
1

UIUC

1

Security of Shared Data in Large
Systems

Arnon Rosenthal
Marianne Winslett

Obtain slides at VLDB web site, http://dais.cs.uiuc.edu/pubs/, or from
speakers’ USB devices

UIUC

2

Agenda

• Introduction
– History, and an attempt to diagnose what

inhibited technology transfer
– Challenge problems appetizer

• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in

example application areas

UIUC

3

This tutorial is unusual
We want to help researchers move into this area, and

produce results with broad impact
• Most tutorials teach you about the state of the art
• We emphasize open problems (research+ practical

steps)
– Securing large systems and large information structures

(databases, middleware objects, document bases)
• From n-tier to emerging

– Security problems where data management skills are helpful
– General DB problems whose solutions

• help us improve security
• can benefit from security techniques

• We select problems for
– leverage with previous DB research and skills
– benefit to the most widespread DB applications

2

UIUC

6What’s been added to DBMS
security since 1980s
• Roles, role hierarchies

– SQL role is a set of privileges or users
– But industry did roles, DB researchers arrived after

• Receive “identity” information from middleware
or OS
– But can’t use it in a view definition

• Filter query response based on row or column
security labels (described later)

• Security for new features added to SQL
– Triggers, nested tables, objects, procedures
– Security features are tightly coupled to data model

UIUC

7Which additions owed a debt to
data security researchers?
Why were we unable to help vendors (enterprises)

improve this (now-critical) aspect?
• Vendors’ interest in security was mild (but nonzero)

• Too few ideas were worth transferring --- why?
– Do we respect the concerns of DBMS and tool vendors?

• Simple, rigorous semantics, e.g.,
– Few fundamental constructs
– Few tricky feature interactions

• Compatibility with the past
• Manageable size for each extension

These generate neat research issues, too

UIUC

8

Wrong problems
• Inelegant – unlikely to yield clear insights

that may be useful in other situations
• Unrealistic: fail the “giggle test”, even long term

Without laughing, describe a full scenario where
customers might pay -- buy the software, capture
system descriptions, specify policies, …

• Too many preconditions that are difficult to meet
– Distributed DB security: relied on Deny to override Grant
– Prevent an adversary from inferring info they cannot access:

Enterprise must first protect individual columns! Also, document
what an adversary knows, forbid anonymous access, be able to
query past accesses.

3

UIUC

9

Right problems, wrong proposals

Results were unready to transfer to developers
• Non-modular

– Reinvents non-security functionality, e.g., new query optimizers,
temporal and spatial datatypes

– Need several difficult features at once (distribution, negatives)
• Useful functionality, but administration did not scale
• Semantics were filled with special cases (e.g., Deny)
• Features not reconciled with full SQL

– Often created for middleware policy engines
– Unknown interactions with view and metadata security, trigger

semantics, …

Excellent problems for a beginning researcher

UIUC

11Three “big” research challenges to
whet your appetite
• Allow one DBMS to support multiple

security models
• Compile high level policies down to

executable mechanisms
• Rewrite another system’s policy in your

own terms

UIUC

121. How can one DBMS best
support multiple security models?

SQL
security model

DBMS Security

RDF
sec. model

OWL
sec.

model
XML

sec. model

How can security model be orthogonal to
data model?

4

UIUC

14Security policy chaos in today’s
n-tier systems

Bill

Application Server
(e.g., WebSphere, WebLogic)

ShipSellBuy method

Product Order

Authenticate

Databases (tables/docs)

View/
Proc

UIUC

152. Compile “business” policies
to physical implementation

Individually identified medical data shall be
available only to professionals

treating the patient,
with medium-high confidence

Install policies
 on tables,
documents

Suitable
• data allocation
• execution plan

?

UIUC

163. Translate, transfer policy across
organization and system boundaries

Paris Hospital
Enforcement: DBMS
Policy applied: France
Roles: Hospital (Emergency Care)

Aetna Travel Insurance
Enforcement: Application server
Policy applied: US (NY)
Roles: HiPAA (Aetna version)

?

5

UIUC

17Common themes to these and
other research challenges
• Reduce workload and skill to administer policies
• Cope with heterogeneity

– In security info (formalisms, role sets, policies)
– In data (data model, schema, instances, semantics)

• Compare desired policy and actual result
• Trust in partners for policy specification and/or

enforcement
• Cope with distribution, autonomy, evolution, but

exploit favorable simpler cases

UIUC

18

Agenda

• Introduction
• Security basics

– Desirable properties
– Getting there

• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in

example application areas

UIUC

19security basics
Confidentiality
• Prevent information from going to the

wrong recipient
• Not synonymous with privacy

6

UIUC

21“Privacy-preserving X” harmfully
blurs a useful distinction

Inhibits communication with
conventional systems,
privacy advocates

• Confidential info sharing
(non-disclosure) is useful for
proprietary info, with no
privacy issues

• Privacy advocates include
many other measures in
their policy – e.g., must notify

Confidentiality

Privacy

UIUC

22security basics
Integrity
• Ensuring data is right
• Definitions of “right” in different communities:

System Security: Not changed inappropriately
• E.g., tamper-evident signed message digests

IT Security: Produced appropriately [Biba, Clark-Wilson]
IT: Data quality (freshness, precision, provenance, …)
DB: Satisfies all relevant constraints

• E.g., ACID transactions, key constraints

• Related issue: trust
• Too rarely all considered together

UIUC

23security basics
Trust & data provenance
• Trust: willingness to rely on an entity for a particular

purpose
– Hot topic in open systems

• Trust in data depends on its integrity, freshness,
accuracy, provenance, its source’s reputation and
objective properties, etc.
– Data provenance is a hot issue for scientists and intelligence

analysts
• How can we integrate these concepts to specify and

reason about the level of trust in a data item?
– Particularly interesting in the context of derived data and in

information integration

7

UIUC

24security basics
Authorization

• Can this party do this action on this object
– Should there be a side effect (e.g., audit log

entry, email notification,…)
• Some approaches to authorization policies

– Unix file system
– Role-based access control
– Attribute-based access control
– Security levels

UIUC

25security basics
Intellectual property issues
• Easy case: recipient cooperates, e.g.,

between government agencies
– Pass policy to recipient, in terms of objects

the recipient understands
– IBM, others work on sticky policies

• Tough case: adversary owns the machine
– Not necessarily about secrecy
– Goal: cradle-to-grave control over access
Not addressed in this tutorial

UIUC

26security basics
Confidence
• Likelihood that desired security properties

hold
– Relative to a threat model

• Some practices to judge confidence, and
use it:
– Certify: reviewer announces their confidence

in a description of system behavior
– Accredit: executive decides that benefits

exceed the risks

8

UIUC

27

Agenda

• Introduction
• Security basics

– Desirable properties
– Getting there

• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in

example application areas

UIUC

29security basics

Access control and release
• Access control policy governs pull situations

– Bob wants to do an action on Alice’s object; will Alice
let him?

• Release policy governs push situations
– Assuming Alice has read an object, can she send

Bob a copy?
– Used in government, and for proprietary info (mostly

for read-only objects)

• Not independent:
 Bob can Access ⇒

 Alice can Release to Bob

UIUC

30security basics

Delegation
• Your declaration of when another party will

be speaking for you / acting for you
• Most often: one party grants a right to

another party
– E.g., to perform a specific kind of action on a specific object

• Examples
– SQL “with grant option”: unconditional delegation
– Verisign delegates right to create identity credentials
– Trust management languages offer conditional delegation

Authorize(Arnie, Purchase) :=
 Authorize(Marianne, Purchase), Purchase.Amt < $100

9

UIUC

31security basics

Enforcement, credentials
• Enforcement approaches

– Server routes all requests through a “reference
monitor” (DBMS, application server, OS)

– Check when a boundary is crossed (usually
physical): firewalls, gateways

• Can be very small server, hardware assisted, with high
confidence for simple policies (e.g., filter for forbidden
words, XML filtering)

• Credentials approaches
– Server holds them and checks (e.g., DBMS

authorization)
– Mobile (single sign-on, trust management)

UIUC

32security basics

How to decide if you’re “there”
1. Where is “there”?

– Decide what actions/states wrt your data are
legitimate/forbidden (create your policies)

– Determine the likely threats
2. Pick/develop technology to mitigate the risks to

acceptable levels
– Consider implementation constructs’ resistance to

known threats (e.g., data partitioning in case of
machine takeover)

– Do a cost/benefit analysis
3. Evaluate your proposed technology as follows

UIUC

33Evaluation criteria (for both
researchers and developers), 1
• Passes the giggle test (on cost/benefit)
• Usable

– No CS degree should be required of users or administrators

• Cheap enough
– Development effort, learning curve, admin

• Scalable
– To large numbers of objects, subobjects, actions, subjects,

organizations, sites

• Analyzable
– Current state: what a given subject/object can do/have done to it
– What-if queries: determine effect of changes in advance

10

UIUC

34security basics

Evaluation criteria, 2
• Flexible, extensible

– Rapid response to unanticipated emergencies, opportunities

• Modular/universal/orthogonal/
composable/compatible

– Applicable in many places, many futures
– Can others build on your solution (clean, high quality)?

• Rigorous (thorough)
– Behavior of foundational components should be fully captured

by the model---hard to anticipate future uses
– If implementations leak info (e.g., about “secret” view

definition), bring into the model by requiring release privilege

UIUC

35

Agenda
• Introduction
• Security basics
• State of the art and open problems

– Problem context (a reality check)
– SQL
– Privilege limitation
– Role-Based & Attribute-Based Access Control (RBAC, ABAC)
– Label-based access control

• Policies as a unifying framework
• Security issues and opportunities in example application

areas

UIUC

36A common architecture: each DB
object belongs to ~one server

Web Server App. Server SAP PeopleSoft

other
databases…

11

UIUC

37
problem context
Policy administration in enterprises
• DBs are not the center of the policy admin universe

– Few researchers at the Access Control conference
(SACMAT04) really knew the SQL security model

• A policy must be conceptually near the resources it
controls
– Middleware knows application methods, e.g., Admit(Patient)
– DBMS is smart, fast with structured info, consistent when there

are multiple paths to same datum
• Database security administration is often ignored

– 30% assign privileges to real users or roles, mostly to entire
tables

– 70% use DBMS security only to restrict each table to one app
• Consider nontechnical fixes: Packaged applications

may move to a built-in security policy

UIUC

38problem context
Scale
• SAP has 10**4 tables, GTE over 10**5 attributes
• A brokerage house has 80,000 applications, a US

government entity thinks that it has 350K

• Admin and implementation require
– Automated help
– Massive delegation (within limits)

• Our advice
– Start with broad, general security policy statements
– Refine under pressure
– Beware: in formal acquisitions, contractors often build to the

letter of specifications, not the spirit

UIUC

40
problem context
Policy administration in enterprises
• DBAs are considered untrustworthy (too casual) to be

given superuser-type powers
– But they still have complete privileges
– Thus: extra layer, controlled by security officers, to limit/audit DBAs

• Administrators need training in both technology and
judgment – making evolution costly and slow. Simplify!

• Single sign-on is typically the top priority, rather than
policy specification

12

UIUC

41problem context
Management of security data
• We collect lots of security-related data

– Audit trails, surveillance video/camera,
RFIDs, GPS, cell phones, electronic lock
records, etc.

• How can we analyze it and assess its
quality in a scalable manner?
– Relevant research: mining patterns of normal/

anomalous operation, metadata
management, protection against alteration,
privacy issues

Not discussed much in this tutorial

UIUC

42

Agenda
• Introduction
• Security basics
• State of the art and open problems

– Problem context
– SQL
– Privilege limitation
– Role-Based, Attribute-Based Access Control
– Label-based access control

• Policies as a unifying framework
• Security issues and opportunities in example

application areas

UIUC

43

SQL security model overview
• Privileges on data objects (tables, columns), schema objects,

stored procedures, triggers, more in the future
 grant <list of operations>

on <list of objects>
to <list of identities>
[with grant option] /* right to delegate */

• A privilege must be supported by a chain from owner
– When grantor loses rights, revoke cascades. So DBA grants all?
– Delegation is only for privileges you have

• Object creator is “owner”, with full privileges
– Ownership cannot be transferred

• Schema is visible iff user has some rights on the object
– View/procedure definitions only for the owner

Models for distributed trust, label security, XML security diverge from
these design choices

13

UIUC

45

SQL lacks many essentials
Some (neatly bounded) extensions needed by SQL2003,

RDBMSs, and many other data/query models
• Manage security for a distributed relational database

(Issues: double admin for views (even synonyms);
local autonomy)

• Infer a user’s right to view a subset of the data,
transparent to application writers (views are not)
– Without changing query semantics

• Guarantee that administrators do not delegate
excessive privileges

• Decentralize power appropriately (ownership, DBA roles)
• Abstract and modularize the specification of the

standard, so it can be extended safely and easily

UIUC

46Build grad students’ muscles
Rework “ownership”
• Owner of container currently gets full

rights to the contents!
– Owner’s real contribution was metadata and

creating a container, not data content
• So why should they have full privileges?

– Upon creation, transfer creator’s content and
metadata privileges to “domain” administrators

– Allow any user (including owner) to “move” their
rights to someone else

• Avoid cascading revoke
• Allow recipient to gain sole ownership

UIUC

47Build grad students’ muscles
Control metadata visibility

Select GoodCredit from Customer where
 scoringFunction(ZipCode, Age) > 6789

• Devise a suitable model for metadata protection
– Publish or protect business process info in view definitions
– Controlled browsing of catalogs by users who lack access to

underlying data

• Requirements for the solution
– Minimize admin work
– Retain privileges that users have already granted
– Avoid loose ends (e.g., who may use each m’data item to

enforce a constraint or rewrite a queries)

14

UIUC

48SQL view privilege ≡
 the right to use the view interface
Grant Read on Patient to Doctors
Grant Read on AdultPatient to Researcher

Application
using view

AdultPatient

Researcher
but not Doctor

Application
using
Select *
from Patient
where Age>65

AdultPatient =
Select where Age>18

Patient

not
Researcher

UIUC

50Privileges on views and
procedures (i.e., derived objects)
• Principle: Infer a privilege when you detect that it does not

increases user’s power
– Interacts with metadata, distribution, ownership, …

• Implement privilege inference efficiently
– Adapt the query optimizer to generate equivalent forms
– Detect equivalences that hold in the current db instance [Rizvi et. al. 04]

• Practical case(?): Examine just the query result

• Handle federation and warehouse (materialized) views, with
minimum new semantics and mechanism
– Autonomy: control over security stops at organizational boundaries.
– Negative privileges are a big, controversial add-on

 Often a query will not be answerable from user-visible info. (This is a
general problem in publish/subscribe)

• Suggest an alternative query that the user can execute, and explain
how it differs from what they requested

UIUC

52Build grad students’ muscles
Abstract models for SQL
• Help restate the standard (+ vendor products),

in a way that enables easier extension,
integration
– Describe query/update execution semantics in a way

that shows what operations may be executed [RoSc04b]

• Use it to explain needed privileges
• Rewrite statements on views as SQL statements on

underlying tables

– Use abstract concepts, e.g., contains, is-a, derived
object (perhaps from object models)

• Compare with constructs in other models

15

UIUC

58

Kinds of privilege limitations skip

• Revoke: an extreme case of privilege limitation?
• Local Deny (w.r.t. a given grant): Equivalent to

imposing a predicate restricting use of the privilege
[RoSc00, Sadhigi03]

• Global “Deny” (asserted/revoked as grants), sometimes
with predicates, overrides [many, e.g., Jonscher, Jajodia, Bertino, …]
– Violates delegated administration?
– Can administrator understand the state?

• Privilege factors: separate concerns among
collaborating administrators (Semi-static, organization-
friendly)

• Attach predicates to privileges (or denials)

UIUC

59Help administrators collaborate:
Decompose privileges

Privilege for “Display AvgCostInfo”

Info factors

Secrecy

Privacy Safety Fence

Execution
factors

Hacking
Performance Safety Fence

Get an attribute if all children are satisfied or by direct assertion
Simpler decisions, single skill, independently administered
Changes easily: When situation changes, review just that part
Safety fence provides guarantees

UIUC

60

Denial versus safety fences
• Compare pragmatics of denial-based approach

and “safety fence” factors
– Reformulate as a trust management problem, with factors as

predefined attribute types
• Meta-problem: Define and apply criteria for

comparing proposed facilities’ “simplicity”
– Ease of administration (learning curve & admin effort at

small/large scales)
– Expressiveness and flexibility (suiting the needs)
– Ease of implementation by vendors, in various architectures

(e.g., policy mgmt system downloads grants to DBMS)
– Efficient implementation

• Implement the best admin models (once known)

16

UIUC

62

Agenda
• Introduction
• Security basics
• State of the art and open problems

– Problem context
– SQL
– Privilege limitation
– Role-Based and Attribute-Based Access Control
– Label-based access control

• Policies as a unifying framework
• Security issues and opportunities in example

application areas

UIUC

63

Group/role graph

Users Groups
Privileges

Roles

How far can this “graph” visualization go?
 - Grants that require multiple authorizations
 - Communities of mutual trust

• Reduces admin labor
• Decentralizes admin

UIUC

65Two guidelines for thinking about
RBAC
• Security policy is hard, inevitably a tradeoff.

Minimize the need to make it!
– Treat each group, each role as just a definition
– Create a clear membership criterion for new arrivals,

suited to routine
– Now, authorizing a group for a role is the only real

security decision

• The distinction between groups and roles is
essential for admin, minor for enforcement
– Debates are confusing, because both sides are right

17

UIUC

67

RBAC is not sufficient
Groups

Roles

Manager

Task MgrDept Mgr

Alice Bob Joe Jane

Technical

 EE CS QA

Project
Planning

Costing Staffing

Read
Skills

Assign
 Work

UIUC

68Policies can involve many other
hierarchies

Vehicle

Car Truck …

Session Security ApproversDevice

UIUC

69

Attribute Based Access Control
• RBAC extensions are awkward

– Unnecessarily asymmetric: Task Mgr in CS Department---which
is the group?

• Several attributes can have hierarchy
• “Parameterized roles” bring in additional attributes, and allow

predicates over all. But only one attribute can be hierarchical “Role”
– Some attributes are not role-like (e.g., user location) or not

associated with the user (e.g., time of request submission)

• Attribute-based access control: policy can be any
predicate over any attributes
– E.g., roles, groups, where/when submitted, alert-level,

approvals…
• Beyond IS-A: Derive attributes from other attributes

– Derive using logic? SQL? Arbitrary functions?

18

UIUC

70Unify reasoning about semantic
aggregates (i.e., support “is-a” just once)

Intelligence about usage of hostile air defense facilities can
be analyzed by operational planners with secure access

Who are
“ops

planners”?

What ops are part of
analysis? (Annotate?
Color-map?)

Info ontology Group metadata

What are
“air defense

facilities”?

Role metadata

Detailed Authorizations

Which requests
are received
“securely”?

Model of
secure access

Which requests
are received
“securely”?

UIUC

71Research issues for RBAC and
ABAC
• Role engineering: How should an organization select

groups and roles? (determine appropriate clusters)
– Mine the existing workload, to suggest “good” roles, groups, and

privilege assignments
• Policy admin: Which groups should get which roles

(generalizes “Which users should get which privileges?”)
– Infer logically, mine similar workloads to reduce effort

• Elegant models needed!
– Provide clear criteria to explain why a model is good

• E.g., be minimal, formalized enough to be analyzable
– New feature = New paper? More is better? No!

• Issues from earlier sections still apply: Ownership, privilege
limitation, use of ontologies in policy specification, …

UIUC

72

Supporting technologies for ABAC
• Standards

– Pass attribute assertions (SAML)
• Ed@bc.edu says Patient.BirthYear = 1984

– For each action, attach predicates that reference attributes
(XACML)

• Four valued propositional logic expressions
• Connect actions to policies (with conflict resolution)

• Semantic web (OWL) or logic (many Datalog dialects)
for reasoning about hierarchies, restriction predicates,
derivations

• Federated data perspective needed to get attributes to
evaluators
– CORBA specified a standard way to pull an attribute from a

particular server

19

UIUC

73

Agenda
• Introduction
• Security basics
• State of the art and open problems

– Problem context
– SQL
– Privilege limitation
– RBAC & ABAC
– Label-based access control skip

• Policies as a unifying framework
• Research issues and opportunities in example

applications

UIUC

74Mandatory versus discretionary
security
• Discretionary: owner and owner’s delegates can

change the access rights
– Although controls over arbitrary delegation can be

useful, to limit eventual spread of rights
• Mandatory: A party possessing an object cannot

– Release it to arbitrary others
– Change the policy

• Policy is often inherent in object label
– E.g., Top Secret, Proprietary

UIUC

75A mandatory policy: multi-level
secure databases (MLS)
• Read allowed if dominated: SessionLabel ≥ ObjectLabel

 (e.g., suppose Proprietary > Public)

 Public: aspirin .1 .5 .23
 Proprietary: aNewDrug .6 .9 .85
 Public: aNewDrug .6 .9 .85

• “High” session cannot put data where “low” sessions can read it
– Write allowed if ObjectLabel ≥ SessionLabel

• Prevents inadvertent mistakes by programmers
– Inadvertent writes without needed labels
– Enforces hierarchical rules even if administrator is careless
– Protect against malicious user or Trojan Horse – no info “leak” (?)

• For high confidence, must also restrict export from user program

20

UIUC

77Market drivers for commercial
label-based access control
• Application hosting and outsourcing

– Independent franchises share a single table at headquarters
(e.g., Holiday Inn)

– Application runs under requester’s label, cannot see other labels
• Its Read and Write operations on the shared table are quite safe

– Headquarters runs Read queries over them
• Proprietary data consolidated from many sources

– E.g., at a government agency or system integration contractor

• Individuals’ privacy preferences?

UIUC

78

Commercial label security

Guarantees that application requests are directed to a
parameterized view (and handles the parameters)

• Runs in normal environment
• Policy applies to operations on policy-governed tables

– Conjunction with ordinary SQL security
– Finer grained than table privileges
– Transparent to user code, but changes semantics

• Is easily turned off – everything is optional, controllable
• Programs can write files, send email, … since OS is not

MLS

UIUC

79

Oracle’s label security
• SessionLabel, ObjectLabel are tuples of atoms, e.g.,

(Secret, Manager, {heart, blood}) [see Oracle website]
– Ordered slots: [Unclassified, …, Secret, Top Secret]
– Group slots (management hierarchy, projects, …)
– Unordered slots (compartments)

• Implementation: system creates, manages views (Read)
and Instead-Of triggers (Write)
– Admin declares a table as labeled (system adds “label” column)
– System generates labels on insert
– System rewrites user’s action, to apply only to the view
– For performance, tweaked the query optimizer
Semantics: “Return filtered result”, not “reject”

21

UIUC

80

Research issues in label security

• Support both filter and reject semantics?
• Manage “structured”, audited exceptions (downgrading)

– Use SQL grant option for exception?
– Integrate access controls with audit?

• Indexing and query opt. for row, column, cell labels
[Lefevre]
– Too slow to first filter, then merge
– Oracle labels were too slow until query processor was tweaked

• Allocate (partition) data to provide sufficient confidence
– Precategorize potential implementations w.r.t. how much

“confidence” they give
– Partition data among rows, tables, DBMSs, machines, networks

UIUC

81

Agenda

• Introduction
• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in

example application areas

UIUC

82

What is a policy?
• A statement regarding who/what is allowed/

required/forbidden to take what actions, when
and where, with respect to whom/what objects
– May also describe what happens after the action is taken, or if

the policy is not followed
– May be stated in terms of abstract security properties such as

availability, privacy, etc.

• A consistent set of assertions a system view
must satisfy
– System view may be partial, include history, and future

(obligations)
– Constraints, obligations are nondeterministic policies

22

UIUC

84Example policies for access
control, authentication, info release

• EMTs can access blood type info in the ambulance
• Every patient can read their own medical record
• Physicians have dial-up access to medical records
• Nurses cannot examine billing information
• Hospital administrative staff can modify policies
• Purchase transactions over $1000 require 2 forms of

authentication (retina scan, employee ID, passport)

• Asserted behavior can depend on many attributes
– User, operation, role, object type, object attributes, where

submitted, when submitted, + trust
– Policy’s action may include "reject", filtering, notification, penalty,

…
• Policies are requirements, and have the whole gamut of

software engineering issues (details later)

UIUC

87Security policy chaos in today’s
n-tier systems

Bill

Application Server
(e.g., WebSphere, WebLogic)

ShipSellBuy

Product Order

Authenticate

Databases (tables/docs)

View/
proc

UIUC

89Gather into policy space:
one server

Bill

Application Server
(e.g., WebSphere, WebLogic)

ShipSell Buy

Product Order

Authenticate

Databases (tables/docs)

View/
proc

Policy
Server

23

UIUC

90Where are policies captured and
enforced today?
• They tend to stay in one place

– Captured for a database, app server, or policy server, in terms
of objects that server knows

– Delegation is checked there
– Entire policy is enforced there

• Desired scenarios
– Capture in server, enforce redundantly in client GUI (better

interactive behavior)
– Capture at one server, but delegate enforcement to elsewhere

• E.g., ACM delegates to SIGMOD the task of ensuring adherence to
its guidelines for in-cooperation conferences

– Split enforcement into several parts
• E.g., evaluate SecureChannel attribute, evaluate UserAuth, and

conjoin to determine RequestAuth

UIUC

94Abstraction in policies aids
decentralized security admin
• Subjects

– Residents of California over 21 years of age
– Parents and legal guardians of children enrolled in King School
– Purchasing agents of the University of Illinois

• Objects
– Anything containing the SSN “123456789”
– Anything about underground democracy movements in country xyz

• May require IR techniques to identify
– Any file in any subdirectory of this directory

• Actions
– Sending email, FTP, GET/POST requests, IP packet transmission, queries,

invoking a method, …
– “Push” systems: release control policy for object to be pushed to subject (see

next slide)
– Actions triggered by the user request (including actions of the security system

itself)
ABAC had just IS-A hierarchies, but much more is needed
How can we provide a good formalism for deriving abstractions?

UIUC

95

Making policies more abstract
• Describe policies

– At all levels of a system
– For all kinds of subjects, objects, and actions

• At least DBs, formatted messages, service calls, general
documents

– From administrative and implementation viewpoints
• Specify each of subject/object/action

declaratively (e.g., queries, views, datalog,
OWL) rather than by enumeration

• More detail in trust management section
• Hot in AI community for semantic web

24

UIUC

96

Example policy in Cassandra
Treating-clinician reads patient’s record item

 permits(cli, Read-record-item(pat, id)) 

hasActivated(cli, Clinician(org, spcty)),

canActivate(cli, Treating-clinician(pat, org, spcty))),

count-access-denied-by-patient(0, (pat,id), (org, cli, spcty)),

Get-EHR-item-subjects(pat, id) ⊆ Permitted-subjects(spcty)

Prerequisite for Treating-clinician

 canActivate(cli, Treating-clinician(pat, org, spcty)) 

org.canActivate(cli, Group-treating-clinician(pat, group, spcty)),

org@ra.hasActivated(x, NHS-health-org-cred(org, start, end)),

ra ∈ NHS-registration-authorities(),

Current-time() ∈ [start, end]
Source: http://www.cl.cam.ac.uk/users/mywyb2, encoding UK’s Electronic Health Record policies

UIUC

98

ABAC+TM research issues
• TM policy languages are logic-based, not user friendly

– Express/reason about arbitrary relationships, e.g., delegation
– TM style: “This attribute value has been asserted, and here’s why you

should trust it”
• Requires ability to formulate, reason about trust metrics
• Internal DBMS support for these new security-related features

– Classical style: RBAC, ABAC, privilege factors that are structured,
updatable, visualizable

• Needed: policy templates and methodologies for policy
administration
– Usable at enterprise, cross-enterprise levels
– Appropriate expressiveness

• Monotonic privilege limitation constructs to guarantee what will never
happen

• Simple delegation models, with revocation
• Privilege inference rules, integrated with data ontologies, rules, groups,

derived data (views, procedures)

UIUC

99

Policy analysis
• Administrator needs help to analyze policies

– Show me all the policies that definitely/possibly apply in this
situation

– With the current set of delegations, are users of this type
definitely (or possibly) able to perform this action?

A killer app for logic databases? What logic? Datalog++ or OWL?

• Who can potentially obtain the right to perform this
action (via delegation from untrusted users)?
– Undecidable in traditional HRU model. Even simpler ones are

NP-hard
– Get user help with policy constructs that break the inference

engine
• Metaquestion: can the underlying theory support convenient

admin?
– E.g., how does stratification (for clear semantics) affect admin?

25

UIUC

100New application domains that
need security policy services
• Pervasive computing
• Sensor, mobile, wireless, and ad-hoc networks
• Semantic web, peer-to-peer systems, grid computing

Security and privacy for these applications are open areas for research

Arnie’s rebuttal: “Build a new world of your own design” problems are
for wimps. For a big challenge:

Security research that simplifies multi-purpose enterprise systems
– Interaction of many technologies, policies, requirements
– Existing systems and languages
– Precise semantics

UIUC

101

Agenda
• Introduction
• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in example

application areas
– Trust management in open systems

• Trust middleware
• Open problems

– DB capabilities for data that really needs to be secure
– Semantic web and XML
– Enterprise security

UIUC

105Motivation: move toward open
computing systems
Open = resources shared across

organizational boundaries
Ability to rapidly form relationships,

cooperate to solve urgent problems is vital
– Requires unanticipated sharing
– Supply chain management, crisis response,

peer-to-peer computing, semantic web, grid
computing, cross-national military activities,
joint corporate ventures

26

UIUC

106Current DB app trust middleware
is awkward in open systems
• Management headaches

– No abstraction at user (subject) level
• E.g., clothing vendor has to set up a separate

login for each Walmart authorized purchaser

– Managing passwords is #1 help desk call
– High turnover in suppliers/users/customers

• What happens when an authorized purchaser is fired?

• Error handling may be opaque

UIUC

107

What’s missing
• Traditional security describes monolithic building blocks

– Does not help in attaching separate blocks together to build a
global perspective in distributed situations

• Distributed trust management, an emerging technology,
– Gives a box of Legos™ and a language (usually Datalog +

constraints) for connecting building blocks together
Key goals of work on supporting modular, distributed,

decentralized trust management:
– Make it easy to use and administer
– Provide improved security and privacy
– Make it ubiquitous

• Facilities available to all types of parties
• Wherever they are, whatever they might be doing

UIUC

110Ingredients for generalized trust
middleware, 1

• Credentials, so subjects can prove
what attributes they possess
– Verifiable, unforgeable
– Provide way to prove ownership or

delegation of authority to use

• Party receiving a credential
– Read and interpret fields (ontologies)
– Verify ownership

• X.509, PKI and beyond

27

UIUC

111Ingredients for generalized trust
middleware, 2

• Policy, e.g., for acceptable credit cards
for purchases:
– Acceptable issuers (VISA, MasterCard)
– Require ownership/delegation to be

demonstrated
– Check for expiration
– Contact card issuer

• Revocation, credit limit

• More generally, an access control
policy (and possibly other policies) for
every resource that a stranger might
be allowed to access

UIUC

112Ingredients for generalized trust
middleware, 3

• Ability to export policies (to be read
elsewhere, enforced elsewhere)
– A stranger may need to understand them

to gain access to my resources
– E.g., which credit cards does this merchant

accept? What will I require from the
merchant?

• Trust negotiation software to control
the process of gaining trust

UIUC

113

Step 1: Alice requests a service from Bob

Example use of trust negotiation
middleware in e-commerce

Step 5: Alice discloses her VISA card credential

Step 4: Bob discloses his BBB
credential

Step 6: Bob grants access to the
serviceService

BobAlice

Step 2: Bob discloses his policy for the
service

Step 3: Alice discloses her policy for
disclosing her VISA

28

UIUC

115

SMTP-based trust middleware for
release policies

UIUC

120

Agenda
• Introduction
• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in example

application areas
– Trust management in open systems

• Trust middleware
• Open problems

– DB capabilities for data that really needs to be secure
– Semantic web
– Enterprise security

UIUC

121Policy, credential capture and
interpretation

• Expressive policy languages (details follow)

• Administrative tools and algorithms
– Write, update, understand, and analyze (details follow) policies

• Standard schemas/ontologies for popular types of
credentials and policies

• Efficient policy compliance checkers
• First-class policies

– Search them, query them, …
– Give them protection as strong as for any other resource

• Policy integration, translation, compilation (details follow)

• Verification of approaches to all the above in the
context of particular applications

29

UIUC

122Needed policy language features
for trust negotiation
• Well-defined semantics
• Monotonicity (sort of)

• Everything relational
algebra can do, plus
transitive closure

• Support for delegation
• Clean integration with

reputation-based trust
systems

• References to the local
environment and
external functions (e.g.,
time of day, current user)

• Explicit specification of
authentication
requirements

• Tractable for analysis

Datalog + constraints [Cassandra, RT], OWL (for its ontologies)
are viewed as likely policy language choices in various research
communities

–May have good complexity for analysis tools

UIUC

123

Monotonicity and outcalls
Purely monotonic languages are not expressive

enough for trust negotiation
– Do not want customer’s withholding of a credential

to increase their privileges
– But need elegant handling of time, revocation

checks, …
– Anything less than Turing-complete will require

outcalls (but must bound them, as analysis
capability is vital)

For realism, language design needs to be
application driven

UIUC

125

Trust middleware architectures

• Trusted third parties that are not
vulnerable to attack

• Direct peer-to-peer
– With disclosure of credentials/policies
– Zero knowledge/hidden credentials/OSBE

30

UIUC

126

Obtaining and storing credentials

• How do I get them?
• Where do I keep them, to keep them private?
• How can I quickly find credentials I haven’t

cached already, during a negotiation?
– Credential chain discovery, n-party trust

negotiation, push/pull paradigms, federated DBs,
…

• Efficient ways to deal with revocation
– Get rid of revocation, don’t check for revocation,

check quickly, …

UIUC

127

Scalability and deployment
• Good implementations of trust

management facilities
– Modular, scalable, reusable
– Support ubiquitous trust negotiation

• Deployment of trust negotiation
– In today’s popular communication and

query/response protocols (SOAP, IPsec,
TLS, etc.)

– Backward compatible

UIUC

128

Vulnerabilities

• What kinds of attacks is trust negotiation
vulnerable to?

• How can we mitigate the danger?
• What parts of the process/system must be

trusted, and to what degree?
• What integrity/privacy/confidentiality/…

guarantees can we give?

31

UIUC

129

Confidentiality guarantees

• Can outsiders eavesdrop on negotiations?
• Can I disclose just part of a credential?
• Can there be a concept of “need to

know”?
– Can its administration scale?

• What can be inferred about my
credentials without my directly disclosing
them?
– Fix by adding release privileges for “leaked”

info?

UIUC

130

Managing multiple identities

• Support for many identities has many
benefits for issuers and owners, today
and in the future

• How to prove I possess several
identities, while preventing or
penalizing collusion?

• How to make my identities unlinkable?

UIUC

131

Agenda
• Introduction
• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in

example application areas
– Trust middleware
– DB capabilities for data that really needs to be secure

• ABAC as a DB application
• Data mgt challenges for security-critical data

– Semantic web and XML
– Enterprise security

32

UIUC

132ABAC as a data intensive app:
How policies get attributes today

Release
Decider

Access DeciderUser
Request

User
Request

Policies

whole
profiles

Access Decider

User attributes
from LDAP directories

Submission attributes
in request msg

Approval
Signatures

Submission attributes
from app server

Application
Data

Attribute providers

UIUC

133

XACML approach

User
Request

...
User attributes

from LDAP directory

Submission attributes
in request msg

Approval
Signatures

Submission attributes
from app server

Application
Data

Attribute providers

Get attributes the
policy will need

??

Access Decider

Policies

UIUC

135ABAC policy evaluation as an
ordinary data intensive application
• We need to apply federated DB technology to

security systems to manage:
– Semantics: what do attributes mean?

• Managing definitions and doing semantic integration (e.g.,
via communities of interest?)

– Locating attributes: held in directories, DBs, services
– Trust: why should I believe the attribute?

• Integrate delegation, data quality, provenance, source
selection…

• Metadata and policies need access controls too
– Need fine grained protection!

33

UIUC

136Hardening a DBMS-based system
against malice
• Secrecy, correctness are crucial in many data

intensive applications
– Finance, medicine, military operations, control

systems (chemical, nuclear, aircraft, …)
– Security (user and other attributes)

• DBMSs are used in such environments (less for
security), but … how to mitigate malice?
– Example vulnerabilities:

• Accessible from the Internet
• Multiple classification levels on same system
• Competitors on same system, e.g., Ford user reads Gen.

Motors data
– Help design physical separation

UIUC

137Approaches based on physical
separation
• Harden the system against attack, e.g.,

“Appliance” offering few services, no end user
access

• Physically separate sensitive data from users
who may attack it
Methodologies are ad hoc, seem to have no tools

Data from Ford, Gen. Motors,
and Michelin Tire

UIUC

138Approaches based on physical
separation
• Harden the system against attack, e.g.,

“Appliance” offering few services, no end user
access

• Physically separate sensitive data from users
who may attack it
Methodologies are ad hoc, seem to have no tools

Ford Michelin
Gen.

Motors

34

UIUC

139Approaches based on physical
separation
• Harden the system against attack, e.g.

“Appliance” offering few services, no end user
access

• Physically separate sensitive data from users
who may attack it
Methodologies are ad hoc, seem to have no tools

Ford +
Michelin

Gen. Motors +
Michelin

UIUC

140Data intensive applications and
security/correctness
Target systems: DBMSs, middleware, document

managers
• Create models and tools to

– Calculate attack resistance of a particular design,
from a given threat

– Allocate data automatically (extend autonomic admin)
– Adjust query processing techniques

• Integrate data quality, provenance and transitive
trust (for both “normal” and secure applications)

UIUC

141

Agenda
• Introduction
• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in

example application areas
– Trust middleware
– DB capabilities for data that really needs to be secure
– Semantic web and XML
– Enterprise security

35

UIUC

142Semantic web context

Grid Computing & Grid Services

Syntax: Data

Structure

Semantics

Higher Semantics

Reasoning/Proof

XML

XML Schema

RDF/RDF Schema

OWL (ontologies)

Inference Engine

Trust Security/Identity

Use, Intent Pragmatic Web

Intelligent Domain Services, Applications

Agents, Brokers, Policies
• Semantic Brokers

• Intelligent Agents

• Advanced Applications

• Grid & Semantic Grid

Mature Web Technologies

Semantic Web Technologies

UIUC

143

XML security directions: examples

• Use XML as a language syntax for any sort of
language, to make it tool-friendly
– For security languages too: XACML for access policy

on any resource
• There are standard ways to express security

labels, now also in XML
– “UltraProprietary, release to Drug_Trial(foo)”
– “Secret, No Foreign except Canada”

• Many XML security issues also arose with
object DBs
– E.g., IS-A, part-of
– Arise also with SQL’s object constructs

UIUC

144

XML security research examples
• Several models to protect XML documents e.g., Bertino,

Damiano
– Factor the problem to exploit: X-languages, query processing,

SQL security, temporal/spatial data types
• Policy partly at schema level, partly instance-specific

– Accommodate nesting and other XML properties
• Efficient processing of schema-level labels

– E.g., twig queries with MLS labels [Cho et al.]
• Asking administrators to specify more goes against the trend

toward zero-administration
• Is MLS realistic there? DoD will not mix major levels on same

system. What if labels are not totally ordered?
• Protect schema-less documents

– Use IR to derive document attributes

36

UIUC

145

Semantic web languages
• RDF and OWL are likely to become

important, even if the ambitious vision
remains elusive
– RDF offers schema-less entry of individual facts,

natural labeled “graph” structures
• Resource is anything on the web

– OWL adds inference
• There will be a niche for security models

optimized for each of XML, RDF, OWL
– But will they play well together? Will they require

duplicate administration? Duplicate software?

UIUC

146

OWL
policy

Add
Tree
graphic

Add
Table
graphic

DBMS

Virtual
docs

Virtual
tables

SQL policy

PolicyPolicy

OWL

Virtual
RDF

Virtual
OWL

 RDF
policy

RDF

Policy
Policy

XML policy

UIUC

147

Security for multi-model databases
• DBMSs are becoming dual personality

– They see (+ store) the same data as relations or XML
– Support SQL, XPath, XSL, XQuery, …

• But have separate security systems for each of these,
plus RDF, OWL, etc.

• For vendors: Support SQL, XML, RDF, OWL security
models on the same code base

• Avoid double administration, inconsistent policy, when
crossing model boundaries
– Translate policies across models

• To provide consistency regardless of model used to access data
• To apply policies consistently to subobjects/across links

– Double enforcement is often OK (e.g., at GUI and trusted)

37

UIUC

148How to support multiple security
models?

SQL
security model

DBMS Security

RDF
sec. model

OWL
sec.

model

Abstract Data Model
 Containment,
 Derived data, M’data…
(in enough detail to drive
 security)

Abstract Security Model
Attach a policy to objects
General security, e.g.,
 - Ownership
 - Revoke or limit privilege

XML
sec. model

UIUC

149

A possible research approach
• Devise rich object metamodel and map it to

SQL, XML
– Identify common abstractions for models of

• data (metadata, derived object, is-a, part-of, …)
• security (delegation, revoke, limit privilege, session…)

– Cover all objects that SQL protects
• Avoid gratuitous incompatibility with SQL

– Where new applications really need more, generalize
to apply to both models

• Specify and implement the delta, not separate
systems

UIUC

150

Agenda
• Introduction
• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in example

application areas
– Trust management in open systems
– DB capabilities for data that really needs to be secure
– Semantic web and XML
– Enterprise security

• From high level statement to implementation
• Between organizations

38

UIUC

151

Evaluation

what an enterprise needs:
Policy engineering environment

Business
Experts
-
-
-

Systems
Experts

Capture
decisions,
reasoning

Desired policies
stated at business model
level. Incomplete,
conflicting

Compilation
(partially automated)

Compilation
assistance

Confidence
estimation

Policies, stated at
business model
level. Consistent,
coarse, incomplete

Implementation
of policiesPolicy

analysis

Conflict resolution

 Humans Tools Processes Artifacts

Conflict
detection,

explanation

UIUC

153Reprise: Compile “business”
policies to physical implementation

Individually identified medical data shall be
available only to professionals

treating the patient,
with medium-high confidence

Install policies
 on tables,
documents

Suitable
• Data allocation
• Execution plan

?

UIUC

154Compile “business” policies to
physical implementation

Individually identified medical data shall be
available only to professionals

treating the patient,
with medium-high confidence

Who are
“professionals

treating this patient”

Confidence needed in:
•Technical measures
• Metadata admin
• Partners

Metadata,
ontologies

User
m’data

Install policies
 on tables,
documents

Suitable
• Data allocation
• Execution plan

System
m’data

What data is
“medical”,

“individually identified”

39

UIUC

155Subject/object/action each require
own set of mappings

Policy written in terms of business model

Info mapping User mapping System mapping

Info map
M’data

User
M’data

Substantive
policy

(who can do what)
Physical
schemas

System
M’data

UIUC

156

Kinds of mappings needed
• Down: compile from policy specification to

implementation
– Up: Reverse engineer a rough high level policy from

a detailed policy
• Analogy: derive ER schema from relational schema

• Down: allocate data and execution, for suitable
confidence (next slide)

• Horizontal: translate policies between
organizations, data models (later)

Giant Opportunity(?): Use same underlying
theory and/or implementation for all?

UIUC

157

Physical DB design problems
Physical design systems need to know about security req’s
• Organizations partition data to minimize the number of

users “close” to sensitive info
– Partition among machines, DBMSs (some not on internet),

tables, tuples, … (increasingly easy to hack)
– Which systems are trusted to filter what data in queries
– Select appropriate communications (e.g., encrypt wireless)
– Enhance data allocators, query planners to provide necessary

confidence

• Index securely
– Imagine the risk of having one file with a full text index for an

entire intelligence agency
• Encryption works in some cases. Will it make the system brittle?

– How to partition indexes for security?

40

UIUC

161Reprise: Translate and transfer policy
across organizations and systems

Paris Hospital
Enforcement: DBMS
Policy applied: France
Roles: Hospital (Emergency Care)

Aetna Travel Insurance
Enforcement: Application server
Policy applied: US (NY)
Roles: HiPAA spec (Aetna version)

?

UIUC

162

Paris Hospital
Enforcement: DBMS
Policy applied: France
Roles: Hospital (Emergency Care)

Translate and transfer policy across
organizations and systems

What data is
• Medical
• Indiv identified
Religion: require in
US, forbid in France

Who are
• Professionals
• Treating this patient
Insurance approver
role only in US

Confidence in
• Technical measures
• Metadata admin
• Partners

Aetna Travel Insurance
Enforcement: Application server
Policy applied: US (NY)
Roles: HiPAA spec (Aetna version)

UIUC

163Policy translation
(horizontal mappings)
• Agencies won’t share unless they approve the partner’s

protections. Each has its own policies
• How to enforce X’s policies in Y’s domain, overcoming

differences in data and security?
– Data: structures, query operators, instance identification [ss#,

emp#] , schema, …
– Security: model, policy language, policy implementations

• How to explain to X what Y is enforcing, and the
difference?

Impression: 70% of semantic integration
challenges have security analogs
– Semantic integration seems to precede security integration

41

UIUC

164

Policy integration challenges

Integration challenges: conventional semantic
integration plus:
– Integrate role & group hierarchies
– Integrate policies
Consider OWL as a common formalism

Air France

Alliance (“Sky team”)
policies

Alitalia Delta

UIUC

165Research areas applicable to
mapping of security specs
• Semantic modeling
• Query processing for federated

heterogeneous databases
– Secrecy-friendly algorithms

• Automated physical design
• Model management theory [Bernstein]

UIUC

170Preventing disclosure during
info integration: a contrarian view
Skeptical notes
• How often is such high confidence essential?
• Exact match rarely works for names!
• Do we want to treat these queries different from all

others?
Unifying perspective (U. Maurer @ SIGMOD04)
• We can do it all with a “trusted subject” in the middle

– Cryptography is one way to create a trusted subject.
– Other techniques may be more flexible or efficient, but lower

confidence, e.g., a trusted SQL DBMS appliance
• Start with the policy to be enforced:

– What may be revealed to what system
– Describe what they’re trusted to do, and how confident we’ll be

42

UIUC

173

Agenda

• Introduction
• Security basics
• State of the art and open problems
• Policies as a unifying framework
• Security issues and opportunities in

example application areas
• Summary

UIUC

174

Summary advice, 1
• The big wins occur when tools drive the cost of

something to zero (not 50%)
– Compile specs (functional + implementation

properties) to an implementation
– Automate “where are we” and “what if” analyses

• Exploit common abstractions for multi-lingual
security
– Containment, IS-A, derived data, delegation, …

• Extend SQL smoothly -- do not be gratuitously
different
– Feature interactions, granularity differences appear

when constructs are examined in full context

UIUC

175

Summary advice, 2
• Security should not be a stovepipe

– Reuse existing concepts from query languages/
derived data/…, rather than reinventing them

– Security components that can be reused (services,
policies)

• Rich policies need rich runtime input
– General data access and exchange services,

federated DB capabilities will be needed at run time
to feed into policy decisions

• Trust models are broadly relevant to data
quality and suitability

43

UIUC

176

Summary advice, 3

• Security system has high requirements for
data integrity, availability, threat resistance
– Could build DBMSs to treat these as “normal”

requirements (i.e., to provide high integrity,
availability, threat resistance)

• First define correctness criteria. Do
algorithms afterward
– e.g., for role hierarchy integration, privilege

inference rules

UIUC

177

Some relevant further reading
• Policies

– IEEE Policy Conference
• Data security

– Conferences: IFIP 11.3, ACM SACMAT
• Modeling and analysis weak by SIGMOD standards

– Journals: ACM TISSEC
– Books: Castano et al. 1995, for earlier research

• General security
– Textbooks: many choices
– Conferences (systems-oriented): CCS, NDSS, Oakland

• Mostly aim at securing systems and system access

UIUC

178What problems receive too much
attention, in unreal settings?
Inference control (1990s)
• Limiting the ability of a party to use additional

knowledge to figure out things that they have
not been told explicitly

• Administration prerequisites are daunting
– Need fine grained policies (e.g., columns, not tables)
– Document adversary’s knowledge (logical and

statistical)
• System prerequisites

– Tracking requesters’ identity
– Assuming requesters don’t collude
– Keeping a history of all past requests and responses

44

UIUC

179

Deserve lower priority, continued

• Conclusion re inference control:
– Worth doing for carefully examined static publications (census

bureau, health statistics)
– For enterprise systems, it’s like locking a 5th floor window
– Research on inference control is unlikely to attract vendors, and

hence will lack broad real-world impact
“Privacy-preserving” data mining
• The work to date looks costly, fragile
• Probably not a great place for a stampede of

researchers unless more practical look is given
• Trusted third party appliances (stand-alone machine &

software) could help

