
Database Architectures
for New Hardware

a tutorial by
Anastassia Ailamaki

Database Group
Carnegie Mellon University

http://www.cs.cmu.edu/~natassa

@Carnegie Mellon
Databases

2©2004 Anastassia Ailamaki

Focus of this tutorial
� DB workload execution on a modern computer

Processor

0%

20%

40%

60%

80%

100%

Ideal seq.
scan

index
scan

DSS OLTP

ex
ec

ut
io

n
tim

e

BUSY IDLE

DBMS can run MUCH faster if they use
new hardware efficiently

@Carnegie Mellon
Databases

3©2004 Anastassia Ailamaki

Trends in processor performance
� Scaling # of transistors, innovative microarchitecture
� Higher performance, despite technological hurdles!

Processor speed doubles every 18 months

@Carnegie Mellon
Databases

4©2004 Anastassia Ailamaki

Trends in Memory (DRAM) Performance
� Memory capacity increases exponentially
� DRAM Fabrication primarily targets density

� Speed increases linearly

Larger but not as much faster memories

16MB
4MB

1MB
64KB 256KB

64MB

4GB

512MB

0.1

1

10

100

1000

10000

1980 1983 1986 1989 1992 1995 2000 2005

DRAM size
D R A M S P E E D T R E N D S

YEAR OF INTRODUCTION
1980 1982 1984 1986 1988 1990 1992 1994

SP
EE

D(
n s)

0

50

100

150

200

250
SLOWEST RAS (ns)

FASTEST RAS (ns)
CAS (ns)

CYCLE TIME (ns)

1 Mbit

64 Mbit

16 Mbit

4 Mbit

256 Kbit

64 Kbit

A
C

C
ES

S
TI

M
E

(µ
s)

@Carnegie Mellon
Databases

5©2004 Anastassia Ailamaki

The Memory/Processor Speed Gap

Trip to memory = thousands of instructions!

0.25

10

0.0625

80

6

0.01

0.1

1

10

100

1000
pr

oc
es

so
r

cy
cl

es
 /

in
st

ru
ct

io
n

0.01

0.1

1

10

100

1000

cy
cl

es
 /

ac
ce

ss
 to

 D
R

A
M

CPU
Memory

VAX/1980 PPro/1996 2010+

@Carnegie Mellon
Databases

6©2004 Anastassia Ailamaki

100G

New Hardware

� Caches trade off capacity for speed
� Exploit instruction/data locality
� Demand fetch/wait for data

[ADH99]:
� Running top 4 database systems
� At most 50% CPU utilization

But wait a minute…
Isn’t I/O the bottleneck??? MemoryMemory

CC
PP
UU

10
00

cl
k

10
0

cl
k

1
cl

k
10

 c
lk

L2 2M

L1 64K

4GB
to

1TB

L3 32M

@Carnegie Mellon
Databases

7©2004 Anastassia Ailamaki

Modern storage managers

� Several decades work to hide I/O
� Asynchronous I/O + Prefetch & Postwrite
� Overlap I/O latency by useful computation

� Parallel data access
� Partition data on modern disk array [PAT88]

� Smart data placement / clustering
� Improve data locality
� Maximize parallelism
� Exploit hardware characteristics

…and larger main memories fit more data
� 1MB in the 80’s, 10GB today, TBs coming soon

DB storage mgrs efficiently hide I/O latencies

@Carnegie Mellon
Databases

8©2004 Anastassia Ailamaki

Why should we (databasers) care?

0.33
0.8

1.4

DB

4

DB

Theoretical
minimum

Desktop/
Engineering

(SPECInt)

Decision
Support
(TPC-H)

Online
Transaction
Processing

(TPC-C)

C
yc

le
s

pe
r i

ns
tr

uc
tio

n

Database workloads under-utilize hardware
New bottleneck: Processor-memory delays

@Carnegie Mellon
Databases

9©2004 Anastassia Ailamaki

Breaking the Memory Wall

Wish for a Database Architecture:
� that uses hardware intelligently
� that won’t fall apart when new computers arrive
� that will adapt to alternate configurations

Efforts from multiple research communities
� Cache-conscious data placement and algorithms
� Instruction stream optimizations
� Novel database software architectures
� Novel hardware designs (covered briefly)

@Carnegie Mellon
Databases

10©2004 Anastassia Ailamaki

Detailed Outline
� Introduction and Overview
� New Hardware

� Execution Pipelines
� Cache memories

� Where Does Time Go?
� Measuring Time (Tools and Benchmarks)
� Analyzing DBs: Experimental Results

� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing Alorithms
� Instruction Stream Optimizations
� Staged Database Systems

� Newer Hardware
� Hip and Trendy

� Query co-processing
� Databases on MEMStore

� Directions for Future Research

@Carnegie Mellon
Databases

11©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

12©2004 Anastassia Ailamaki

This Section’s Goals

� Understand how a program is executed
� How new hardware parallelizes execution
� What are the pitfalls

� Understand why database programs do not take
advantage of microarchitectural advances

� Understand memory hierarchies
� How they work
� What are the parameters that affect program behavior
� Why they are important to database performance

@Carnegie Mellon
Databases

13©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Execution Pipelines
� Cache memories

� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

14©2004 Anastassia Ailamaki

Sequential Program Execution

Sequential Code

� Precedences: overspecifications
� Sufficient, NOT necessary for correctness

i1: xxxx

i2: xxxx

i3: xxxx

i1

i2

i3

Instruction-level Parallelism (ILP)

i1 i2 i3

� pipelining
� superscalar execution

Modern processors do both!

@Carnegie Mellon
Databases

15©2004 Anastassia Ailamaki

fetch decode execute memory write

Pipelined Program Execution

F
t0

D
F

t1
E
D

t2

F

M
E

t3

D

W
M

t4

E

t5

W
M W

Tpipeline = Tbase / 5

Inst2
Inst1

Inst3

FETCH

In
st

ru
ct

io
n

st
re

am

EXECUTE RETIRE

Write
results

@Carnegie Mellon
Databases

16©2004 Anastassia Ailamaki

Pipeline Stalls (delays)
� Reason: dependencies between instructions
� E.g., Inst1: r1 ← r2 + r3

Inst2: r4 ← r1 + r2

F D E M W
F D E M W

t0 t1 t2 t3 t4 t5
Inst1
Inst2

F D E M W

Read-after-write (RAW)

DB programs: frequent data dependencies

F D E M W
F D E M W

t0 t1 t2 t3 t4 t5
Inst1
Inst2 E Stall

F E MD Stall D

peak ILP = d

Peak instruction-per-cycle (IPC) = CPI = 1
Inst3

@Carnegie Mellon
Databases

17©2004 Anastassia Ailamaki

Higher ILP: Superscalar Out-of-Order

F D E M W
t0 t1 t2 t3 t4 t5

Inst1…n

Peak instruction-per-cycle (IPC)=n (CPI=1/n)

F D E M W
F D E M W

Inst(n+1)…2n

Inst(2n+1)…3n

at most n

peak ILP = d*n

� Out-of-order (as opposed to “inorder”) execution:
� Shuffle execution of independent instructions
� Retire instruction results using a reorder buffer

DB: 1.5x faster than inorder [KPH98,RGA98]
Limited ILP opportunity

@Carnegie Mellon
Databases

18©2004 Anastassia Ailamaki

tru
e:

 fe
tc

h
B

Even Higher ILP: Branch Prediction
� Which instruction block to fetch?
� Evaluating a branch condition causes pipeline stall

C?
� IDEA: Speculate branch while

evaluating C!
� Record branch history in a buffer,

predict A or B
9If correct, saved a (long) delay!
0If incorrect, misprediction penalty

=Flush pipeline, fetch correct
instruction stream

� Excellent predictors (97% accuracy!)
� Mispredictions costlier in OOO

� 1 lost cycle = >1 missed instructions!

fa
lse

: f
et

ch
 A

xxxx
if C goto B

A: xxxx
xxxx
xxxx
xxxx

B: xxxx
xxxx
xxxx
xxxx
xxxx
xxxxDB programs: long code paths => mispredictions

@Carnegie Mellon
Databases

19©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Execution Pipelines
� Cache memories

� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

20©2004 Anastassia Ailamaki

Larger

Faster

Memory Hierarchy
� Make common case fast
� common: temporal & spatial locality
� fast: smaller, more expensive memory

� Keep recently accessed blocks (temporal locality)
� Group data into blocks (spatial locality)

Registers

Caches

Memory

Disks
DB programs: >50% load/store instructions

@Carnegie Mellon
Databases

21©2004 Anastassia Ailamaki

Cache Contents

� Keep recently accessed block in “cache line”

address state data

� On memory read
if incoming address = a stored address tag then
� HIT: return data

else
� MISS: choose & displace a line in use
� fetch new (referenced) block from memory into line
� return data

Important parameters:
cache size, cache line size, cache associativity

@Carnegie Mellon
Databases

22©2004 Anastassia Ailamaki

Cache Associativity
� means # of lines a block can be in (set size)
� Replacement: LRU or random, within set

Fully-associative
a block goes in

any frame

Direct-mapped
a block goes in

exactly one
frame

Set-associative
a block goes in
any frame in

exactly one set

0

1

2

3

0
1
2
3
4
5
6
7

0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7

Line Set/Line Set

lower associativity ⇒ faster lookup

@Carnegie Mellon
Databases

23©2004 Anastassia Ailamaki

Miss Classification (3+1 C’s)

� compulsory (cold)
� “cold miss” on first access to a block

— defined as: miss in infinite cache

� capacity
� misses occur because cache not large enough

— defined as: miss in fully-associative cache

� conflict
� misses occur because of restrictive mapping strategy
� only in set-associative or direct-mapped cache

— defined as: not attributable to compulsory or capacity

� coherence
� misses occur because of sharing among multiprocessors

Cold misses are unavoidable
Capacity, conflict, and coherence misses can be reduced

@Carnegie Mellon
Databases

24©2004 Anastassia Ailamaki

Lookups in Memory Hierarchy

references
missesratemiss

#
=EXECUTION PIPELINE

MAIN MEMORY

L1 I-CACHE L1 D-CACHE

L2 CACHE

Trips to memory are most expensive

$$$

� L1: Split, 16-64K each.
As fast as processor (1 cycle)

� L2: Unified, 512K-8M
Order of magnitude slower than L1

� Memory: Unified, 512M-8GB
~400 cycles (Pentium4)

(there may be more cache levels)

@Carnegie Mellon
Databases

25©2004 Anastassia Ailamaki

Miss penalty

� L1D: low miss penalty, if L2 hit
(partly overlapped with OOO
execution)

enalty)avg(miss pmiss rate*ttavg hitaccess +=)(

EXECUTION PIPELINE

MAIN MEMORY

L1 I-CACHE L1 D-CACHE

L2 CACHE

DB: long code paths, large data footprints

$$$
� L2: High penalty (trip to memory)

� means the time to fetch and deliver block

� L1I: In critical execution path.
Cannot be overlapped with OOO
execution.

� Modern caches: non-blocking

@Carnegie Mellon
Databases

26©2004 Anastassia Ailamaki

Typical processor microarchitecture

I-Unit E-Unit

L1 I-Cache L1 D-Cache

L2 Cache (SRAM on-chip)

D-TLBI-TLB

Regs

Main Memory (DRAM)

Processor

L3 Cache (SRAM off-chip)

Will assume a 2-level cache in this talk

TLB: Translation Lookaside Buffer
(page table cache)

@Carnegie Mellon
Databases

27©2004 Anastassia Ailamaki

Summary: New Hardware

� Fundamental goal in processor design: max ILP
� Pipelined, superscalar, speculative execution
� Out-of-order execution
� Non-blocking caches
� Dependencies in instruction stream lower ILP

� Deep memory hierarchies
� Caches important for database performance
� Level 1 instruction cache in critical execution path
� Trips to memory most expensive

� DB workloads on new hardware
� Too many load/store instructions
� Tight dependencies in instruction stream
� Algorithms not optimized for cache hierarchies
� Long code paths
� Large instruction and data footprints

@Carnegie Mellon
Databases

28©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

29©2004 Anastassia Ailamaki

This Section’s Goals

� Hardware takes time: how do we measure time?
� Understand how to efficiently analyze

microarchitectural behavior of database workloads
� Should we use simulators? When? Why?
� How do we use processor counters?
� Which tools are available for analysis?
� Which database systems/benchmarks to use?

� Survey experimental results on workload
characterization
� Discover what matters for database performance

@Carnegie Mellon
Databases

30©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Measuring Time (Tools and Benchmarks)
� Analyzing DBs: Experimental Results

� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

31©2004 Anastassia Ailamaki

Simulator vs. Real Machine
Real machine

� Limited to available
hardware counters/events

� Limited to (real) hardware
configurations

� Fast (real-life) execution
� Enables testing real: large &

more realistic workloads
� Sometimes not repeatable

� Tool: performance counters

Real-machine experiments to locate problems
Simulation to evaluate solutions

Simulator
� Can measure any event

� Vary hardware configurations

� (Too) Slow execution
� Often forces use of scaled-

down/simplified workloads
� Always repeatable

� Virtutech Simics, SimOS,
SimpleScalar, etc.

@Carnegie Mellon
Databases

32©2004 Anastassia Ailamaki

Hardware Performance Counters

� What are they?
� Special purpose registers that keep track of programmable events
� Non-intrusive counts “accurately” measure processor events
� Software API’s handle event programming/overflow
� GUI interfaces built on top of API’s to provide higher-level analysis

� What can they count?
� Instructions, branch mispredictions, cache misses, etc.
� No standard set exists

� Issues that may complicate life
� Provides only hard counts, analysis must be done by user or tools
� Made specifically for each processor

� even processor families may have different interfaces
� Vendors don’t like to support because is not profit contributor

@Carnegie Mellon
Databases

33©2004 Anastassia Ailamaki

Evaluating Behavior using HW Counters
� Stall time (cycle) counters
� very useful for time breakdowns
� (e.g., instruction-related stall time)

� Event counters
� useful to compute ratios
� (e.g., # misses in L1-Data cache)

� Need to understand counters before using them
� Often not easy from documentation
� Best way: microbenchmark (run programs with pre-

computed events)
� E.g., strided accesses to an array

@Carnegie Mellon
Databases

34©2004 Anastassia Ailamaki

Example: Intel PPRO/PIII

RESOURCE_STALLSResource stalls
PARTIAL_RAT_STALLSDependence stalls

IFU_IFETCH_MISSL1 Instruction misses
ITLB_MISSTLB misses

BR_MISS_PRED_RETIREDBranch mispredictions
BR_INST_DECODEDBranches

IFU_MEM_STALLInstruction-related stalls
L2_LINES_INL2 Misses

DCU_LINES_INL1 Data (L1D) misses
DATA_MEM_REFSL1 Data (L1D) accesses

INST_RETIREDInstructions
CPU_CLK_UNHALTEDCycles

“time”

Lots more detail, measurable events, statistics
Often >1 ways to measure the same thing

@Carnegie Mellon
Databases

35©2004 Anastassia Ailamaki

Producing time breakdowns

� Determine benchmark/methodology (more later)
� Devise formulae to derive useful statistics
� Determine (and test!) software
� E.g., Intel Vtune (GUI, sampling), or emon
� Publicly available & universal (e.g., PAPI [DMM04])

� Determine time components T1….Tn
� Determine how to measure each using the counters
� Compute execution time as the sum

� Verify model correctness
� Measure execution time (in #cycles)
� Ensure measured time = computed time (or almost)
� Validate computations using redundant formulae

@Carnegie Mellon
Databases

36©2004 Anastassia Ailamaki

Computation

Memory

Branch
Mispredictions

Hardware
Resources

Overlap opportunity:
Load A
D=B+C
Load E

Execution Time = Computation + StallsExecution Time = Computation + Stalls - Overlap

Execution Time Breakdown Formula

Stalls

[ADH99]

@Carnegie Mellon
Databases

37©2004 Anastassia Ailamaki

Computation

Memory

Branch
Mispredictions

Hardware
Resources

Memory Stalls = Σn(stalls at cache level n)

Where Does Time Go (memory)?

Instruction lookup
missed in L1I, hit in L2L1I

Data lookup missed in
L1D, hit in L2L1D

Instruction or data lookup
missed in L1, missed in
L2, hit in memory

L2

[ADH99]

@Carnegie Mellon
Databases

38©2004 Anastassia Ailamaki

What to measure?
� Decision Support System (DSS:TPC-H)
� Complex queries, low-concurrency
� Read-only (with rare batch updates)
� Sequential access dominates
� Repeatable (unit of work = query)

� On-Line Transaction Processing (OLTP:TPCC, ODB)
� Transactions with simple queries, high-concurrency
� Update-intensive
� Random access frequent
� Not repeatable (unit of work = 5s of execution after rampup)

Often too complex to provide useful insight

@Carnegie Mellon
Databases

39©2004 Anastassia Ailamaki

Microbenchmarks

� What matters is basic execution loops
� Isolate three basic operations:
� Sequential scan (no index)
� Random access on records (non-clustered index)
� Join (access on two tables)

� Vary parameters:
� selectivity, projectivity, # of attributes in predicate
� join algorithm, isolate phases
� table size, record size, # of fields, type of fields

� Determine behavior and trends
� Microbenchmarks can efficiently mimic TPC microarchitectural

behavior!
� Widely used to analyze query execution

Excellent for microarchitectural analysis

[KPH98,ADH99,KP00,SAF04]

@Carnegie Mellon
Databases

40©2004 Anastassia Ailamaki

Shore: YES!

On which DBMS to measure?
� Commercial DBMS are most realistic
� Difficult to setup, may need help from companies

� Prototypes can evaluate techniques
� Shore [ADH01] (for PAX), PostgreSQL[TLZ97] (eval)

� Tricky: similar behavior to commercial DBMS?

Execution time breakdown

0%

20%

40%

60%

80%

100%

A B C D Shore
DBMS

%
 e

xe
cu

tio
n

tim
e

Computation Memory Branch mispr. Resource

Memory stall time breakdown

0%

20%

40%

60%

80%

100%

A B C D Shore
DBMS

M
em

or
y

st
al

l t
im

e
(%

)

L1 Data L2 Data L1 Instruction L2 Instruction

[ADH02]

@Carnegie Mellon
Databases

41©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Measuring Time (Tools and Benchmarks)
� Analyzing DBs: Experimental Results

� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

42©2004 Anastassia Ailamaki

DB Execution Time Breakdown

0%

20%

40%

60%

80%

100%

seq. scan TPC-D index scan TPC-C

ex
ec

ut
io

n
tim

e

Computation Memory Branch mispred. Resource
[ADH99,BGB98,BGN00,KPH98]

� PII Xeon
� NT 4.0
� Four DBMS:

A, B, C, D

At least 50% cycles on stalls
Memory is major bottleneck

Branch mispredictions increase cache misses!

@Carnegie Mellon
Databases

43©2004 Anastassia Ailamaki

Join (no index)

0%

20%

40%

60%

80%

100%

A B C D
DBMS

table scan

0%

20%

40%

60%

80%

100%

A B C D
DBMS

M
em

or
y

st
al

l t
im

e
(%

)

clustered index scan

0%

20%

40%

60%

80%

100%

A B C D
DBMS

L1 Data L2 Data L1 Instruction L2 Instruction

� PII Xeon running NT 4.0, used performance counters
� Four commercial Database Systems: A, B, C, D

DSS/OLTP basics: Cache Behavior

non-clustered index

0%

20%

40%

60%

80%

100%

B C D
DBMS

[ADH99,ADH01]

Bottlenecks: data in L2, instructions in L1
Random access (OLTP): L1I-bound

@Carnegie Mellon
Databases

44©2004 Anastassia Ailamaki

Why Not Increase L1I Size?

� L1I: in critical execution path
� slower L1I: slower clock

�Trends:
L1-I cache

Max on-chip
L2/L3 cache

‘96 ‘00 ‘04‘98 ‘02
Year Introduced

10 KB

100 KB

1 MB

10 MB

C
ac

he
 s

iz
e

� Problem: a larger cache is typically a slower cache
� Not a big problem for L2

L1I size is stable
L2 size increase: Effect on performance?

[HA04]

@Carnegie Mellon
Databases

45©2004 Anastassia Ailamaki

Increasing L2 Cache Size
� DSS: Performance improves as L2 cache grows
� Not as clear a win for OLTP on multiprocessors

� Reduce cache size ⇒ more capacity/conflict misses
� Increase cache size ⇒ more coherence misses

0%

5%

10%

15%

20%

25%

1P 2P 4P
of processors

%
 o

f L
2

ca
ch

e
m

is
se

s
to

 d
irt

y
da

ta

in
 a

no
th

er
 p

ro
ce

ss
or

's
 c

ac
he

256KB 512KB 1MB

Larger L2: trade-off for OLTP

[BGB98,KPH98]

@Carnegie Mellon
Databases

46©2004 Anastassia Ailamaki

Summary: Where Does Time Go?
� Goal: discover bottlenecks
� Hardware performance counters ⇒ time breakdown
� Tools available for access and analysis (+simulators)
� Run commercial DBMS and equivalent prototypes
� Microbenchmarks offer valuable insight

� Database workloads: more than 50% stalls
� Mostly due to memory delays
� Cannot always reduce stalls by increasing cache size

� Crucial bottlenecks
� Data accesses to L2 cache (esp. for DSS)
� Instruction accesses to L1 cache (esp. for OLTP)

@Carnegie Mellon
Databases

47©2004 Anastassia Ailamaki

Memory

BBranch
Mispredictions

RHardware
Resources

D-cache D

I-cache I

DBMS

DBMS + Compiler

Compiler + Hardware

Hardware

How to Address Bottlenecks

Next: Optimizing cache accesses

@Carnegie Mellon
Databases

48©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

49©2004 Anastassia Ailamaki

This Section’s Goals

� Survey techniques to improve locality
� Relational data
� Access methods

� Survey new query processing algorithms
� Present a new database system architecture
� Briefly explain Instruction Stream Optimizations

� Show how much good understanding of the
platform can achieve

@Carnegie Mellon
Databases

50©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing
� Instruction Stream Optimizations
� Staged Database Systems

� Newer Hardware
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

51©2004 Anastassia Ailamaki

Current Database Storage Managers

� Same layout on disk/memory
� Multi-level storage hierarchy
� different devices at each level
� different “optimal” access on

each device
� Variable workloads and

access patterns
� OLTP: Full-record access
� DSS: Partial-record access
� no optimal “universal” layout

non-volatile storage

main
memory

CPU
cache

Goal: Reduce data traffic in memory hierarchy

@Carnegie Mellon
Databases

52©2004 Anastassia Ailamaki

PAGE HEADER 1237RH1

30Jane RH2 4322 John

45

•••

RH4

7658 Susan 52

•

RH3 Jim 201563

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameSSNRID

R

� NSM (n-ary Storage Model, or Slotted Pages)

Records are stored sequentially
Attributes of a record are stored together

“Classic” Data Layout on Disk Pages

@Carnegie Mellon
Databases

53©2004 Anastassia Ailamaki

NSM in Memory Hierarchy

DISK

PAGE HEADER

7658 Susan 52

1237 Jane

Jim 20

4322 John 4530 1563

CPU CACHEMAIN MEMORY

PAGE HEADER

7658 Susan 52

1237 Jane

Jim 20

4322 John 4530 1563

4322 Jo30 Block 1

hn 45 1563 Block 2
7658Jim 20 Block 3

Susan 52 Block 4

� Optimized for full-record access
� Slow partial-record access

� Wastes I/O bandwidth (fixed page layout)
� Low spatial locality at CPU cache

Query accesses all attributes (full-record access)
Query evaluates attribute “age” (partial-record access)

BEST select name
from R
where age > 50

@Carnegie Mellon
Databases

54©2004 Anastassia Ailamaki

Decomposition Storage Model (DSM)

37Dan8791

43Leon2534

52Susan7658

20Jim1563

45John4322

30Jane1237

AgeNameEID

Partition original table into n 1-attribute sub-tables

[CK85]

@Carnegie Mellon
Databases

55©2004 Anastassia Ailamaki

12371PAGE HEADER

4322 1563 76583 42

John Jim Suzan

Jane1PAGE HEADER

3 42

30

45 20 52

1PAGE HEADER

3 4

2

376

435

524

203

452

301

AgeRID

R387916

25345

76584

15633

43222

12371

EIDRID

R1

Dan6

Leon5

Suzan4

Jim3

John2

Jane1

NameRID

R2 8KB

8KB

8KB

Partition original table into n 1-attribute sub-tables
Each sub-table stored separately in NSM pages

Decomposition Storage Model (DSM)
[CK85]

@Carnegie Mellon
Databases

56©2004 Anastassia Ailamaki

DSM in Memory Hierarchy

John Jim Suzan

Jane1PAGE HEADER

3 4

2

DISK

301PAGE HEADER 2 45

20 523 4 5 43

12371PAGE HEADER

4322 1563 76583 42

MAIN MEMORY

301PAGE HEADER 2 45

20 523 4 5 43
CPU CACHE

block 1301 2 45

block 220 523 4 5

John Jim Suzan

Jane1PAGE HEADER

3 4

2

12371PAGE HEADER

4322 1563 76583 42

Query accesses all attributes (full-record access)
Query accesses attribute “age” (partial-record access)

CostlyCostly

� Optimized for partial-record access
� Slow full-record access

� Reconstructing full record may incur random I/O

BEST

select name
from R
where age > 50

@Carnegie Mellon
Databases

57©2004 Anastassia Ailamaki

Repairing NSM’s cache performance

We need a data placement that…
� Eliminates unnecessary memory accesses
� Improves inter-record locality
� Keeps a record’s fields together
� Does not affect NSM’s I/O performance

and, most importantly, is…

low-implementation-cost, high-impact

@Carnegie Mellon
Databases

58©2004 Anastassia Ailamaki

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

•••

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

• •••

NSM PAGE PAX PAGE

Idea: Partition data within page for spatial locality

Partition Attributes Across (PAX)

mini
page

[ADH01]

@Carnegie Mellon
Databases

59©2004 Anastassia Ailamaki

PAX in Memory Hierarchy

1563
PAGE HEADER 1237 4322

7658

Jane John Jim Susan

30 45 2052

DISK

1563
PAGE HEADER 1237 4322

7658

Jane John Jim Susan

30 45 2052

MAIN MEMORY CPU CACHE

block 152 45 2030

� Optimizes CPU cache-to-memory communication
� Retains NSM’s I/O (page contents do not change)

cheap

Partial-record access in memory
Full-record access on diskBEST

BEST select name
from R
where age > 50

[ADH01]

@Carnegie Mellon
Databases

60©2004 Anastassia Ailamaki

PAX Performance Results (Shore)
Cache data stalls

0

20

40

60

80

100

120

140

160

NSM PAX
page layout

st
al

l c
yc

le
s

/ r
ec

or
d

L1 Data stalls
L2 Data stalls

Execution time breakdown

0

300

600

900

1200

1500

1800

NSM PAX

page layout

cl
oc

k
cy

cl
es

 p
er

 re
co

rd

Hardware
Resource

Branch
Mispredict

Memory

Computation
Query:
select avg (ai)
from R
where aj >= Lo

and aj <= Hi

PII Xeon
Windows NT4
16KB L1-I&D,
512 KB L2,
512 MB RAM

� Validation with microbenchmarks:
� 70% less data stall time (only compulsory misses left)
� Better use of processor’s superscalar capability

� TPC-H performance: 15%-2x speedup in queries
� Experiments with/without I/O, on three different processors

[ADH01]

PAX eliminates unnecessary trips to memory

@Carnegie Mellon
Databases

61©2004 Anastassia Ailamaki

Dynamic PAX: Data Morphing

� PAX random access: more cache misses in record
� Store attributes accessed together contiguously
� Dynamic partition updates with changing workloads
� Optimize total cost based on cache misses
� Partition algorithms: naïve & hill-climbing algorithms

� Fewer cache misses
� Better projectivity and scalability for index scan queries
� Up to 45% faster than NSM & 25% faster than PAX

� Same I/O performance as PAX and NSM
� Future work: how to handle conflicts?

[HP03]

@Carnegie Mellon
Databases

62©2004 Anastassia Ailamaki

Alternatively: Repair DSM’s I/O behavior

� We like DSM for partial record access
� We like NSM for full-record access
Solution: Fractured Mirrors [RDS02]

1. Get data placement right

Sparse
B-Tree on ID

4 A4 A51 A1 A2 A3

3

2. Faster record reconstruction
Lineitem (TPCH) 1GB

0
20
40
60
80

100
120
140
160
180

1 2 3 4 6 8 10 12 14
No. of Attributes

Se
co

nd
s

NSM
Page-at-a-time
Chunk-Merge

Instead of record- or page-at-a-time…
Chunk-based merge algorithm!

1. Read in segments of M pages (a “chunk”)
2. Merge segments in memory
3. Requires (N*K)/M disk seeks
4. For a memory budget of B pages, each

partition gets B/N pages in a chunk

@Carnegie Mellon
Databases

63©2004 Anastassia Ailamaki

Fractured Mirrors
3. Smart mirroring

� Achieves 2-3x speedups on TPC-H
� Needs 2 copies of the database
� Future work:
� A new optimizer
� Smart buffer pool management
� Updates

Disk 1 Disk 2

NSM Copy DSM Copy

Disk 1 Disk 2

NSM Copy DSM Copy

@Carnegie Mellon
Databases

64©2004 Anastassia Ailamaki

Summary (no replication)

PAXPAX

fullfull--record record
accessaccess

MemoryMemory--disk Performancedisk PerformanceCacheCache--memory Performancememory Performance

DSMDSM

NSMNSM

partial record partial record
accessaccess

partial record partial record
accessaccess

fullfull--record record
accessaccess

Page layoutPage layout

☺☺ // ☺☺ //

// ☺☺ // ☺☺
☺☺ ☺☺ ☺☺ //

Need new placement method:
� Efficient full- and partial-record accesses
� Maximize utilization at all levels of memory hierarchy

Difficult!!! Different devices/access methods
Different workloads on the same database

@Carnegie Mellon
Databases

65©2004 Anastassia Ailamaki

Clotho

Operators

Main-memory
Manager

Lachesis
Storage Manager

Lachesis
Storage Manager

Atropos
LV Manager
Atropos

LV Manager

disk array

disk 0 disk 1

Buffer
pool

page hdr

The Fates Storage Manager
� IDEA: Decouple layout!

non-volatile storage

main
memory

CPU
cache

[SAG03,SSS04,SSS04a]

data directly placed
via scatter/gather I/O

Memory does not need to store full NSM pages

@Carnegie Mellon
Databases

66©2004 Anastassia Ailamaki

Clotho: memory stores PAX minipages
DISK select EID from R where AGE>30

1563

PAGE HEADER

1237 4322 7658

30 45 2052

Jane John Jim Susan

MAIN MEMORY
2534

PAGE HEADER

2865 1015 8791

Tom Jerry Jean Kate

31 54 3325

PAGE HEADER (EID &AGE)

15631237 4322 7658

30 52 45 20

25342865 1015 8791

31 25 54 33

In-memory “skeleton”
(Tailored to query)

On-disk page:
� PAX-like layout
� Block boundary aligned

� Just the data you need
� Query-specific pages!
� Great cache performance

� Decoupled layout
� Fits different hardware

� Low reconstruction cost
� Done at I/O level
� Guaranteed by Lachesis

and Atropos [SSS04]

[SSS04]

New buffer pool manager handles sharing

@Carnegie Mellon
Databases

67©2004 Anastassia Ailamaki

CSM: best-case performance of DSM and NSM
Table scan time

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Query payload [# of attributes]

R
un

tim
e

[s
]

NSM
DSM
PAX
CSM

Table: a1 … a15 (float)

Query: select a1, …
from R
where a1 < Hi

[SSS04]

TPC-H: Outperform DSM by 20% to 2x
TPC-C: Comparable to NSM (6% lower throughput)

CSMCSM

fullfull--record record
accessaccess

MemoryMemory--disk Performancedisk PerformanceCacheCache--memory Performancememory Performance

partial record partial record
accessaccess

partial record partial record
accessaccess

fullfull--record record
accessaccess

Page layoutPage layout

☺☺ ☺☺ ☺☺ ☺☺

@Carnegie Mellon
Databases

68©2004 Anastassia Ailamaki

Data Placement: Summary

� Smart data placement increases spatial locality
� Research targets table (relation) data
� Goal: Reduce number of non-cold cache misses

� Techniques focus grouping attributes into cache lines
for quick access

� PAX, Data morphing: Cache optimization techniques
� Fractured Mirrors: Cache-and-disk optimization
� Fates DB Storage Manager: Independent data layout

support across the entire memory hierarchy

@Carnegie Mellon
Databases

69©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing
� Instruction Stream Optimizations
� Staged Database Systems

� Newer Hardware
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

70©2004 Anastassia Ailamaki

Main-Memory Tree Indexes

� T Trees: proposed in mid-80s for MMDBs [LC86]
� Aim: balance space overhead with searching time
� Uniform memory access assumption (no caches)

� Main-memory B+ Trees: better cache performance
[RR99]

� Node width = cache line size (32-128b)
� Minimize number of

cache misses for search
� Much higher than traditional

disk-based B-Trees
� So now trees are too deep

How to make trees shallower?

@Carnegie Mellon
Databases

71©2004 Anastassia Ailamaki

Reducing Pointers for Larger Fanout

� Cache Sensitive B+ Trees (CSB+ Trees)
� Layout child nodes contiguously
� Eliminate all but one child pointers
� Double fanout of nonleaf node

B+ Trees CSB+ Trees
K1 K2

K3 K4 K5 K6 K7 K8

K1 K3K2 K4

K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4 K1 K3K2 K4

35% faster tree lookups
Update performance is 30% worse (splits)

[RR00]

@Carnegie Mellon
Databases

72©2004 Anastassia Ailamaki

What do we do with cold misses?

� Answer: hide latencies using prefetching
� Prefetching enabled by
� Non-blocking cache technology
� Prefetch assembly instructions
� SGI R10000, Alpha 21264, Intel Pentium4

Main MemoryCPU L2/L3
CacheL1

Cache

pref 0(r2)
pref 4(r7)
pref 0(r3)
pref 8(r9)

Prefetching hides cold cache miss latency
Efficiently used in pointer-chasing lookups!

@Carnegie Mellon
Databases

73©2004 Anastassia Ailamaki

Prefetching B+ Trees
� (pB+ Trees) Idea: Larger nodes
� Node size = multiple cache lines (e.g. 8 lines)
� Later corroborated by [HP03a]

� Prefetch all lines of a node before searching it

� Cost to access a node only increases slightly
� Much shallower trees, no changes required

Time

Cache miss

[CGM01]

>2x better search AND update performance
Approach complementary to CSB+ Trees!

@Carnegie Mellon
Databases

74©2004 Anastassia Ailamaki

Prefetching B+ Trees

� Goal: faster range scan

� Leaf parent nodes contain addresses of all leaves
� Link leaf parent nodes together
� Use this structure for prefetching leaf nodes

Leaf parent nodes

pB+ Trees: 8X speedup over B+ Trees

[CGM01]

@Carnegie Mellon
Databases

75©2004 Anastassia Ailamaki

Fractal Prefetching B+ Trees
� What if B+-tree does not fit in memory?
� (fpB+ Trees) Idea: Combine memory & disk trees

� Embed cache-optimized trees in disk tree nodes
� fpB+ Trees optimize both cache AND disk
� Key compression to increase fanout [BMR01]
Compared to disk-based B+ Trees, 80% faster in-
memory searches with similar disk performance

[CGM02]

@Carnegie Mellon
Databases

76©2004 Anastassia Ailamaki

Bulk lookups: Buffer Index Accesses
� Optimize data cache performance
� Similar technique in [PMH02]

� Idea: increase temporal locality by delaying
(buffering) node probes until a group is formed

� Example: NLJ probe stream: (r1, 10) (r2, 80) (r3, 15)

r110
keyRID

(r1, 10)

buffer

root

B C

D E

(r1,10) is buffered
before accessing B

r110
keyRID

(r2, 80)

r2 80

B C

(r2,80) is buffered
before accessing C

r110
keyRID

(r3, 15)

r2 80

B C
r315

B is accessed,
buffer entries are

divided among children

[ZR03a]

3x speedup with enough concurrency

@Carnegie Mellon
Databases

77©2004 Anastassia Ailamaki

Access Methods: Summary

� Optimize B+ Tree pointer-chasing cache behavior
� Reduce node size to few cache lines
� Reduce pointers for larger fanout (CSB+)
� “Next” pointers to lowest non-leaf level for easy prefetching (pB+)
� Simultaneously optimize cache and disk (fpB+)
� Bulk searches: Buffer index accesses

Additional work:
� Cache-oblivious B-Trees [BDF00]
� Optimal bound in number of memory transfers
� Regardless of # of memory levels, block size, or level speed

� Survey of techniques for B-Tree cache performance [GL01]
� Existing heretofore-folkloric knowledge
� Key normalization/compression, alignment, separating keys/pointers

Lots more to be done in area – consider
interference and scarce resources

@Carnegie Mellon
Databases

78©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing
� Staged Database Systems
� Instruction Stream Optimizations

� Newer Hardware
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

79©2004 Anastassia Ailamaki

Query Processing Algorithms

Idea: Adapt query processing algorithms to caches
Related work includes:
� Improving data cache performance
� Sorting
� Join

� Improving instruction cache performance
� DSS applications

@Carnegie Mellon
Databases

80©2004 Anastassia Ailamaki

Sorting

� In-memory sorting / generating runs
� AlphaSort

� Use quick sort rather than replacement selection
� Sequential vs. random access
� No cache misses after sub-arrays fit in cache

� Sort (key-prefix, pointer) pairs rather than records
� 3x cpu speedup for the Datamation benchmark

L2
cache

L1

Quick Sort
Replacement-selection

[NBC94]

@Carnegie Mellon
Databases

81©2004 Anastassia Ailamaki

Hash Join

� Random accesses to hash table
� Both when building AND when probing!!!

� Poor cache performance
� ≥ 73% of user time is CPU cache stalls [CAG04]

Approaches to improving cache performance
� Cache partitioning – maximizes locality
� Prefetching – hides latencies

Build
Relation

Probe
Relation

Hash Table

@Carnegie Mellon
Databases

82©2004 Anastassia Ailamaki

Reducing non-cold misses

� Idea: Cache partitioning (similar to I/O partitioning)
� Divide relations into cache-sized partitions
� Fit build partition and hash table into cache
� Avoid cache misses for hash table visits

1/3 fewer cache misses, 9.3% speedup
>50% misses due to partitioning overhead

Build Probe

cache

[SKN94]

@Carnegie Mellon
Databases

83©2004 Anastassia Ailamaki

Hash Joins in Monet

� Monet main-memory database system [B02]
� Vertically partitioned tuples (DSM)

� Join two vertically partitioned relations
� Join two join-attribute arrays [BMK99,MBK00]
� Extract other fields for output relation [MBN04]

Build Probe

Output

[B02]

@Carnegie Mellon
Databases

84©2004 Anastassia Ailamaki

Monet: Reducing Partition Cost
� Join two arrays of simple fields (8 byte tuples)
� Original cache partitioning is single pass
� TLB thrashing if # partitions > # TLB entries
� Cache thrashing if # partitions > # lines in cache

� Solution: multiple passes
� # partitions per pass is small
� Radix-cluster [BMK99,MBK00]
� Use different bits of hashed keys for

different passes
� E.g. In figure, use 2 bits of hashed

keys for each pass

� Plus CPU optimizations
� XOR instead of %
� Simple assignments instead of memcpy

2-pass partition
Up to 2.7X speedup on an Origin 2000

Results most significant for small tuples

[BMK99,
MBK00]

@Carnegie Mellon
Databases

85©2004 Anastassia Ailamaki

Monet: Extracting Payload

� Two ways to extract payload:
� Pre-projection: copy fields during cache partitioning
� Post-projection: generate join index, then extract fields

� Monet: post-projection
� Radix-decluster algorithm for good cache performance

� Post-projection good for DSM
� Up to 2X speedup compared to pre-projection

� Post-projection is not recommended for NSM
� Copying fields during cache partitioning is better

[MBN04]

Paper presented in this conference!

@Carnegie Mellon
Databases

86©2004 Anastassia Ailamaki

Optimizing non-DSM hash joins

foreach probe tuple
{

(0)compute bucket number;
(1)visit header;
(2)visit cell array;
(3)visit matching build tuple;

}

Hash
Bucket

Headers

Hash Cell
(hash code, build tuple ptr)

Build
Partition

0
1
2
3 0
1
2
3

t
i
m
e

Cache
miss
latency

Idea: Exploit inter-tuple parallelism

[CAG04]

Simplified probing algorithm

@Carnegie Mellon
Databases

87©2004 Anastassia Ailamaki

Group Prefetching

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

a group

foreach group of probe tuples {
foreach tuple in group {
(0)compute bucket number;

prefetch header;
}
foreach tuple in group {
(1)visit header;

prefetch cell array;
}
foreach tuple in group {
(2)visit cell array;

prefetch build tuple;
}
foreach tuple in group {
(3)visit matching build tuple;

}
}

[CAG04]

@Carnegie Mellon
Databases

88©2004 Anastassia Ailamaki

Software Pipelining
Prologue;
for j=0 to N-4 do {

tuple j+3:
(0)compute bucket number;

prefetch header;
tuple j+2:
(1)visit header;

prefetch cell array;
tuple j+1:
(2)visit cell array;

prefetch build tuple;
tuple j:
(3)visit matching build tuple;

}
Epilogue;

prologue

epilogue

j

j+3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

[CAG04]

@Carnegie Mellon
Databases

89©2004 Anastassia Ailamaki

Prefetching: Performance Results

� Techniques exhibit similar performance
� Group prefetching easier to implement
� Compared to cache partitioning:
� Cache partitioning costly when tuples are large (>20b)
� Prefetching about 50% faster than cache partitioning

0

1000

2000

3000

4000

5000

6000

150 cycles 1000 cycles

Baseline
Group Pref
SP Pref

processor to memory latency

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

� 9X speedups over
baseline at 1000
cycles

� Absolute numbers
do not change!

[CAG04]

@Carnegie Mellon
Databases

90©2004 Anastassia Ailamaki

DSS: Reducing I-misses
� Demand-pull execution model: one tuple at a time
� ABABABABABABABABAB…
� If A + B > L1 instruction cache size
� Poor instruction cache utilization!

� Solution: multiple tuples at an operator
� ABBBBBAAAAABBBBB…

� Modify operators to support block of tuples [PMA01]
� Insert “buffer” operators between A and B [ZR04]
� “buffer” calls B multiple times
� Stores intermediate tuple pointers to serve A’s request
� No need to change original operators

A

B
Query Plan

12% speedup for simple TPC-H queries

[PMA01,ZR04]

@Carnegie Mellon
Databases

91©2004 Anastassia Ailamaki

Concurrency Control
� Multiple CPUs share a tree
� Lock coupling: too much cost
� Latching a node means writing
� True even for readers !!!
� Coherence cache misses due to

writes from different CPUs

� Solution:
� Optimistic approach for readers
� Updaters still latch nodes
� Updaters also set node versions
� Readers check version to ensure correctness

Search throughput: 5x (=no locking case)
Update throughput: 4x

[CHK01]

@Carnegie Mellon
Databases

92©2004 Anastassia Ailamaki

Query processing: summary

� Alphasort: use quicksort and key prefix-pointer
� Monet: MM-DBMS uses aggressive DSM
� Optimize partitioning with hierarchical radix-clustering
� Optimize post-projection with radix-declustering
� Many other optimizations

� Traditional hash joins: aggressive prefetching
� Efficiently hides data cache misses
� Robust performance with future long latencies

� DSS I-misses: group computation (new operator)
� B-tree concurrency control: reduce readers’ latching

@Carnegie Mellon
Databases

93©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing
� Instruction Stream Optimizations
� Staged Database Systems

� Newer Hardware
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

94©2004 Anastassia Ailamaki

Instruction-Related Stalls

� 25-40% of execution time [KPH98, HA04]
� Recall importance of instruction cache: In the

critical execution path!

EXECUTION PIPELINE

L1 I-CACHE L1 D-CACHE

L2 CACHE

Impossible to overlap I-cache delays

@Carnegie Mellon
Databases

95©2004 Anastassia Ailamaki

� Goal: improve DSS I-cache performance
� Idea: Predict next function call using small cache

� Example: create_rec
always calls find_ ,
lock_ , update_ , and
unlock_ page in same
order

� Experiments: Shore on SimpleScalar Simulator
� Running Wisconsin Benchmark

Call graph prefetching for DB apps
[APD03]

Beneficial for predictable DSS streams

@Carnegie Mellon
Databases

96©2004 Anastassia Ailamaki

� SIMD: Single – Instruction – Multiple – Data
In modern CPUs, target multimedia apps

� Example: Pentium 4,
128-bit SIMD register
holds four 32-bit values

� Assume data stored columnwise as contiguous
array of fixed-length numeric values (e.g., PAX)

� Scan example:

X3 X2 X1 X0

Y3 Y2 Y1 Y0

OP OP OP OP

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

if x[n] > 10
result[pos++] = x[n]

x[n+3] x[n+2] x[n+1] x[n]

10 10 10 10

> > > >

0 1 0 0

8 12 6 5

original scan code

SIMD 1st phase:
produce bitmap
vector with 4
comparison results
in parallel

[ZR02]DB operators using SIMD

@Carnegie Mellon
Databases

97©2004 Anastassia Ailamaki

DB operators using SIMD
� Scan example (cont’d)

� Parallel comparisons, fewer branches ⇒ fewer mispredictions

0 1 0 0

SIMD 2nd phase:
if bit_vector == 0, continue
else copy all 4 results, increase pos when bit==1

keep this result

[ZR02]

Superlinear speedup to # of parallelism
Need to rewrite code to use SIMD

Aggregation operation (1M records w/ 20% selectivity)

0

5

10

15

20

25

SUM SIMD
SUM

COUNT SIMD
COUNT

MAX SIMD
MAX

MIN SIMD
MIN

El
ap

se
d

ti
m

e
[m

s] Branch mispred. Penalty
Other cost

@Carnegie Mellon
Databases

98©2004 Anastassia Ailamaki

STEPS: Cache-Resident OLTP

� Targets instruction-cache performance for OLTP
� Exploits high transaction concurrency
� Synchronized Transactions through Explicit

Processor Scheduling: Multiplex concurrent
transactions to exploit common code paths

[HA04]

code
fits in
I-cache

context-switch
point

CPU
00101
1001
00010
1101
110
10011
0110
00110

thread A

CPU executes code

CPU performs context-switch

00101
1001
00010
1101
110
10011
0110
00110

thread B

instruction
cache

capacity
window

CPU
00101
1001
00010
1101
110
10011
0110
00110

thread A

00101
1001
00010
1101
110
10011
0110
00110

thread B

before after

All capacity/conflict I-cache misses gone!

@Carnegie Mellon
Databases

99©2004 Anastassia Ailamaki

� STEPS implementation runs full OLTP workloads
(TPC-C)

� Groups threads per DB operator, then uses fast
context-switch to reuse instructions in the cache

� Full-system TPC-C implementation:
� 65% fewer L1-I misses, 40% speedup

STEPS: Cache-Resident OLTP
[HA04]

STEPS minimizes L1-I cache misses
without increasing cache size

@Carnegie Mellon
Databases

100©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Data Placement
� Access Methods
� Query Processing
� Instruction Stream Optimizations
� Staged Database Systems

� Newer Hardware
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

101©2004 Anastassia Ailamaki

Context loaded multiple times for each query
No means to exploit overlapping work

Thread-based concurrency pitfalls

Q1
Q2
Q3

context-switch points TIME

CPU

: component loading time

Current

[HA03]

@Carnegie Mellon
Databases

102©2004 Anastassia Ailamaki

Thread-based concurrency pitfalls

Q1
Q2
Q3

context-switch points TIME

CPU

: component loading time

Current

Q1
Q2
Q3

CPU

Desired

[HA03]

Context-switch at
module boundary
Context-switch at
module boundary

Load context once
for all queries

Load context once
for all queries

Load context once
for all queries

@Carnegie Mellon
Databases

103©2004 Anastassia Ailamaki

� Staged software design allows for
� Cohort scheduling of queries to amortize loading time
� Suspend at module boundaries to maintain context

� Break DBMS into stages
� Stages act as independent servers
� Queries exist in the form of “packets”

� Proposed query scheduling algorithms to address
locality/wait time tradeoffs [HA02]

Staged Database Systems
[HA03]

@Carnegie Mellon
Databases

104©2004 Anastassia Ailamaki

Staged Database Systems
[HA03]

Optimize instruction/data cache locality
Naturally enable multi-query processing

Highly scalable, fault-tolerant, trustworthy

IN
OUT

connect parser optimizer send
results

FSCAN

JOIN

SORT

AGGRISCAN

L1

L2

MEMORY

L1

L2

MEMORY

…

@Carnegie Mellon
Databases

105©2004 Anastassia Ailamaki

Summary: Bridging the Gap

� Cache-aware data placement
� Eliminates unnecessary trips to memory
� Minimizes conflict/capacity misses
� Fates: decouple memory from storage layout

� What about compulsory (cold) misses?
� Can’t avoid, but can hide latency with prefetching
� Techniques for B-trees, hash joins

� Staged Database Systems: a scalable future
� Addressing instruction stalls
� DSS: Call Graph Prefetching, SIMD, group operator
� OLTP: STEPS, a promising direction for any platform

@Carnegie Mellon
Databases

106©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Newer Hardware
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

107©2004 Anastassia Ailamaki

Current/Near-future Multiprocessors

Typical platforms:
1. Chips with multiple cores
2. Servers with multiple chips
3. Memory shared across

Memory access:
� Traverse multiple hierarchies
� Large non-uniform latencies

P
P

P
P

Mem

Multiprocessor Server

P
P

P
P
P

P
P

P

Mem
Mem

Programmer/Software must Hide/Tolerate Latency

@Carnegie Mellon
Databases

108©2004 Anastassia Ailamaki

Chip Multi-Processors (CMP)

Highly variable memory latency
Speedup: OLTP 3x, DSS 2.3x on Piranha [BGM00]

Two cores

Shared L2

Example: IBM Power4, Power5

@Carnegie Mellon
Databases

109©2004 Anastassia Ailamaki

Simultaneous Multi-Threading (SMT)

Speedup: OLTP 3x, DSS 0.5x (simulated) [LBE98]

� Implements threads in a superscalar processor
� Keeps hardware state for multiple threads
� E.g.: Intel Pentium 4 (SMT), IBM Power5 (SMT&CMP)

2 cores *
2 threads

@Carnegie Mellon
Databases

110©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Query co-processing
� Databases on MEMStore

� Directions for Future Research

@Carnegie Mellon
Databases

111©2004 Anastassia Ailamaki

Oprimizing Spatial Operations

� Spatial operation is computation intensive
� Intersection, distance computation
� Number of vertices per object↑, cost↑

� Use graphics card to increase speed
� Idea: use color blending to detect intersection
� Draw each polygon with gray
� Intersected area is black because of color mixing effect
� Algorithms cleverly use hardware features

Intersection selection: up to 64%
improvement using graphics card

[SAA03]

@Carnegie Mellon
Databases

112©2004 Anastassia Ailamaki

Fast Computation of DB Operations
Using Graphics Processors

� Exploit graphics features for database operations
� Predicate, Boolean operations, Aggregates

� Examples:
� Predicate: attribute > constant
� Graphics: test a set of pixels against a reference value
� pixel = attribute value, reference value = constant

� Aggregations: COUNT
� Graphics: count number of pixels passing a test

� Good performance: e.g. over 2X improvement for
predicate evaluations

[GLW04]

Promising! Peak performance of graphics
processor increases 2.5-3 times a year

@Carnegie Mellon
Databases

113©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Query co-processing
� Databases on MEMStore

� Directions for Future Research

@Carnegie Mellon
Databases

114©2004 Anastassia Ailamaki

MEMStore (MEMS*-based storage)

� On-chip mechanical storage - using MEMS for media
positioning

Read/write
tips

Read/write
tips

Recording
media (sled)
Recording

media (sled)

ActuatorsActuators

* microelectromechanical systems

@Carnegie Mellon
Databases

115©2004 Anastassia Ailamaki

MEMStore (MEMS*-based storage)

� 60 - 200 GB capacity
� 4 – 40 GB portable

� 100 cm3 volume
� 10’s MB/s bandwidth
� < 10 ms latency
� 10 – 15 ms portable

� 2 - 10 GB capacity

� < 1 cm3 volume
� ~100 MB/s bandwidth
� < 1 ms latency

Many parallel
heads

Many parallel
heads

Single
read/write

head

Single
read/write

head

So how can MEMS help improve DB performance?

* microelectromechanical systems

@Carnegie Mellon
Databases

116©2004 Anastassia Ailamaki

Two-dimensional database access
R

ec
or

ds

Attributes
33

30

27

34

31

28

35

32

29

3

6

12

9

21

24

0

15

18

4

7

13

10

22

25

1

16

19

5

8

14

11

2

17

20

23

26

54

57

60

55

58

61

56

59

62

36 69

39 66

42 63

37 70

40 67

43 64

38 71

41 68

44 65

51 72

48 75

45 78

52 73

49 76

46 79

53 74

50 77

47 80

Exploit inherent parallelism

[SSA03,YAA03,YAA04]

@Carnegie Mellon
Databases

117©2004 Anastassia Ailamaki

Two-dimensional database access

0

20

40

60

80

100

NSM - Row order MEMStore - Row
order

NSM - Attribute
order

MEMStore - Attribute
order

S
ca

n
tim

e
(s

)

all a1 a2 a3 a4
[SSA03]

Peak performance along both dimensions

@Carnegie Mellon
Databases

118©2004 Anastassia Ailamaki

Outline

� Introduction and Overview
� New Hardware
� Where Does Time Go?
� Bridging the Processor/Memory Speed Gap
� Hip and Trendy
� Directions for Future Research

@Carnegie Mellon
Databases

119©2004 Anastassia Ailamaki

Future research directions

� Rethink Query Optimization – with increasing complexity,
cost-based optimization not ideal

� Multiprocessors and really new modular software
architectures to fit new computers
� Current research in DB workloads only scratches surface
� Optimize execution on multiple-core chips
� Exploit multithreaded processors

� Power-aware database systems
� On embeded processors, laptops, etc.

� Automatic data placement and memory layer optimization –
one level should not need to know what others do
� Auto-everything

� Aggressive use of hybrid processors

ACKNOWLEDGEMENTS

@Carnegie Mellon
Databases

121©2004 Anastassia Ailamaki

Special thanks go to…

¾ Shimin Chen, Minglong Shao, Stavros
Harizopoulos, and Nikos Hardavellas for
invaluable contributions to this talk

¾ Steve Schlosser (MEMStore)
¾ Ravi Ramamurthy (fractured mirrors)
¾ Babak Falsafi and Chris Colohan (h/w architecture)

REFERENCES
(used in presentation)

@Carnegie Mellon
Databases

123©2004 Anastassia Ailamaki

References
Where Does Time Go? (simulation only)

[ADS02] Branch Behavior of a Commercial OLTP Workload on Intel IA32 Processors. M.
Annavaram, T. Diep, J. Shen. International Conference on Computer Design: VLSI in
Computers and Processors (ICCD), Freiburg, Germany, September 2002.

[SBG02] A Detailed Comparison of Two Transaction Processing Workloads. R. Stets, L.A. Barroso,
and K. Gharachorloo. IEEE Annual Workshop on Workload Characterization (WWC), Austin,
Texas, November 2002.

[BGN00] Impact of Chip-Level Integration on Performance of OLTP Workloads. L.A. Barroso, K.
Gharachorloo, A. Nowatzyk, and B. Verghese. IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Toulouse, France, January 2000.

[RGA98] Performance of Database Workloads on Shared Memory Systems with Out-of-Order
Processors. P. Ranganathan, K. Gharachorloo, S. Adve, and L.A. Barroso. International
Conference on Architecture Support for Programming Languages and Operating Systems
(ASPLOS), San Jose, California, October 1998.

[LBE98] An Analysis of Database Workload Performance on Simultaneous Multithreaded
Processors. J. Lo, L.A. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and S. Parekh. ACM
International Symposium on Computer Architecture (ISCA), Barcelona, Spain, June 1998.

[EJL96] Evaluation of Multithreaded Uniprocessors for Commercial Application Environments.
R.J. Eickemeyer, R.E. Johnson, S.R. Kunkel, M.S. Squillante, and S. Liu. ACM International
Symposium on Computer Architecture (ISCA), Philadelphia, Pennsylvania, May 1996.

@Carnegie Mellon
Databases

124©2004 Anastassia Ailamaki

References
Where Does Time Go? (real-machine/simulation)

[RAD02] Comparing and Contrasting a Commercial OLTP Workload with CPU2000. J. Rupley II,
M. Annavaram, J. DeVale, T. Diep and B. Black (Intel). IEEE Annual Workshop on Workload
Characterization (WWC), Austin, Texas, November 2002.

[CTT99] Detailed Characterization of a Quad Pentium Pro Server Running TPC-D. Q. Cao, J.
Torrellas, P. Trancoso, J. Larriba-Pey, B. Knighten, Y. Won. International Conference on
Computer Design (ICCD), Austin, Texas, October 1999.

[ADH99] DBMSs on a Modern Processor: Experimental Results A. Ailamaki, D. J. DeWitt, M. D.
Hill, D.A. Wood. International Conference on Very Large Data Bases (VLDB), Edinburgh, UK,
September 1999.

[KPH98] Performance Characterization of a Quad Pentium Pro SMP using OLTP Workloads. K.
Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, W.E. Baker. ACM International Symposium
on Computer Architecture (ISCA), Barcelona, Spain, June 1998.

[BGB98] Memory System Characterization of Commercial Workloads. L.A. Barroso, K.
Gharachorloo, and E. Bugnion. ACM International Symposium on Computer Architecture
(ISCA), Barcelona, Spain, June 1998.

[TLZ97] The Memory Performance of DSS Commercial Workloads in Shared-Memory
Multiprocessors. P. Trancoso, J. Larriba-Pey, Z. Zhang, J. Torrellas. IEEE International
Symposium on High-Performance Computer Architecture (HPCA), San Antonio, Texas,
February 1997.

@Carnegie Mellon
Databases

125©2004 Anastassia Ailamaki

References
Architecture-Conscious Data Placement

[SSS04] Clotho: Decoupling memory page
layout from storage organization. M. Shao,
J. Schindler, S.W. Schlosser, A. Ailamaki, G.R.
Ganger. International Conference on Very
Large Data Bases (VLDB), Toronto, Canada,
September 2004.

[SSS04a] Atropos: A Disk Array Volume
Manager for Orchestrated Use of Disks. J.
Schindler, S.W. Schlosser, M. Shao, A.
Ailamaki, G.R. Ganger. USENIX Conference
on File and Storage Technologies (FAST), San
Francisco, California, March 2004.

[YAA04] Declustering Two Dimensional

@Carnegie Mellon
Databases

126©2004 Anastassia Ailamaki

References
Architecture-Conscious Access Methods

[ZR03a] Buffering Accesses to Memory-Resident Index Structures. J. Zhou and K.A. Ross.
International Conference on Very Large Data Bases (VLDB), Berlin, Germany, September 2003.

[HP03a] Effect of node size on the performance of cache-conscious B+ Trees. R.A. Hankins and
J.M. Patel. ACM International conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), San Diego, California, June 2003.

[CGM02] Fractal Prefetching B+ Trees: Optimizing Both Cache and Disk Performance. S. Chen,
P.B. Gibbons, T.C. Mowry, and G. Valentin. ACM International Conference on Management of
Data (SIGMOD), Madison, Wisconsin, June 2002.

[GL01] B-Tree Indexes and CPU Caches. G. Graefe and P. Larson. International Conference on Data
Engineering (ICDE), Heidelberg, Germany, April 2001.

[CGM01] Improving Index Performance through Prefetching. S. Chen, P.B. Gibbons, and T.C. Mowry.
ACM International Conference on Management of Data (SIGMOD), Santa Barbara, California,
May 2001.

[BMR01] Main-memory index structures with fixed-size partial keys. P. Bohannon, P. Mcllroy, and R.
Rastogi. ACM International Conference on Management of Data (SIGMOD), Santa Barbara,
California, May 2001.

[BDF00] Cache-Oblivious B-Trees. M.A. Bender, E.D. Demaine, and M. Farach-Colton. Symposium on
Foundations of Computer Science (FOCS), Redondo Beach, California, November 2000.

[RR00] Making B+ Trees Cache Conscious in Main Memory. J. Rao and K.A. Ross. ACM
International Conference on Management of Data (SIGMOD), Dallas, Texas, May 2000.

[RR99] Cache Conscious Indexing for Decision-Support in Main Memory. J. Rao and K.A. Ross.
International Conference on Very Large Data Bases (VLDB), Edinburgh, the United Kingdom,
September 1999.

[LC86] Query Processing in main-memory database management systems. T. J. Lehman and M.
J. Carey. ACM International Conference on Management of Data (SIGMOD), 1986.

@Carnegie Mellon
Databases

127©2004 Anastassia Ailamaki

References
Architecture-Conscious Query Processing

[MBN04] Cache-Conscious Radix-Decluster Projections. Stefan Manegold, Peter A. Boncz, Niels Nes, Martin L.
Kersten. In Proceedings of the International Conference on Very Large Data Bases (VLDB), Toronto, Canada,
September 2004.

[GLW04] Fast Computation of Database Operations using Graphics Processors. N.K. Govindaraju, B. Lloyd, W.
Wang, M. Lin, D. Manocha. ACM International Conference on Management of Data (SIGMOD), Paris, France,
June 2004.

[CAG04] Improving Hash Join Performance through Prefetching. S. Chen, A. Ailamaki, P. B. Gibbons, and T.C.
Mowry. International Conference on Data Engineering (ICDE), Boston, Massachusetts, March 2004.

[ZR04] Buffering Database Operations for Enhanced Instruction Cache Performance. J. Zhou, K. A. Ross. ACM
International Conference on Management of Data (SIGMOD), Paris, France, June 2004.

[SAA03] Hardware Acceleration for Spatial Selections and Joins. C. Sun, D. Agrawal, A.E. Abbadi. ACM
International conference on Management of Data (SIGMOD), San Diego, California, June,2003.

[CHK01] Cache-Conscious Concurrency Control of Main-Memory Indexes on Shared-Memory Multiprocessor
Systems. S. K. Cha, S. Hwang, K. Kim, and K. Kwon. International Conference on Very Large Data Bases
(VLDB), Rome, Italy, September 2001.

[PMA01] Block Oriented Processing of Relational Database Operations in Modern Computer Architectures. S.
Padmanabhan, T. Malkemus, R.C. Agarwal, A. Jhingran. International Conference on Data Engineering
(ICDE), Heidelberg, Germany, April 2001.

[MBK00] What Happens During a Join? Dissecting CPU and Memory Optimization Effects. S. Manegold, P.A.
Boncz, and M.L.. Kersten. International Conference on Very Large Data Bases (VLDB), Cairo, Egypt,
September 2000.

[SKN94] Cache Conscious Algorithms for Relational Query Processing. A. Shatdal, C. Kant, and J.F. Naughton.
International Conference on Very Large Data Bases (VLDB), Santiago de Chile, Chile, September 1994.

[NBC94] AlphaSort: A RISC Machine Sort. C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D.B. Lomet. ACM
International Conference on Management of Data (SIGMOD), Minneapolis, Minnesota, May 1994.

@Carnegie Mellon
Databases

128©2004 Anastassia Ailamaki

References
Instrustion Stream Optimizations and

DBMS Architectures

[HA04] STEPS towards Cache-resident Transaction Processing. S. Harizopoulos and A. Ailamaki.
International Conference on Very Large Data Bases (VLDB), Toronto, Canada, September
2004.

[APD03] Call Graph Prefetching for Database Applications. M. Annavaram, J.M. Patel, and E.S.
Davidson. ACM Transactions on Computer Systems, 21(4):412-444, November 2003.

[SAG03] Lachesis: Robust Database Storage Management Based on Device-specific Performance
Characteristics. J. Schindler, A. Ailamaki, and G. R. Ganger. International Conference on
Very Large Data Bases (VLDB), Berlin, Germany, September 2003.

[HA02] Affinity Scheduling in Staged Server Architectures. S. Harizopoulos and A. Ailamaki.
Carnegie Mellon University, Technical Report CMU-CS-02-113, March, 2002.

[HA03] A Case for Staged Database Systems. S. Harizopoulos and A. Ailamaki. Conference on
Innovative Data Systems Research (CIDR), Asilomar, CA, January 2003.

[B02] Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications. P. A. Boncz.
Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, May 2002.

[PMH02] Computation Regrouping: Restructuring Programs for Temporal Data Cache Locality.
V.K. Pingali, S.A. McKee, W.C. Hseih, and J.B. Carter. International Conference on
Supercomputing (ICS), New York, New York, June 2002.

[ZR02] Implementing Database Operations Using SIMD Instructions. J. Zhou and K.A. Ross.
ACM International Conference on Management of Data (SIGMOD), Madison, Wisconsin, June
2002.

@Carnegie Mellon
Databases

129©2004 Anastassia Ailamaki

References
Newer Hardware

[BWS03] Improving the Performance of OLTP Workloads on SMP Computer Systems by Limiting
Modified Cache Lines. J.E. Black, D.F. Wright, and E.M. Salgueiro. IEEE Annual Workshop
on Workload Characterization (WWC), Austin, Texas, October 2003.

[GH03] Technological impact of magnetic hard disk drives on storage systems. E. Grochowski
and R. D. Halem IBM Systems Journal 42(2), 2003.

[DJN02] Shared Cache Architectures for Decision Support Systems. M. Dubois, J. Jeong , A.
Nanda, Performance Evaluation 49(1), September 2002 .

[G02] Put Everything in Future (Disk) Controllers. Jim Gray, talk at the USENIX Conference on
File and Storage Technologies (FAST), Monterey, California, January 2002.

[BGM00] Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing. L.A. Barroso, K.
Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B.
Verghese. International Symposium on Computer Architecture (ISCA). Vancouver, Canada,
June 2000.

[AUS98] Active disks: Programming model, algorithms and evaluation. A. Acharya, M. Uysal, and
J. Saltz. International Conference on Architecture Support for Programming Languages and
Operating Systems (ASPLOS), San Jose, California, October 1998.

[KPH98] A Case for Intelligent Disks (IDISKs). K. Keeton, D. A. Patterson, J. Hellerstein. SIGMOD
Record, 27(3):42--52, September 1998.

[PGK88] A Case for Redundant Arrays of Inexpensive Disks (RAID). D. A. Patterson, G. A. Gibson,
and R. H. Katz. ACM International Conference on Management of Data (SIGMOD), June 1988.

@Carnegie Mellon
Databases

130©2004 Anastassia Ailamaki

References
Methodologies and Benchmarks

[DMM04] Accurate Cache and TLB Characterization Using hardware Counters. J. Dongarra, S.
Moore, P. Mucci, K. Seymour, H. You. International Conference on Computational Science
(ICCS), Krakow, Poland, June 2004.

[SAF04] DBmbench: Fast and Accurate Database Workload Representation on Modern
Microarchitecture. M. Shao, A. Ailamaki, and B. Falsafi. Carnegie Mellon University Technical
Report CMU-CS-03-161, 2004 .

[KP00] Towards a Simplified Database Workload for Computer Architecture Evaluations. K.
Keeton and D. Patterson. IEEE Annual Workshop on Workload Characterization, Austin,
Texas, October 1999.

@Carnegie Mellon
Databases

131©2004 Anastassia Ailamaki

Useful Links

� Info on Intel Pentium4 Performance Counters:
ftp://download.intel.com/design/Pentium4/manuals/25366814.pdf

� AMD hardware performance counters
http://www.amd.com/us-en/Processors/DevelopWithAMD/

� PAPI Performance Library
http://icl.cs.utk.edu/papi/

� Intel® VTune™ Performance Analyzers
http://developer.intel.com/software/products/vtune/

