
1

Page ‹#›

Oracle Database 10g
The Self-Managing Database

Benoit Dageville
Oracle Corporation

benoit.dageville@oracle.com

2

Page ‹#›

Agenda

 Oracle10g: Oracle’s first generation of
self-managing database

 Oracle’s Approach to Self-managing
 Oracle10g Manageability Foundation
 Automatic Database Diagnostic Monitor (ADDM)
 Self-managing Components
 Conclusion and Future Directions

Oracle10g

3

Page ‹#›

Oracle10g

 Oracle10g is the latest version of the Oracle
DBMS, released early 2004

 One of the main focus of that release was self-
management

– Effort initiated in Oracle9i
 Our vision when we started this venture four

years ago: make Oracle fully self-manageable
 We believe Oracle10g is a giant step toward

this goal

Oracle’s
Approach

4

Page ‹#›

Oracle’s Approach: Server Resident

 Technology built inside the database server
– Eliminate management problems rather than “hiding” them

behind a tool
– Minimize Performance Impact
– Act “Just in Time” (e.g. push versus pull)
– Leverage existing technology
– Effective solutions require complete integration with various

server components
 server becoming so sophisticated that a tool based

solution can no longer be truly effective
– Mandatory if the end-goal is to build a truly self-managing

database server

Oracle’s Approach: Seamless GUI
Integration

5

Page ‹#›

Oracle’s Approach: Holistic
 Avoid a collection of point solutions
 Instead, build a comprehensive solution

– Core manageability infrastructure
 Comprehensive statistics component
 Workload Repository
 Server based alerts
 Advisory framework

– Central self-diagnostic engine built into core database (Automatic
Database Diagnostic Monitor or ADDM)

– Self-managing Components
 Auto Memory Management, Automatic SQL Tuning, Automatic

Storage Management, Access Advisor, Auto Undo Retention, Space
Alerts, Flashback….

 Follow the self-managing loop: Observe, Diagnose,
Resolve

Oracle’s Approach: Out-of-box
 Manageability features are enabled by default

– Features must be very robust
– Minimal performance impact
– Outperform manual solution
– Self-managing solution has to be self-manageable!

 Zero administrative burden on DBAs
 Examples

– Statistics for manageability enabled by default
– Automatic performance analysis every hour
– Auto Memory Management of SQL memory is default
– Optimizer statistics refreshed automatically
– Predefined set of server alerts (e.g. space, …)
– And much more…..

6

Page ‹#›

 Low End Customers
– No dedicated administrative staff
– Automated day to day operations
 Optimal performance out of the box, no need to set configuration

parameters
 High End Customers

– Flexibility to adapt product to their needs
– Self-management features should outperform manual tuning and

ensure predictable behavior
– Need to understand and monitor functioning of self-management

operations
 Help DBAs in making administrative decisions (no need for DBA

to be rocket scientist!)
 Any workload: OLTP, DSS, mixed

Oracle’s Approach:
Manageability for All

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

Database
Control

(EM)

ADDM

Oracle’s Approach:
Manageability Architecture

Manageability Infrastructure

7

Page ‹#›

Manageability Infrastructure

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

ADDM

Manageability Infrastructure

Manageability Infrastructure:
Overview

Workload Statistics
Subsystem

Automatic Maintenance Task
Infrastructure

Server-generated Alert
Infrastructure

Advisory
Infrastructure

Foundation for Self-managing
 Workload Statistics Subsystem

– Intelligent Statistics
– AWR: “Data Warehouse” of

the Database
 Automatic Maintenance Tasks

– Pre-packaged, resource
controlled

 Server-generated Alerts
– Push vs. Pull, Just-in-time,

Out-of-the-box
 Advisory Infrastructure

– Integrated, uniformity,
enable inter-advisor
communication

8

Page ‹#›

Statistics: Overview

ADDM

Alerts

In memory
statistics

Workload Repository

Shared-Memory

V$ Views

Historical
Statistics

Statistic Snapshot

Statistics: Classes
 Database Time Model

– Understand where database time is spent
 Sampled Database Activity

– Root cause analysis
 What-if

– Self managing resource (e.g. memory)
 Metrics and Metric History

– Trend analysis, Capacity planning
– Server alerts (threshold based), Monitoring (EM)

 Base Statistics
– Resource (IO, Memory, CPU), OS, SQL, Database Objects,

…

9

Page ‹#›

Statistics: Database Time Model

 Operation Centric
– Connection Management
– Compilation
– SQL, PLSQL and Java execution

times

User I/O

Application

ClusterConcurrency

SQL Exec

PLSQL Exec

 Connection Mgmt
Compilation

Java Exec

 Resource Centric
– Hardware: CPU, IO, Memory
– Software: Protected by locks

(e.g. db buffers, redo-logs)

Database Time

Drill-down: Session, System,
SQL,
Service/Module/Action, Client ID

Statistics: Sampled Database
Activity
• In-memory log of key attributes of database

sessions activity
• Use high-frequency time-based sampling (1s)
• Done internally, direct access to kernel structures
• Data captured includes:

– Session ID (SID)
– SQL (SQL ID)
– Transaction ID
– Program, Module, Action
– Wait Information (if any)

 Operation Type (IO, database lock, …)
 Target (e.g. Object, File, Block)
 Time

 Fine Grained History of Database Activity

10

Page ‹#›

Statistics: Sampled Database
Activity

DB Time
SID=213

WAITING

State

Block readqa324jffritcf2137:38:26

WaitSQL IDModuleSIDTime

CPUaferv5desfzs5Get review id2137:38:31

WAITING Log Syncabngldf95f4deOne click2137:38:37

WAITING Busy Buffer Waithk32pekfcbdfrAdd to cart2137:38:35

Book by author

V$ACTIVE_SESSION_HISTORY

Query for
Melanie

Craft Novels

Browse and
Read

Reviews

Add
item to

cart

Checkout
using

‘one-click’

Statistics: What-if (Overview)
 Predict performance impact of changes in amount of memory allotted

to a component, both decrease and increase.
 Highly accurate, maintained automatically by each memory

component based on workload.
 Use to diagnose under memory configuration (ADDM).
 Use to decide when to transfer memory between shared-memory

pools (Auto Memory Management).
 Not limited to memory (e.g. use to compute auto value of MTTR)
 Produced by

– Buffer cache
– Shared pool - integrated cache for both database object metadata and

SQL statements
– Java cache for class metadata
– SQL memory management - private memory use for sort, hash-joins,

bitmap operators

11

Page ‹#›

Statistics: What-if (Example)

 Reducing buffer cache size to 10MB increases IOs by a 2.5 factor
 Increase buffer cache size to 50MB will reduce IOs by 20%

V$DB_CACHE_ADVICE

Base Statistics – e.g. SQL

 Maintained by the Oracle cursor cache
 SQL id – unique text signature
 Time model break-down
 Sampled bind values
 Query Execution Plan
 Fine-grain Execution Statistics (iterator level)
 Efficient top SQL identification using Δs

12

Page ‹#›

AWR: Automatic Workload
Repository
 Self-Managing Repository of Database Workload

Statistics
– Periodic snapshots of in-memory statistics stored in database
– Coordinated data collection across cluster nodes
– Automatically purge old data using time-based partitioned

tables
– Out-Of-The-Box: 7 days of data, 1-hour snapshots

 Content and Services
– Time model, Sampled DB Activity, Top SQL, Top objects, …
– SQL Tuning Sets to manage SQL Workloads

 Consumers
– ADDM, Database Advisors (SQL Tuning, Space, …), ...
– Historical performance analysis

Automatic Database
Diagnostic Monitor (ADDM)

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

ADDM

Manageability Infrastructure

13

Page ‹#›

ADDM: Motivation
 Problem: Performance tuning requires high-expertise

and is most time consuming task
 Performance and Workload Data Capture

– System Statistics, Wait Information, SQL Statistics, etc.
 Analysis

– What types of operations database is spending most time on?
– Which resources is the database bottlenecked on?
– What is causing these bottlenecks?
– What can be done to resolve the problem?

 Problem Resolution
– If multiple problems identified, which is most critical?
– How much performance gain I expect if I implement this

solution?

ADDM: Overview
 Diagnose component of the system wide self-managing loop
 … and the entry point of the resolve phase
 Central Management Engine

– Integrate all components together
– Holistic time based analysis
– Throughput centric top-down approach
– Distinguish symptoms from causes (i.e root cause analysis)

 Runs proactively out of the box (once every hour)
– Result of each analysis is kept in the workload repository

 Can be used reactively when required

 ADDM is the system-wide optimizer of the database

14

Page ‹#›

SQL
Advisor

High-load
SQL

IO / CPU
issues RAC issues

Automatic Diagnostic Engine

Snapshots in
Automatic Workload

Repository

Self-Diagnostic Engine

System
Resource

Advice

Network +
DB config

Advice

 Top Down Analysis Using AWR
Snapshots

 Classification Tree - based on
decades of Oracle tuning expertise

 Identifies main performance
bottlenecks using time based
analysis

 Pinpoints root cause
 Recommend solutions or next step
 Reports non-problem areas

– E.g. I/O is not a problem

How Does ADDM Work?

ADDM: Methodology
Problem classification system

 Decision tree based on the Wait Model and Time Model
……

Wait Model

Cluster

User I/O

Concurrency

……

Buffer Busy

Parse Latches

Buf Cache latches

……

Root CausesSymptoms

15

Page ‹#›

ADDM: Taxonomy of Findings
 Hardware Resource Issues

– CPU (capacity, top-sql, …)
– IOs (capacity, top-sql, top-objects, undersized memory cache)
– Cluster Interconnect
– Memory (OS paging)

 Software Resource Issues
– Application locks
– Internal contention (e.g. access to db buffers)
– Database Configuration

 Application Issues
– Connection management
– Cursor management (parsing, fetching, …)

ADDM: Real-world Example
 Reported by Qualcomm when upgrading to Oracle10g
 After upgrading, Qualcomm noticed severe performance degradation
 Looked at last ADDM report
 ADDM was reporting high-cpu consumption

– and identified the root cause: a SQL statement
 ADDM recommendation was to tune this statement using Automatic

SQL tuning
 Automatic SQL tuning identified missing index. The index was created

and performance issue was solved
 In this particular case, index was dropped by accident during the

upgrade process!

16

Page ‹#›

Self-managing Components

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

ADDM

Manageability Infrastructure

Self-managing
Components

Performance
(ADDM)

Auto SQL Tuning

Access Advisor

Memory

Space

Auto Managed
(Private - SQL)

Auto Managed
(Shared - Pools)

Segment Advisor

Undo Advisor

Auto Storage
Management

Administration

SQL

Backup/
Recovery

Resource
Manager

RMAN

Flashback

Auto MTTR

Auto Stat Collect

Server Alerts

17

Page ‹#›

 Shared Memory Management
– Automatically size various shared memory pools (e.g.

buffer pool, shared pool, java pool)
– Use “what-if” statistics maintain by each component to

trade off memory
 Memory is transferred where most needed

 Private Memory (VLDB 2002)
– Determine how much memory each running SQL

operator should get such that system throughput is
maximized

– Global memory broker: compute ideal value based on
memory requirement published by active operators

– Adaptive SQL Operators: can dynamically adapt their
memory consumption in response to broker instructions

 No need to configure any parameter except for the
overall memory size (remove many parameters)

Automatic Memory Management

Automatic Shared-Memory
Management: Tuning Pool Sizes

Java Pool

Shared Pool

Buffer Cache

Java Pool

Shared Pool

Buffer Cache

Automatic
Memory Manager

Reconfigure
Process

18

Page ‹#›

Automatic SQL Tuning: Concept

DBA

High-Load
SQL

ADDM

SQL
Workload

…
Add Missing
Indexes

Modify SQL
Constructs

Create a SQL
Profile

Gather
Missing or
Stale Stats

Automatic SQL
Tuning

SQL
Profiling
Access Path
Analysis

SQL
Structure
Analysis

SQL Tune
Advisor

Automatic SQL Tuning: Overview
 Performed by the Oracle query optimizer running in tuning

mode
– Uses same plan generation process but performs additional

steps that require lot more time

 Optimizer uses this extra time to
– Profile the SQL statement

 Validate data statistics and its own estimate using dynamic
sampling and partial executions

 Look at past executions to determine best optimizer settings
 Optimizer corrections and settings are stored in a new

database object, named a “SQL Profile”
– Explore plans which are outside its regular search space

Ÿ To investigate the use of new access structures (i.e. indexes)
Ÿ To investigate how SQL restructuring would improve the plan

19

Page ‹#›

Automatic SQL Tuning: SQL Profiling

Optimizer
(Tuning
Mode)

createsubmit

SQL Profiling

Optimizer
(Normal Mode)

outputsubmit

SQL
Profile

SQL Tuning
Advisor

Database
Users

Well-Tuned
Plan

After … use

 Persistent: works across shutdowns and upgrades
 SQL profiling ideal for packaged applications (no change to SQL text)

SQL Profiling: Performance
Evaluation

Time (s)

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Queries

Using 73 high-load queries from GFK, a
market analysis company located in Germany

Time (s)

1

1 0

1 0 0

1 0 0 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5 6 9

Queries

Before… …After

20

Page ‹#›

Automatic SQL Tuning: What-if
Analysis
 Schema changes: invokes access advisor

– Comprehensive index solutions (b-tree, bitmap, functional)
– Materialized views recommendations maximizing query rewrite while

minimizing maintenance cost
– Any combination of the above two (e.g. new MV with an index on it)
– Consider the entire SQL workload

 SQL Structure Analysis
– Help apps developers to identify badly written statements
– Suggest restructuring for efficiency by analyzing execution plan
– Solution requires changes in SQL semantic  different from optimizer

automatic rewrite and transformation
– Problem category

 Semantic changes of SQL operators (NOT IN versus NOT EXISTS)
 Syntactic change to predicates on index column (e.g. remove type

mismatch to enable index usage)
 SQL design (add missing join predicates)

Conclusion & Future Directions

 Oracle10g major milestone in the Oracle’s
manageability quest

– Manageability foundation
– Holistic Management Control (ADDM)
– Self-manageable components

 Future
– Oracle11g: find an EVE for ADDM?
– Even more self-manageable by fully automating

the resolve phase

21

Page ‹#›

More Information?


Industrial Session 4 11:00- 12:30




http://www.oracle.com/technology/products/manageability
/database/index.html

