From Focused Crawling to Expert Information:
an Application Framework for Web Exploration
and Portal Generation

Sergej Sizov, Jens Graupmann, Martin Theobald

University of the Saarland
Department of Computer Science
P.O. Box 151150, 66041 Saarbruecken, Germany
{sizov,graupman,mtheobald } @cs.uni-sb.de

1 Introduction

Focused crawling is a relatively new, promising ap-
proach to improving the recall of expert search on the
Web. It typically starts from a user- or community-
specific tree of topics along with a few training doc-
uments for each tree node, and then crawls the Web
with focus on these topics of interest. This process can
efficiently build a theme-specific, hierarchical directory
whose nodes are populated with relevant high-quality
documents for expert Web search.

The BINGO! focused crawler implements an ap-
proach that aims to overcome the limitations of the
initial training data. To this end, BINGO! identi-
fies, among the crawled and positively classified doc-
uments of a topic, characteristic archetypes (good
authorities as determined by Kleinberg’s HITS algo-
rithm, and documents classified with high confidence
using a linear SVM) and uses them for periodically re-
training the classifier; this way the crawler is dynami-
cally adapted based on the most significant documents
seen so far.

While a large amount of information can be col-
lected from the “Surface Web” with traditional crawl-
ing as done by today’s popular search engines, the ma-
jor part of high quality, topic-specific data is stored in
searchable databases that only produce results dynam-
ically in response to a direct request (i.e., the “Hidden
Web” or “Deep Web”). Automated meta portal gen-
eration for these hidden sources comes with all the
traditional problems a meta search engine has to face.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

The demonstration shows our approach towards
fully automated portal generation that merely starts
with a small set of user-specific training documents
and dynamically builds up a unified database of Sur-
face Web data as well as of indexed Deep Web pages
derived from on-the-fly generated Web Service inter-
faces for form pages leveraging Semantic-Web-style on-
tologies. The prototype platform has been used for
generating two applications that illustrate the effec-
tiveness and versatility of our approach: the Hand-
icrafts Information Portal (HIP) built for the Saar-
land’s Chamber of Trades and Small Businesses, and
a movie metaportal coined MIPS.

In the following sections we give a short overview
of the BINGO! prototype system and then outline the
above mentioned application demos.

2 Focused Crawling with BINGO!

The framework uses the BINGO! focused crawler de-
veloped by our group [18, 19]. BINGO! has initially
been built for crawling Surface Web pages covering
HTML, XML, and PDF files; it is now being ex-
tended by several components for automated Deep
Web search. To this end, we collect pages with HTML
forms and consider a subset of these pages as portals;
then we post queries to these pages and automatically
classify the returned result pages to extend our the-
matic directory. BINGO! itself consists of several com-
ponents sketched in the following subsections.

2.1 Feature Space Construction

Our engine uses words as the basic representational
units of the document, the standard bag-of-words doc-
ument model with tf-idf-based feature weights [1].
However, the large dimensionality of initial full-length
vectors would create efficiency problems for the clas-
sifier. Furthermore, the unrestricted feature vectors
contain too many “noisy” terms that would lead the



classifier astray. The BINGO! engine includes tech-
niques for stopword elimination, stemming, and fea-
ture selection based on the Mutual Information cri-
terion (also known as relative entropy or Kullback-
Leibler divergence) [2, 1].

2.2 Document Classification

The classifier is an exchangeable component that can
be registered at run-time. We are currently using lin-
ear Support Vector Machines (SVM) as classification
method [6, 5, 8]. The SVM method is a learning al-
gorithm that consists of a supervised training phase
for each topic, where a separating hyperplane defined
as w-Z 4+ b = 0 is computed such that it maximizes
the margin between a set of positive and negative fea-
ture vectors in the m-dimensional feature space. The
classification step for a test document ¢ then simply
consists of computing the sign of a decision function of
the form @-y+0b > 0, where the sign denotes on which
side of the hyperplane the test vector is determined
to be. The BINGO! engine uses Thorsten Joachim’s
SVMLight [4] for this purpose.

2.3 Link Analysis

The link structure between documents in each topic
is an additional source of information about how well
they capture the topic. The BINGO! engine applies
Kleinberg’s link analysis method, coined HITS [3], to
compute authority scores for the documents of each
topic in the directory tree.

2.4 Retraining

Our recent efforts have focused on a semi-supervised
retraining step [18, 19] based on the automated de-
tection of topic-specific “archetypes” that are found
in the hyperlink neighborhood of the initial training
samples and positively classified into the given topic
with high confidence. BINGO! uses archetypes for pe-
riodically retraining the classifier; this way the crawler
is dynamically adapted based on the most significant
documents seen so far. Two kinds of archetypes are
considered: good authorities as determined by employ-
ing Kleinberg’s link analysis algorithm, and documents
that have been automatically classified with high con-
fidence, where confidence is derived from the distance
of a test document to the separating hyperplane of the
linear SVM [6, 5].

A separate SVM is learned for each node of the
given directory tree. The hierarchical classification for
the entire tree is implemented by recursively assigning
a test document to the node among a set of siblings
for which the positive classification confidence is high-
est [6].

2.5 Overcoming Portal Borders

The Deep Web comprises all information that resides
in autonomous databases behind portals, and this
data cannot be reached by traditional crawlers (un-
less a portal offers an explicit link collection in addi-
tion to the usual query form). For proceeding beyond
these portals the focused crawler automatically gener-
ates query data for the input parameters of a portal’s
HTML forms. To avoid portal-specific mappings be-
tween a user query and each portal’s forms, a portal
is automatically encapsulated as Web Service whose
functionality can be described in the generic WSDL
format.

Portal wrapping: When an initial crawl discov-
ers a portal candidate, a component is invoked that
applies heuristic rules for generating a WSDL entry
on the fly. Typically, highlighted text next to form
fields will become parameter names, and the type of
a form field determines the corresponding parameter
type (e.g., an enumeration type for fields with a pull-
down menu) [17]. The WSDL entry (and also a UDDI
entry) can either be registered automatically, or can
be placed in a candidate queue for later inspection
and possible modification by a human.

Ontology searching: The parameter names of a
WSDL interface are viewed as characteristic semantic
concepts and inserted into a locally maintained ontol-
ogy index. Furthermore, for enumeration types the
possible values are likely to be in close semantic rela-
tionship to the corresponding concept [14] and are also
added to the ontology index. We query our internal
ontology service (the WordNet [12, 13] ontology with
edges enriched by similarity weights) for newly found
concepts and values, extract related words and their
relationships, and add them to the ontology index, too.
The external ontologies are manually registered with
our service, and are themselves wrapped as Web Ser-
vice.

Portal query generation: The focused crawl is
driven by either a topic description, given in the form
of training data, or an explicit user query. In either
case it attempts to explore the data behind portals by
automatically generating queries to the portals and in-
dexing the returned result pages. The query generator
attempts to match keywords from the training data
or concept names from the user query with parameter
names of the portal [9, 10, 11]. If this fails, the local
ontology index is searched for related terms and the
matching is reattempted. Once appropriate parame-
ters have been identified for portal search, a limited
number of parameter values are generated from the
values in the query or topic-specific keywords, with
preference given to words that have an is-instance-of
semantic relationship to the parameter name [15, 16].

We implemented a framework that automatically
generates wrapper components for portals. The wrap-
pers encapsulate the communication with the corre-



sponding Web portal and enable the crawler to sys-
tematically explore the source’s “hidden” content.

3 Demonstration
3.1 Handicrafts Information Portal (HIP)

In this application, the focused crawler BINGO! was
used to produce the search engine for the HIP por-
tal (Handicrafts Information Portal) of the Saarland’s
Chamber of Trades and Small Businesses. The HIP
portal has been designed to meet special information
demands of small handicraft businesses such as special
laws and regulations, financial subsidies, environmen-
tal regulations and programs, information for trainees,
etc. A typical information that, for example, an elec-
trician might ask from the portal is: are there any
new EU (European Union) regulations regarding the
proper disposal of electronic parts (computer boards,
TV sets, etc.).

For simplified navigation and search (a baker and a
computer scientist would expect completely different
results for the query ”protocol bakery”), the portal
provides orthogonal topic hierarchies for three basic
groups of information demands:

e professions and professional groups of the branch
(electrician, plumber, auto mechanic, etc.)

e typical processes and workflows (accounting and
billing, maintenance of health and safety stan-
dards, etc.)

e education and careers of handicrafts (trainee, ap-
prentice, master, etc.)

Each hierarchy contains currently 3 levels with a
total of 15 to 25 categories. To focus the crawler on
these themes, we used online tutorials for handicrafts,
topic-specific laws and regulations, as well as home-
pages of companies from appropriate businesses. Each
category was initially populated with 10 to 15 manu-
ally selected training documents.

In the learning phase, the crawl was restricted to
the hosts of the initial sources and to a depth of 3.
After re-training on the original training data and the
automatically selected archetypes, the focused crawl
was continued on the Web without host, domain, or
depth limitations. A typical run of the BINGO! engine
collects up to 10.000 positively classified documents
within 12 hours and visits about 10 million pages on
several 10.000 different hosts. The crawled data is
stored in a MySQL database for further processing.

The search interface is implemented as a collection
of servlets implemented in the scripting language PHP.
The engine provides several advanced functions for ex-
pert search:

e It supports different ranking schemes such as
SVM confidence measures, authority scores pro-
duced by the HITS algorithm, cosine similarity

for user queries, user feedback score, last modi-
fied attribute (and also combinations of these met-
rics). The last option is useful to highlight modi-
fied Web sources for the “what’s new” search.

e It supports advanced search options for a result
page selected by the user. For example, it is pos-
sible to query the neighborhood (predecessors and
successors) of a page or restrict a search to all
results from the same host, to find similar docu-
ments.

e It supports session-based query refinement on
search results.

To improve the quality of the portal’s data, HIP
provides mechanisms for user feedback: suggestion of
new Web sources and topics of interest, reporting clas-
sification errors, evaluation of the usefulness of visited
search results.

For better manageability by the HIP portal admin-
istrator, the BINGO! focused crawler, originally imple-
mented as a stand-alone Java program, was adapted
for execution under Apache Tomcat VM in connec-
tion with a MySQL database on the same server. The
administration interface is implemented as a collec-
tion of PHP and JSP pages for particular administra-
tion tasks such as crawler parametrization, start/stop
and pause/resume of a crawl, maintenance of training
sources, evaluation of user feedback, etc. In addition,
the administration toolkit allows automated clustering
of crawl results for a given topic. For better recogni-
tion of potential new topics of interest, the resulting
clusters are annotated by cluster-specific terms using
Mutual Information as a selection criterion.

Starting from the HIP topic hierarchy (initially
populated with few manually pre-selected training
sources), the current prototype demonstrates the posi-
tive effects of the learning phase with retraining based
on automatically selected archetypes and the subse-
quent harvesting phase with rich crawling results. The
demo is concluded by the presentation of the result-
ing portal interface with advanced functions for ex-
pert querying. The final version of the search engine
(with more comprehensive volume of searchable data
and improved performance) will be available for public
use by the end of 2003.

3.2 The MIPS Movie Portal

As a second application (for mere demo purposes) we
generated a movie metaportal that we coined MIPS
(Movie Information Portal and Search Assistant) This
portal integrates static HTML pages as well as Deep
Web sources such as IMDB and Amazon which have
been discovered in an initial focused crawl for movie
pages and selected by their authority and classifica-
tion confidence scores [19]. Part of the crawl analysis
is the detection of form fields in the retrieved pages.



When potentially relevant forms are found, the Web
Service Generator is invoked. The Web Service Gen-
erator automatically creates a wrapper for the form,
thus providing a query interface in WSDL. The system
then attempts to classify the Web Service into movie
genres, based on a list of available genres and small
sets of representative movies as training data. On the
basis of this information the system generates queries
for each Web Service and each genre. When the Web
Service returns results that fit with the training data
of the inquired genre, the portal is added to the cor-
responding topic. If the Web Service does not qualify
for any genre, it is removed from the database.

The arguments of the MIPS search form are mapped
to the WSDL parameters of a Web Service. For this
purpose, the system has its own ontology modelling
synonym and hypernym relationships for the movie
domain. For performance purposes this mapping is
precomputed in advance and stored in the underlying
BINGO! database. For a given query, the query pro-
cessor first retrieves the best matches among the in-
dexed static HTML pages. Then it queries the UDDI
registry for matching Web Services and invokes them
with the precomputed parameter mapping and the ap-
propriate values. Although the returned pages are
built dynamically, their URL usually includes all in-
formation to access the page from its source server.
So dynamic pages can now be classified and added to
the topic directory along with their URLs. For sub-
sequent queries the pages can be searched directly in
our index without calling the Web Service again.

The demo shows the operational meta portal about
movies that integrates static HTML sources as well
as other portals. The GUI allows the user to specify
whether she only wants to query the static content or
wants to include also the dynamically extracted con-
tent of other Web portals. We also show how a portal
administrator can easily add new Deep Web sources
to the meta portal.

References

[1] R. Baeza-Yates, B. Ribeiro-Neto: Modern Infor-
mation Retrieval. Addison Wesley, 1999.

[2] C.D. Manning, H. Schuetze: Foundations of Sta-
tistical Natural Language Processing. MIT Press,
1999.

[3] J.M. Kleinberg: Authoritative Sources in a Hy-
perlinked Environment. Journal of the ACM,
Vol.46, 1999.

[4] T. Joachims: Learning to Classify Text using Sup-
port Vector Machines, Kluwer, 2002.

[5] C.J.C. Burges: A Tutorial on Support Vector Ma-
chines for Pattern Recognition. Data Mining and
Knowledge Discovery 2(2), 1998.

[6] V. Vapnik: Statistical Learning Theory. Wiley,
1998.

[7] S. Chakrabarti: Mining the Web. Morgan Kauf-
mann Publishers, 2002.

[8] S. Dumais, H. Chen: Hierarchical Classification
of Web Content. ACM SIGIR Conference, 2000.

[9] Special Issue on Organizing and Discovering
the Semantic Web, Data Enginieering Bulletin,
Vol.25 No.1, 2002.

[10] Special Issue on Integration Management, Data
Enginieering Bulletin, Vol.25 No.3, 2002.

[11] J. Madhavan, P.A. Bernstein, P. Domingos, A.
Halevy. Representing and reasoning about map-
pings between domain models. In Eighteenth
National Conference on Artificial Intelligence

(AAAT), 2002.

[12] C. Fellbaum: WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[13] G. Miller: Wordnet: A Lexical Database for En-
glish. Communications of the ACM 38(11), 1995.
2000.

[14] A. Maedche, S. Staab: Ontology Learning for the
Semantic Web. IEEE Intelligent Systems 16(2),
2001.

[15] G. Panagiotis, L. Gravano, M. Sahami: Probe,
Count and Classify: Categorizing Hidden-Web
Databases, ACM Sigmod Conference (SIGMOD),
2001.

[16] S. Raghavan, H. Garcia-Molina: Crawling the
Hidden Web, 27th International Conference on
Very Large Data Bases (VLDB), 2001.

[17] A. Sahuguet, F. Azavant: Building light-weight
wrappers for legacy Web data-sources using W4F,

25th Conference on Very Large Data Bases
(VLDB), 1999.

[18] S. Sizov, M. Theobald, S. Siersdorfer, G. Weikum:
BINGO!: Bookmark-Induced Gathering of Infor-
mation. Proceedings of the 3rd International Con-

ference on Web Information Systems Engineering
(WISE), 2002.

[19] S. Sizov, M. Biwer, J. Graupmann, S. Siersdor-
fer, M. Theobald, G. Weikum, P. Zimmer: The
BINGO! System for Information Portal Genera-
tion and Expert Web Search. Proceedings of the
First Conference on Innovative Data Systems Re-
search (CIDR), 2003.



