instruction
cache

capacity
window

CPU
00101
1001
00010
1101
110
10011
0110
00110

thread A

00101
1001
00010
1101
110
10011
0110
00110

thread B

before after

All capacity/conflict I-cache misses gone!
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� STEPS implementation runs full OLTP workloads 
(TPC-C)

� Groups threads per DB operator, then uses fast 
context-switch to reuse instructions in the cache

� Full-system TPC-C implementation:
� 65% fewer L1-I misses, 40% speedup

STEPS: Cache-Resident OLTP
[HA04]

STEPS minimizes L1-I cache misses 
without increasing cache size
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Context loaded multiple times for each query
No means to exploit overlapping work

Thread-based concurrency pitfalls

Q1
Q2
Q3

context-switch points TIME

CPU

: component loading time

Current

[HA03]
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Thread-based concurrency pitfalls

Q1
Q2
Q3

context-switch points TIME

CPU

: component loading time

Current

Q1
Q2
Q3

CPU

Desired

[HA03]

Context-switch at 
module boundary
Context-switch at 
module boundary

Load context once 
for all queries

Load context once 
for all queries

Load context once 
for all queries
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� Staged software design allows for
� Cohort scheduling of queries to amortize loading time
� Suspend at module boundaries to maintain context

� Break DBMS into stages
� Stages act as independent servers
� Queries exist in the form of “packets”

� Proposed query scheduling algorithms to address 
locality/wait time tradeoffs [HA02]

Staged Database Systems
[HA03]
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Staged Database Systems
[HA03]

Optimize instruction/data cache locality
Naturally enable multi-query processing

Highly scalable, fault-tolerant, trustworthy

IN
OUT

connect parser optimizer send
results

FSCAN

JOIN

SORT

AGGRISCAN

L1

L2

MEMORY

L1

L2

MEMORY

…
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Summary: Bridging the Gap

� Cache-aware data placement
� Eliminates unnecessary trips to memory
� Minimizes conflict/capacity misses
� Fates: decouple memory from storage layout

� What about compulsory (cold) misses?
� Can’t avoid, but can hide latency with prefetching
� Techniques for B-trees, hash joins

� Staged Database Systems: a scalable future
� Addressing instruction stalls
� DSS: Call Graph Prefetching, SIMD, group operator
� OLTP: STEPS, a promising direction for any platform
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Newer Hardware
� Hip and Trendy
� Directions for Future Research
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Current/Near-future Multiprocessors

Typical platforms:
1. Chips with multiple cores
2. Servers with multiple chips
3. Memory shared across

Memory access:
� Traverse multiple hierarchies
� Large non-uniform latencies

P
P

P
P

Mem

Multiprocessor Server

P
P

P
P
P

P
P

P

Mem
Mem

Programmer/Software must Hide/Tolerate Latency
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Chip Multi-Processors (CMP)

Highly variable memory latency
Speedup: OLTP 3x, DSS 2.3x on Piranha [BGM00]

Two cores

Shared L2

Example: IBM Power4, Power5
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Simultaneous Multi-Threading (SMT)

Speedup: OLTP 3x, DSS 0.5x (simulated) [LBE98]

� Implements threads in a superscalar processor
� Keeps hardware state for multiple threads
� E.g.: Intel Pentium 4 (SMT), IBM Power5 (SMT&CMP)

2 cores * 
2 threads
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Query co-processing
� Databases on MEMStore

� Directions for Future Research
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Oprimizing Spatial Operations

� Spatial operation is computation intensive
� Intersection, distance computation
� Number of vertices per object↑, cost↑

� Use graphics card to increase speed
� Idea: use color blending to detect intersection
� Draw each polygon with gray
� Intersected area is black because of color mixing effect
� Algorithms cleverly use hardware features

Intersection selection: up to 64% 
improvement using graphics card

[SAA03]

@Carnegie Mellon
Databases

112©2004 Anastassia Ailamaki

Fast Computation of DB Operations 
Using Graphics Processors

� Exploit graphics features for database operations
� Predicate, Boolean operations, Aggregates

� Examples:
� Predicate: attribute > constant
� Graphics: test a set of pixels against a reference value
� pixel = attribute value, reference value = constant

� Aggregations: COUNT
� Graphics: count number of pixels passing a test

� Good performance: e.g. over 2X improvement for 
predicate evaluations

[GLW04]

Promising! Peak performance of graphics 
processor increases 2.5-3 times a year
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Outline

� Introduction and Overview
� New Hardware
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� Directions for Future Research
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MEMStore (MEMS*-based storage)

� On-chip mechanical storage - using MEMS for media 
positioning

Read/write
tips

Read/write
tips

Recording
media (sled)
Recording

media (sled)

ActuatorsActuators

* microelectromechanical systems
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MEMStore (MEMS*-based storage)

� 60 - 200 GB capacity
� 4 – 40 GB portable

� 100 cm3 volume
� 10’s MB/s bandwidth
� < 10 ms latency
� 10 – 15 ms portable

� 2 - 10 GB capacity

� < 1 cm3 volume
� ~100 MB/s bandwidth
� < 1 ms latency

Many parallel
heads

Many parallel
heads

Single
read/write

head

Single
read/write

head

So how can MEMS help improve DB performance?

* microelectromechanical systems
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Two-dimensional database access
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Two-dimensional database access
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Peak performance along both dimensions
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Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research
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Future research directions

� Rethink Query Optimization – with increasing complexity, 
cost-based optimization not ideal

� Multiprocessors and really new modular software 
architectures to fit new computers
� Current research in DB workloads only scratches surface
� Optimize execution on multiple-core chips
� Exploit multithreaded processors

� Power-aware database systems 
� On embeded processors, laptops, etc.

� Automatic data placement and memory layer optimization –
one level should not need to know what others do
� Auto-everything

� Aggressive use of hybrid processors
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Useful Links

� Info on Intel Pentium4 Performance Counters: 
ftp://download.intel.com/design/Pentium4/manuals/25366814.pdf

� AMD hardware performance counters
http://www.amd.com/us-en/Processors/DevelopWithAMD/

� PAPI Performance Library
http://icl.cs.utk.edu/papi/

� Intel® VTune™ Performance Analyzers  
http://developer.intel.com/software/products/vtune/


