

Operator Scheduling in a Data Stream Manager*

Don Carney┼, Uğur Çetintemel┼, Alex Rasin┼, Stan Zdonik┼

Mitch Cherniack§, Mike Stonebraker±

┼{dpc,ugur,alexr,sbz}@cs.brown.edu, Department of Computer Science, Brown University
§mfc@cs.brown.edu, Department of Computer Science, Brandeis University

± stonebraker@lcs.mit.edu Laboratory for Computer Science & Department of EECS, M.I.T.

Abstract
Many stream-based applications have sophisticated
data processing requirements and real-time
performance expectations that need to be met under
high-volume, time-varying data streams. In order to
address these challenges, we propose novel operator
scheduling approaches that specify (1) which
operators to schedule (2) in which order to schedule
the operators, and (3) how many tuples to process at
each execution step. We study our approaches in the
context of the Aurora data stream manager.
 We argue that a fine-grained scheduling approach
in combination with various scheduling techniques
(such as batching of operators and tuples) can
significantly improve system efficiency by reducing
various system overheads. We also discuss
application-aware extensions that make scheduling
decisions according to per-application Quality of
Service (QoS) specifications. Finally, we present
prototype-based experimental results that characterize
the efficiency and effectiveness of our approaches
under various stream workloads and processing
scenarios.

1 Introduction
Applications that deal with potentially unbounded,
continuous streams of data are becoming increasingly
popular due to a confluence of advances in real-time,
wide-area data dissemination technologies and the
emergence of small-scale computing devices (such as
GPSs and micro-sensors) that continually emit data
obtained from their physical environment. Example

applications include sensor networks, position tracking,
fabrication line management, network management, and
financial portfolio management. All these applications
require timely processing of large numbers of continuous,
potentially rapid and asynchronous data streams.
Hereafter, we refer to such applications as stream-based
applications.

The Aurora data stream manager [1, 8] addresses the
performance and processing requirements of stream-
based applications. Aurora supports multiple concurrent
continuous queries, each of which produces results to one
or more stream-based applications. Each continuous
query consists of a directed acyclic graph of a well-
defined set of operators (or boxes in Aurora terminology).
Applications define their service expectations using
Quality-of-Service (QoS) specifications, which guide
Aurora’s resource allocation decisions. We provide an
overview of Aurora in Section 2.

A key component of Aurora, or any data-stream
management system for that matter, is the scheduler that
controls processor allocation. The scheduler is
responsible for multiplexing the processor usage to
multiple queries according to application-level
performance or fairness goals. Simple processor
allocation can be performed by assigning a thread per
operator or per query. Such standard techniques do not
scale since no system that we are aware of can adequately
deal with a very large number of threads. More
importantly, any such approach would abdicate the
details of scheduling to the operating system, thereby
making it impossible to account for application-level
constraints (QoS). We demonstrate this quantitatively in
Section 6.

This paper shows that having finer-grained control
over processor allocation can make a significant
difference to overall system performance by reducing
various system overheads associated with continuous
query execution. We propose a set of novel scheduling
techniques that address scheduler overheads by batching
(of operators and tuples), approximation, and pre-
computation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

* This work has been supported by the NSF under grant IIS-0086057.

In particular, we describe the design and
implementation of the Aurora scheduler, which performs
the following tasks:
1. Dynamic scheduling-plan construction: The

scheduler develops a scheduling plan that specifies,
at each scheduling point, (1) which boxes to
schedule, (2) in which order to schedule the boxes,
and (3) how many tuples to process at each box
execution.

2. QoS-aware scheduling: The Aurora scheduler
strives to maximize the overall QoS delivered to the
client applications. At a high level, our scheduling
decisions are based on a novel box priority
assignment technique that uses the latencies of
queued tuples and application-specific QoS
information. For improved scalability, we also use an
approximation technique, based on bucketing and
pre-computation, which trades scheduling quality
with scheduling overhead.

We also evaluate and experimentally compare these
algorithms on our Aurora prototype under various stream
processing and workload scenarios. Through the
implementation of our techniques on the prototype rather
than a simulator, we were better able to understand the
actual system overheads.

The rest of the paper is organized as follows: Section 2
provides an overview of the Aurora data stream manager.
Section 3 describes the state-based execution model used
by Aurora. Section 4 discusses in detail Aurora’s
scheduling algorithms. Section 5 discusses our prototype-
based experimental study that provides quantitative
evidence regarding the efficiency and effectiveness of
Aurora’s scheduling algorithms. Section 6 extends our
basic approaches to address QoS, describing queue-based
priority assignment and an approximation technique for
improving the scalability of the system. Section 7
describes related work, and Section 8 concludes the
paper.

2 Aurora Overview

2.1 Basic Model
Aurora data is assumed to come from a variety of data
sources such as computer programs that generate values
(at regular or irregular intervals) or hardware sensors. We
will use the term data source for either case. In addition,
a data stream is the term we will use for the collection of
data values that are presented by a data source. Each data
source is assumed to have a unique source identifier and
Aurora timestamps every incoming tuple to monitor the
prevailing QoS.

The basic job of Aurora is to process incoming streams
in the way defined by an application administrator.
Figure 1 illustrates Aurora’s high-level system model.
Aurora is fundamentally a data-flow system and uses the
popular boxes and arrows paradigm found in most
process flow and workflow systems. Hence, tuples flow

through a loop-free, directed graph of processing
operations (a.k.a. boxes). Ultimately, output streams are
presented to applications, which must be programmed to
deal with output tuples that are generated
asynchronously. Aurora can also maintain historical
storage, primarily in order to support ad-hoc queries.

Tuples generated by data sources arrive at the input
and are queued for processing. The scheduler selects
boxes with waiting tuples and executes them on one or
more of their input tuples. The output tuples of a box are
queued at the input of the next box in sequence. In this
way, tuples make their way from the inputs to the
outputs. Each output is associated with one or more QoS
specifications, which define the utility of stale or
imprecise results to the corresponding application.

The primary performance-related QoS is based on the
notion of the latency (i.e., delay) of output tuples—output
tuples should be produced in a timely fashion, otherwise,
QoS will degrade as latencies get longer. In this paper,
we will only deal with latency-based QoS graphs; for a
discussion of other types of QoS graphs and how they are
utilized, please refer to [2, 8]. Aurora assumes that all
QoS graphs are normalized, and are thus quantitatively
comparable. Aurora further assumes that the QoS
requirements are feasible; i.e., under normal operation
(i.e., no peak overload), an idealized scheduler will be
able to deliver maximum possible QoS for each
individual output.

Aurora contains built-in support for a set of primitive
operations for expressing its stream processing
requirements. Some operators manipulate the items in the
stream, others transform individual items in the stream to
other items, while other operators, such as the aggregates
(e.g., moving average), apply a function across a window
of values in a stream. A description of the operators is
outside the scope of this paper and can be found in [2, 8].

2.2 Architecture
Figure 2 illustrates the architecture of the basic Aurora
run-time engine. Here, inputs from data sources and
outputs from boxes are fed to the router, which forwards
them either to external applications or to the storage
manager to be placed on the proper queues. The storage
manager is responsible for maintaining the box queues
and managing the buffer, properly making tuple queues
available for read and write by operators. Conceptually,
the scheduler picks a box for execution, ascertains how

Input data
streams

Output to
applications

Continuous & ad hoc
queries

Operator boxes Historical
Storage

QoS specs

Figure 1: Aurora system model

many tuples to process from its corresponding input
queue, and passes a pointer to the box description
(together with a pointer to the box state) to the multi-
threaded box processor. The box processor executes the
appropriate operation and then forwards the output tuples
to the router. The scheduler then ascertains the next
processing step and the cycle repeats.

The QoS monitor continually monitors system
performance and activates the load shedder when it
detects an overload situation and poor system
performance. The load shedder sheds load until the
performance of the system reaches an acceptable level.
The catalog contains information regarding the network
topology, inputs, outputs, QoS information, and relevant
statistics (e.g., selectivity, average box processing costs),
and is essentially used by all components.

3 Basic Execution Model
The traditional model for structuring database servers is
thread-based execution, which is supported widely by
traditional programming languages and environments.
The basic approach is to assign a thread to each query or
operator. The operating system (OS) is responsible for
providing a virtual machine for each thread and
overlapping computation and I/O by switching among the
threads. The primary advantage of this model is that it is
very easy to program, as OS does most of the job. On the
other hand, especially when the number of threads is
large, the thread-based execution model incurs significant
overhead due to cache misses, lock contention, and
switching. More importantly for our purposes, the OS
handles the scheduling and does not allow the overlaying
software to have fine-grained control over resource
management.

Instead, Aurora uses a state-based execution model. In
this model, there is a single scheduler thread that tracks
system state and maintains the execution queue. The
execution queue is shared among a small number of
worker threads responsible for executing the queue

entries (as we discuss below, each entry is a sequence of
boxes). This state-based model avoids the mentioned
limitations of the thread-based model, enabling fine-
grained allocation of resources according to application-
specific targets (such as QoS). Furthermore, this model
also enables effective batching of operators and tuples,
which we show has drastic effects on the performance of
the system as it cuts down the scheduling and box
execution overheads.

In order to illustrate the basic performance benefits of
Aurora’s state-based model over the traditional thread-
based model (where each operator is assigned a single
thread), we ran a simple processing network consisting of
multiple queries, each consisting of a chain of five filter
operators (see Section 5.1 for a description of our
experimental testbed). Figure 3 shows the tuple latencies
observed as a function of the total number of operators.
As we increase the system workload in terms of number
of operators, the performance degrades in both cases,
however much less in the Aurora case. In fact,
performance degrades almost linearly in Aurora and
exponentially in the thread-per-box case, a result that
clearly supports the aforementioned scalability
arguments.

An important challenge with the state-based model is
that of designing an intelligent but low-overhead
scheduler. In this model, the scheduler becomes solely
responsible for keeping track of system context and
deciding when and for how long to execute each operator.
In order to meet application-specific QoS requirements,
the scheduler should carefully multiplex the processing of
multiple continuous queries. At the same time, the
scheduler should try to minimize the system overheads,
time not spent doing “useful work” (i.e., processing),
with no or acceptable degradation in its effectiveness.

4 Two-Level Scheduling
Aurora uses a two-level scheduling approach to address
the execution of multiple simultaneous queries. The first-
level decision involves determining which continuous

…Q1

…Q2
.
.
.

…Qi

Buffer manager

…Qj

…Qn

.

.

.

Storage
Manager

Persistent Store

Scheduler

Router

Catalogs

o1

o2
.
.
.

Box Processors

inputs outputs

Load
Shedder

QoS
Monitor

on

Figure 2: Aurora run-time engine

0

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 L
at

en
cy

 (s
ec

on
ds

)

Number of Boxes

Thread-per-box
Aurora

Figure 3: High-level comparison of stream execution models

query to process. This is followed by a second-level
decision that then decides how exactly the selected query
should be processed. The former decision entails
dynamically assigning priorities to operators at run-time,
typically according to QoS specifications, whereas the
latter decision entails choosing the order in which the
operators involved in the query will be executed. The
outcome of these decisions is a sequence of operators,
referred to as a scheduling plan, to be executed one after
another. Scheduling plans are inserted into an execution
queue to be picked up and executed by a worker thread.

In order to reduce the scheduling and operator
overheads, Aurora heavily relies on batching (i.e.,
grouping) during scheduling. We developed and
implemented algorithms that batch both operators and
tuples. In both cases, we observed significant
performance gains over the non-batching cases. We now
describe in detail our batching approaches for
constructing scheduling plans.

4.1 Operator Batching - Superbox Processing
A superbox is a sequence of boxes that is scheduled and
executed as an atomic group. Superboxes are useful for
decreasing the overall execution costs and improving
scalability as (1) they significantly reduce scheduling
overheads by scheduling multiple boxes as a single unit,
thereby decreasing the number of scheduling steps; (2)
they eliminate the need to access the storage manager for
each individual box execution by having the storage
manager allocate memory and load all the required tuples
at once1.

Conceptually, a superbox can be an arbitrary
connected subset of the Aurora network. However, we do
constrain the form of superboxes such that each is always
a tree of boxes rooted at an output box (i.e., a box whose
output tuples are forwarded to an external application).
The reasons that underlie this constraint are twofold.
First, only the tuples that are produced by an output box
provide any utility value to the system. Second, even
though allowing arbitrary superboxes provide the highest
flexibility and increase opportunities for optimization,
this will also make the search space for superbox
selection intractable for large Aurora networks.

The following subsections discuss the two key issues
to deal with when scheduling superboxes, namely
superbox selection and superbox traversal.
4.1.1 Superbox Selection
The first-level scheduling issue involves determining
which superboxes to schedule. Fundamentally, there are
two different approaches to superbox selection: static and
dynamic. Static approaches identify potential superboxes

1 Another benefit of superbox scheduling, which we do not
address in this paper, is that it improves effective buffer
utilization by consuming as many tuples as possible once the
tuples are in memory. This potentially reduces the number of
times each tuple is swapped between memory and disk.

statically before run time, whereas the dynamic
approaches identify useful superboxes at run time.

In Aurora, we implemented a static superbox selection
approach, called application-at-a-time (AAAT). AAAT
statically defines one superbox for each query tree. As a
result, the number of superboxes is always equal to the
number of continuous queries (or applications) in the
Aurora network. Figure 4 illustrates a simple query tree
that consists of six boxes (the tree is rooted at box b1).
Once the superboxes are identified, they can be scheduled
using various scheduling policies (e.g., round-robin).

We also implemented a dynamic approach, called top-
k spanner, which identifies, at run-time, the operator tree
that is rooted at an output box and that spans the k highest
priority boxes for a given application (see Section 6.1 to
see how we compute box priorities). However, we do not
study dynamic approaches in this paper and rely only on
static AAAT scheduling.
4.1.2 Superbox Traversal
Once it is determined which superboxes need to be
executed, a second-level decision process specifies the
ordering of component boxes. This is accomplished by
traversing the superbox. The goal of superbox traversal is
to process all the tuples that are queued within the
superbox (i.e., those tuples that reside on the input queues
of all boxes that constitute the superbox).

We investigate three traversal algorithms that primarily
differ in the performance-related metric they strive to
optimize: throughput, latency, and memory consumption.

Min-Cost (MC). The first traversal technique attempts
to optimize per-output-tuple processing costs (or average
throughput) by minimizing the number of box calls per
output tuple. This is accomplished by traversing the
superbox in post order, where a box is scheduled for
execution only after all the boxes in its sub-tree are
scheduled. Notice that a superbox execution based on an
MC traversal consumes all tuples (available at the start of
execution) while executing each box only once.

Consider the query tree shown in Figure 4 and assume
for illustration purposes that a superbox that covers the
entire tree is defined. Assume that each box has a
processing cost per tuple of p, a box call overhead of o,
and a selectivity equal to one. Furthermore, assume that
each box has exactly one non-empty input queue that

b2b4

b5 b3

b6

b1
app

output box (root)

query tree
Figure 4: Sample query tree

contains a single tuple. An MC traversal of the superbox
consists of executing each box only once:

b4 → b5 → b3 → b2 → b6 → b1
This traversal consists of six box calls. A simple back-

of-the-envelope calculation tells us that the total
execution cost of the superbox (i.e., the time it takes to
produce all the output tuples) is 15p + 6o and the average
output tuple latency is 12.5p + 6o.

Min-Latency (ML). Average latency of the output
tuples can be reduced by producing initial output tuples
as fast as possible. In order to accomplish this, we define
a cost metric for each box b, referred to as the output cost
of b, output_cost(b). This value is an estimate of the
latency incurred in producing one output tuple using the
tuples at b’s queue and processing them downstream all
the way to the corresponding output.

This value can be computed using the following
formulas:

()

_ () ()
k D b

o sel b sel k
∈

= ∏

()
_ () () / _ ()

k D b
output cost b cost k o sel k

∈

= ∑

where D(b) is the set of boxes downstream from b and
including b, and sel(b) is the estimated selectivity of b. In
Figure 4, D(b3) is b3 → b2 → b1, and D(b1) is b1. The
output selectivity of a box b, o_sel(b), estimates how
many tuples should be processed from b’s queue to
produce one tuple at the output.

To come up with the traversal order, the boxes are first
sorted in increasing order of their output costs. Starting
from an empty traversal sequence and box b with the
smallest such value, we can then construct the sequence
by appending D(b) to the existing sequence.

An ML traversal of the superbox of Figure 4 described
above is:

b1 → b2 → b1 → b6 → b1 → b4 → b2 → b1 → b3 → b2 →
b1 → b5 → b3 → b2 → b1

The ML traversal incurs nine extra box calls over an
MC traversal (which only incurs six box calls). In this
case, the total execution cost is 15p + 15o, and the
average latency is 7.17p + 7.17o.

Notice that MC always achieves a lower total
execution time than ML. This is an important
improvement especially when the system is under CPU
stress, as it effectively increases the throughput of the
system. ML may achieve lower latency depending on the
ratio of box processing costs to box overheads. In this
example, ML yields lower latency if p / o > 0.22.

Min-Memory (MM). This traversal is used to
maximize the consumption of data per unit time. In other
words, we schedule boxes in an order that yields the
maximum increase in available memory (per unit time).

() (1 ())_ ()
()

tsize b selectivity bmem rr b
cost b

× −
=

The above formula is the expected memory reduction
rate for a box b (tsize(b) is the size of a tuple that reside

on b’s input queue). Once the expected memory
reduction rates are computed for each box, the traversal
order is computed as in the case of ML.

Let’s now consider the MM traversal of the superbox
in Figure 4, this time with the following box selectivities
and costs: b1 = (0.9, 2), b2 = (0.4, 2), b3 = (0.5, 1), b4 =
(1.0, 2), b5 = (0.4, 3), b6 = (0.6, 1). Assuming that all
tuples are of size one, mem_rr for all the boxes, b1
through b6 respectively, are computed as follows: 0.05,
0.3, 0.5, 0, 0.2, 0.4. Therefore, the MM traversal is:

b3 → b6 → b2 → b5 → b3 → b2 → b1 → b4 → b2 → b1
Note that this traversal might be shorter at run time: for
example, if b5 consumes all of its input tuples and
produces none on the output, the execution of b3 after b5
will clearly be unnecessary. In this example, the average
memory requirements for MM, MC, and ML turn out to
be approximately 36, 39, and 40 tuples, respectively
(memory requirements are computed after the execution
of each box and averaged by the number of box
executions).

4.2 Tuple Batching - Train Processing
A tuple train (or simply a train) is a sequence of tuples
executed as a batch within a single box call. The goal of
tuple train processing is to reduce overall tuple
processing costs. This happens due to several reasons:
First, given a fixed number of tuples to process, train
processing decreases the total number of box executions
required to process those tuples, thereby cutting down
low-level overheads such as scheduling overhead
(including maintenance of the execution queue and
memory management), calls to the box code, and context
switch. Second, as in the case of superbox scheduling,
train processing also improves memory utilization when
the system operates under memory stress (see Section
4.1). A third reason, which we do not directly explore in
this paper, is that some operators may optimize their
execution better with larger number of tuples available in
their queues. For instance, a box can materialize
intermediate results and reuse them in the case of
windowed operations, or use merge-join instead of nested
loops in the case of joins.

The Aurora scheduler implements train processing by
telling each box when to execute and how many queued
tuples to process. This approach contrasts with traditional
blocking operators that wake up and process new input
tuples as they arrive. This somewhat complicates the
implementation and increases the load of the scheduler,
but is necessary for creating and processing trains, which
significantly decrease overall execution costs.

Aurora allows an arbitrary number of tuples to be
contained within a train. In general, the size of a train can
be decided by constraining a specific attribute such as the
number of tuples, variance in latencies, total expected
processing cost, and total memory footprint. Intelligent
train construction is a research topic on its own and is
outside the scope of this paper.

5 Experimental Evaluation

5.1 Experimental Testbed
We use the Aurora prototype system to study our
operator scheduling techniques. The reference run-time
architecture is defined in Section 2.2.

The prototype is implemented on top of Debian
GNU/Linux using C++. In the experiments, we used a
dedicated Linux workstation with 2 Ghz Pentium IV
processors and 512M of RAM. The machine was isolated
from the network to avoid external interference.

Due to the fact that the domain of stream-based
applications is still emerging and that there are no
established benchmarks, we decided to artificially
generate data streams and continuous queries to
characterize the performance of our algorithms, as
described below.

We generated an artificial Aurora network as a
collection of continuous queries, each feeding output
tuples to individual applications. We modeled a
continuous query as a tree of boxes rooted at an output
box (i.e., a box whose outputs are fed to one or more
applications). We refer to such a query tree as an
application tree. Each query is then specified by two
parameters: depth and fan-out. Depth of a query specifies
the number of levels in the application tree and fan-out
specifies the average number of children for each box.

For ease of experimentation, we implemented a
generic, universal box whose per-tuple processing cost
and selectivity can be set. Using this box, we can model a
variety of stateless stream-based operators such as filter,
map, and union. For purposes of this paper, we chose not
to model stateful operators as their behavior is highly-
dependent on the semantics they implement, which would
introduce another dimension to our performance
evaluation and restrict the generality of our conclusions.
This would complicate the understanding of the results
without making a substantial contribution to the
understanding of the relative merits of the algorithms.

An Aurora network consists of a given number of
query trees. All queries are then associated with latency-
based QoS graphs, a piece-wise linear function specified
by three points: (1) maximum utility at time zero, (2) the
latest latency value where this maximal utility can be
achieved, and (3) the deadline latency point after which
output tuples provides zero utility.

To meaningfully compare different queries with
different shapes and costs, we use an abstract capacity
parameter that specifies the overall load as an estimated
fraction of the ideal capacity of the system. For example,
a capacity value of .9 implies that 90% of all system
cycles are required for processing the input tuples. Once
the target capacity value is set, the corresponding input
rates (uniformly distributed across all inputs) are
determined using an open-loop computation. Because of
various system overheads, the CPU will saturate typically
much below a capacity of one.

The graphs presented in the rest of the paper provide
average figures of six independent runs, each processing
100K input tuples. Unless otherwise stated, the fan-out
parameter is set to three; the depth is set to five; the
selectivities of the boxes are set to one; and the per-tuple
processing costs are selected from the range [0.0001
sec/tuple - 0.001sec/tuple]. Furthermore, unless otherwise
stated, we use the round-robin scheduling policy to
arbitrate among boxes and superboxes.

5.2 Operator Batching – Superbox Scheduling
We investigate the benefits of superbox scheduling by
looking at the performance of the round-robin (RR)
algorithm, run in the default box-at-a-time (BAAT), and
the MC traversal algorithm applied to superboxes that
correspond to entire applications (i.e., application-at-a-
time or AAAT, which is described in Section 4.1.1).

Figure 5 shows the average tuple latencies of these
approaches as a function of the input rate (as defined
relative to the capacity of the system) for five application
trees. As the arrival rate increases, the queues eventually
saturate and latency increases arbitrarily. The interesting
feature of the curves in the figure is the location of the
inflection point. RR-BAAT does particularly badly. In
these cases, the scheduling overhead of the box-at-a-time
approach is very evident. This overhead effectively steals
processing capability from the normal network
processing, causing saturation at much earlier points. On
the other hand, the MC_AAAT algorithm performs quite
well in the sense that it is resistant to high load. This
technique experiences fewer scheduler calls and, thus,
have more processing capacity and is able to hang on at
input rates of over 90% of the theoretical capacity.

5.3 Superbox Traversal
We first investigate the performance characteristics of the
Min-Cost (MC) and Min-Latency (ML) superbox
traversal algorithms. In this experiment, we use a single
application tree and a capacity of 0.5.

0

0.5

1

1.5

2

0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 L
at

en
cy

 (s
ec

on
ds

)

Capacity

 RR_BAAT
 MC_AAAT

Figure 5: Box vs. application scheduling

Figure 6 shows the average output tuple latency as a
function of per-tuple box processing cost. As expected,
both approaches perform worse with increasing
processing demands. For most of the cost value range
shown, ML not surprisingly performs better than MC as it
is designed to optimize for output latency. Interestingly,
we also observe that MC performs better than ML for
relatively small processing cost values. The reason is due
to the relationship between the box processing cost and
box call overhead, which is the operational cost of
making a box call. The box call overhead is a measure of
how much time is spent outside the box versus inside the
box (processing tuples and doing real work). As we
decrease the box processing costs, box call overheads
become non-negligible and, in fact, they start to dominate
the overall costs incurred by the algorithms. As we
explained in Section 4.1.2, an MC traversal always
requires less number of box calls than ML does. We thus
see a cross-over effect: for smaller box processing costs,
box call overheads dominate overall costs and MC wins.
For larger processing costs, ML wins as it optimizes the
traversal for minimizing output latency.

A set of complementary results (not shown here due to
space limitations) demonstrates that MC incurs less
overall box overhead as it minimizes the number of box
calls. The difference increases as the applications become
deeper and increase in the number of boxes. In fact, the
overhead difference between the two traversals is
proportional to the depth of the traversed tree.

These key results can be utilized for improving the
scheduling and overall system performance. It is possible
to statically examine an Aurora network, obtain box-
processing costs, and then compare them to the (more or
less fixed) box processing overheads. Based on the
comparison and using the above results, we can then
statically determine which traversal algorithm to use. A
similar finer-grained approach can be taken dynamically.
Using a simple cost model, it is straightforward to
compute which traversal algorithm should do better for a
particular superbox.

Figure 7 demonstrates the amount of memory used
over the time of superbox run. The curves are normalized
with respect to the MM values. ML is most inefficient in
its use of memory with MC performing second. MC
minimizes the amount of box overhead. As a result MC
discards more tuples per unit of time than ML.

MM loses its advantage towards the end since all three
traversals are executed on a common query network.
Even though each chooses a different execution sequence
and incurs different overhead, all of them push the same
tuples through the same sequence of boxes. The
crossover towards the end of the time period is a
consequence of the fact that different traversals take
different times to finish. In general, MC has the smallest
total execution time−the reason why it catches up with
MM at towards the end of the shown execution range.

5.4 Tuple Batching - Train Scheduling
Train scheduling is only relevant in cases in which
multiple tuples are waiting at the inputs to boxes. This
does not happen when the system is very lightly loaded.
In order to see how train scheduling affects performance,
we needed to create queues without saturating the system.
We achieved this by creating a bursty (or clustered)
workload that simply gathers tuples in our previously
studied workloads and delivers them as a group. In other
words, if our original workload delivered n tuples evenly
spaced in a given time interval T, the bursty version of
this delivers n tuples as a group and then delivers nothing
more for the next T time units. Thus, the bursty workload
is the same in terms of average number of tuples
delivered, but the spacing is different.

The graph in Figure 8 shows how the train scheduling
algorithm behaves for several bursty workloads. In this
experiment, we have a single application tree with a fan-
out of two and a depth of five. In order to isolate the
effects of operator scheduling, we use round-robin BAAT
for this experiment. The train size (x-axis) is given as a
percentage of the queue size. As we move to the right, the
trains bite off increasingly larger portions of the queues.
With a burst size of one, all tuples are evenly spaced.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 la
te

nc
y

(s
ec

on
ds

)

Per Box Cost (milliseconds)

MC
ML

Figure 6: Min-cost vs min-latency traversals

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4

0 1 2 3 4 5 6 7 8 9

N
or

m
al

iz
ed

 M
em

or
y

U
sa

ge

Time (seconds)

ML
MC
MM

Figure 7: Memory requirements of traversal algorithms

This is equivalent to the normal workload. Notice that the
curve for this workload is flat. If there are no bursts, train
scheduling has no effect. For the other two curves,
however, as the burst size increases, the effect gets more
pronounced. With small a train size of 0.2, the effect on
the overhead (i.e., total execution time less processing
time) of increasing the burst size is substantial. For a
burst size of 4, we quadruple the average overhead. Now
as we increase the train size, we markedly reduce the
average overhead for the bursty cases. In fact, when the
train size is equal to one (the entire queue), the average
overhead approaches the overhead for the non-bursty
case. Trains improve the situation because tuples do not
wait at the inputs while other tuples are being pushed
through the network. It is interesting to note that the
bursty loads do not completely converge to the non-
bursty case even when the train size is one (i.e., the whole
queue). This is because the tuples still need to be
processed in order. Since the bursty workload generation
delivers n-1 of the tuples early, their latency clock is
ticking while the tuples in front of them are being
processed. In the non-bursty case, the tuples arrive spaced
out in time, and a fair amount of processing can be done
on queued tuples before more tuples arrive.

5.5 Overhead Distribution
Figure 9 shows a comparison of the relative execution
overheads and how they are distributed for TAAT (tuple-
at-a-time), BAAT (tuple trains), and MC (superbox), for
four application trees. Each bar is divided into three
fundamental cost components: the worker thread
overhead, the storage management overhead, and the
scheduler overhead. The number at the top of each bar
shows the actual time for processing 100K tuples in the
system.

Looking at the total running times, the first thing to
notice is that TAAT is significantly worse than the other
two methods, underscoring our conclusion that train and
superbox scheduling are important techniques for
minimizing various system overheads and improving the
overall system throughput. Additionally, this graph shows

clearly the benefits of superbox scheduling, which
decreased the overall execution time of the system
running tuple trains almost by 50%.

Finally, we note the interesting trend in the relative
component costs for each approachwhile the
percentages of the worker thread and storage manager
overheads decrease, as we go from the leftmost bar to the
right, the percentage of the scheduler overhead increases
and starts to dominate the rest. The reason is that, as
batching is increased, increasingly more tuples get
processed at each scheduling step. In other words, the
number of scheduling steps to process a specific number
of tuples decreases, but the number of box executions
decreases more. Because the worker thread and storage
management overheads are primarily associated with the
number of box executions, their overheads decrease more
relatively to that of the scheduler. Another contributing
factor is that, again as we go from left to right, the
scheduler algorithms become increasingly more
intelligent and sophisticated, taking more time to generate
the scheduling plans.

6 QoS-Driven Scheduling
We first discuss how we compute box priorities and, at a
coarser level, output priorities using application-specific
QoS information and tuple latencies. After describing our
basic approach, we propose and experimentally evaluate
an approximation technique, based on bucketing and pre-
computation, which is used to improve scalability by
trading off scheduling overhead with scheduling quality.

6.1 Computing Priorities
The basic approach is to keep track of the latency of
tuples that reside at the queues and pick for processing
the tuples whose execution will provide the most
expected increase in the aggregate QoS delivered to the
applications. Taking this approach per tuple is not
scalable. We therefore maintain latency information at
the granularity of individual boxes and define the latency
of a box as the averaged latencies of the tuples in its input
queue(s).

0

0.05

0.1

0.15

0.2

0.25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
ve

ra
ge

 O
ve

rh
ea

d
(s

ec
on

ds
/tu

pl
e)

Train Size

Burst Size = 9
Burst Size = 4
Burst Size = 1

Figure 8: Train scheduling effects

0%
10%

20%
30%

40%
50%
60%

70%
80%

90%
100%

Tuple-at-a-Time Tuple Train Superbox

R
el

at
iv

e
O

ve
rh

ea
d Worker Thread

Storage Manager

Scheduler

410 secs 15 secs 8.5 secsTotal running time:

Figure 9: Distribution of execution overheads

Our priority assignment approach is to order the boxes
in terms of their utility and urgency. We define the
importance of a box b in terms of its expected slope
value, slope(b), and define its urgency in terms of its
expected slack time, slack(b).

We compute the utility of b as follows:
() (())utility b gradient eol b=

This value is the gradient of the QoS-latency curve for
b’s corresponding output at the latency value eol(b),
where eol(b) is the expected output latency of b. This
value is an estimation of where b’s tuples currently are on
the QoS-latency curve at the corresponding output. In
other words, this value provides a lower bound on the
expected latency of the corresponding tuples at the output
(assuming that the tuples are pushed all the way to the
output without further delay). The value eol(b) is
computed by adding the current latency value to the
expected computation time for a given output as follows:

() () (())eol b latency b cost D b= +
where D(b) is the set of boxes downstream from b and
cost(D(b)) is an estimate of how long it will take to
process the tuples downstream from b. This utility
function is a measure of the expected QoS (per unit time)
that will be lost if the box is not chosen for execution.

The expected slack time, est(b), is an indication of how
close a box is to a critical point; i.e., a point where the
QoS changes sharply. Urgency can be trivially computed
by subtracting the expected output latency from the
latency value that corresponds to the critical point. If
there are multiple critical points, est(b) always
corresponds to the distance to the closest critical point.
These concepts are illustrated in Figure 10, where the
QoS is specified as a piece-wise linear function of latency
with three critical points.

At each scheduling point in time, we can order the
boxes with respect to their priority tuple, or p-tuple2:

() ((), ())priority b utility b est b= −

2 If a box b has multiple downstream applications, utility(b) is
defined as the sum, and est(b) as the minimum value computed
across all applications.

In other words, we first choose for execution those boxes
that have the highest utility, and then choose from among
those that have the same utility, the ones that have the
minimum (i.e., least) slack time.

Figure 11 shows a comparison of Aurora’s QoS-aware
scheduling approach (p-tuple) and a simple round-robin
BAAT scheduling policy (RR). In the experiment, there
are 20 applications, each with a fan-out of one and a
depth of five. Two types of QoS graphs, tight and loose
QoS, are modeled (the graphs are specified by the set of
points {(0,1), (0.001,1), (1,0)} and {(0,1), (4,1), (5,0)},
respectively) and are randomly assigned to applications.

 The graph reveals a significant difference between the
average QoS values achieved by the algorithms. The
difference is pretty much stable up to a capacity value of
0.7, after which the system becomes overloaded and the
performances of both algorithms decrease drastically and
will eventually drop to zero (note that they remain above
zero due to the finite amount of time experiments were
run).

6.2 Approximation for Scalability
A straightforward implementation of the above QoS-
driven scheduling approach requires, at each scheduling
point, computing the p-tuple for each box and then
sorting the boxes with respect to their p-tuples. This is an
O(n × logn) operation, where n is the number of boxes.
We improve upon the basic algorithm using a
combination of (1) approximation (via bucketing) and (2)
pre-computation. Our approach is to partition the utility-
urgency space into discrete buckets, and efficiently assign
boxes to individual buckets based on their p-tuple values
at run time. During scheduling, buckets can be traversed
in the order of decreasing p-tuples (illustrated in Figure
12(a)), and the corresponding boxes are placed in the
execution queue. Given a latency value, our first goal is
to compute the corresponding bucket assignment in O(1).
To do this, we make use of two auxiliary graphs,
gradient- and slack-latency graphs.

We divide the range of the gradient (i.e., utility) values
into g buckets (Figure 12(b) shows an example with four
buckets; the cross symbols highlight the latency values

Q
oS

Latency

0

critical points

eol(b)

est(b)

1

latency(b)

cost(D(b))

Figure 10: Critical points and expected output delay

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 Q
oS

Capacity

P-tuple
RR

Figure 11: QoS-aware scheduling

where bucket transitions take place). All gradient values
in the same bucket are treated as the same. The width of
each bucket, thus, defines a bound on the inaccuracy (or
variance) that we are willing to tolerate in terms of the
potential deviation from the highest possible gradient
value. In other words, the width of a bucket is a measure
of the bound on the quantitative deviation from the
optimal (with respect to the heuristic) scheduling
decision.

Similarly, we divide the slack values into s buckets
(Figure 12(c)) and treat all the slack values within a
single bucket as equal. Again, the width of a bucket is an
indication of the level of approximation we make with
regards to the slack values.

Given pre-computed gradient-latency graphs, it is
possible to pre-compute the application-specific latency
ranges that correspond to each bucket. For example, b1
will be in bucket2 beyond latency = 5 and in bucket3
beyond latency = 15; whereas b3 will be in bucket1 till
latency = 12 and in bucket4 afterwards. Slack-latency
graphs can be interpreted in a similar fashion as
illustrated in the figure: b1 falls in bucket2 when latency is
between 5 and 10, and in bucket1 for other latency values.

When the execution queue is about to become empty,
the scheduler wakes up and performs bucket assignment
by going through the boxes and assigning them into their
current buckets. A straightforward implementation of
bucket assignment takes O(n) time by going through all
the boxes, computing the bucket for each box in O(1).
This approach has the potential drawback of redundantly
reassigning buckets for each box, even if the box’s bucket
has not been changed since the last assignment. In
particular, we want the bucket assignment overhead to be
proportional to the number of boxes that made a
transition to another bucket. In order to accomplish this,
we use a calendar queue [7], which is a multi-list priority
queue that exhibits O(1) amortized time complexity for
the relevant operations (insertion, deletion, and extract-
min) under popular event distributions. As a result, we
can implement all phases of bucket assignment in
constant amortized time.

6.3 Bucketing Results
We ran the slope-slack (p-tuple) algorithm and our

bucketing algorithm on a network with 200 non-
overlapping straight-line applications, each with five
boxes. The results are shown in Figure 13. The x-axis
represents the number of partitions for each of the QoS-
gradient and the slack time ranges. We assume that these
two dimensions are partitioned equally. Thus, for
example, 10 partitions represent 100 buckets.

The slope-slack method produced a measured QoS of
0.796, which is shown for reference on the graph as a
horizontal line. When there is only one bucket, the
observed QoS is a very poor 0.427. This is because with
one bucket all runnable boxes end up in a single grouping
which is then equivalent to round-robin scheduling.
Notice, however, that as we increase the number of
buckets, the QoS rises sharply; until at 20 partitions we
reach a maximum QoS value of 0.85. We manage to
exceed the slope-slack value (although only by 7%)
because the decrease in scheduler overhead dominates the
loss of precision in scheduling decisions introduced by
bucketing.

Increasing the number of partitions and thus the
number of buckets improves the accuracy of scheduling
decisions. Working against this effect, though, is the fact
that as the number of buckets grows past some moderate
level (approximately 30 partitions), the scheduler
overhead begins to increase as can be seen in Figure 14.
Simply having a very large number of buckets becomes a
bookkeeping problem. Thus, the scheduler overhead will
begin to dominate the incremental gain in accuracy which
we see in Figure 13 as the QoS curve steadily declines
from its maximum and eventually drops below the slope-
slack technique at about 260 partitions.

7 Related Work
There has been extensive research on scheduling tasks
under real-time performance expectations both in
operating systems [14, 16, 17, 20] and database systems
[3, 11, 12, 18, 19]. To the best of our knowledge,
Aurora’s scheduling approach that combines priority
assignment and dynamic scheduling plan construction is
the first comprehensive proposal for scheduling
continuous queries over real-time data streams and QoS
expectations. Our solutions no doubt borrow a lot from
the myriad of existing work on scheduling. Due to lack of

Q
oS

-g
ra

di
en

t

bucket11 bucket12 bucket13 bucket14

Slack time

bucket21 bucket22 bucket23 bucket24

bucket31 bucket32 bucket33 bucket34

bucket41 bucket42 bucket43 bucket44

(a)

Q
oS

-g
ra

di
en

t

Latency

b3

b1

b2

bucket1

5 10 15 20

bucket2

bucket3

bucket4

(b)

Sl
ac

k
tim

e

Latency

b2b1

b3

5 10 15 20

bucket1

bucket2

bucket3

bucket4

(c)

Figure 12: Illustrating (a) bucket traversal, (b) gradient-latency graphs, and (c) slack-latency graphs

space, however, we only discuss related work that is
particularly relevant to our work and highlight the
primary differences.

Scheduling proposals for real-time systems commonly
considered the issue of priority assignment and
consequent task scheduling based on static (table- or
priority-driven) approaches or dynamic (planning or best-
effort) approaches [19]. Static approaches are inherently
ill suited for the potentially unpredictable, aperiodic
workloads we assume, as they assume a static set of
highly periodic tasks. Dynamic planning approaches
perform feasibility analysis at run-time to determine the
set of tasks that can meet their deadlines, and rejecting
the others that cannot [14]. This decision is based on two
key observations: First, our priority assignment algorithm
is based on a variation of Earliest-Deadline-First (EDF)
algorithm [16], which is well known to have optimal
behavior as long as no overloads occur. Second, Aurora
employs a load shedding mechanism (not described in
this paper but can be found in [8, 21]) that is initiated
when an overload situation is detected and that
selectively sheds load to get rid of excess load in a way
that least degrades the QoS. This allows our scheduling
algorithm to focus only on underload situations. We note
here that Haritsa et al. [12] proposed an extension of EDF
that is designed to handle overloads through adaptive
admission control.

Real-time database systems [3, 11, 12, 15, 18, 19]
attempt to satisfy deadlines associates with each
incoming transaction, with the goal of minimizing the
number of transactions that miss their deadlines. These
systems commonly support short-running, independent
transactions, whereas Aurora deals with long-running
continuous queries over streaming data Leaving aside
these differences, of particular relevance to Aurora
scheduling is the work of Haritsa et al. [11] that studied a
model where transactions have non-uniform values (or
utilities) that drop to zero immediately after their
deadlines. They studied different priority assignment
algorithms that combine deadline and value information
in various ways, one of which is a bucketing technique.

This technique is similar to ours in that it assigns
schedulable processing units into buckets based on their
utility. The differences are that (1) we use bucketing to
trade off scheduling quality for scheduling overhead and,
consequently, for scalability; and (2) we also use
bucketing for keeping track of slack values.

Also related to Aurora scheduling is the work on
adaptive query processing and scheduling techniques [4,
13, 22]. These techniques address efficient query
execution in unpredictable and dynamic environments by
revising the query execution plan as the characteristics of
incoming data changes. Eddies [4] tuple-at-a-time
scheduling provides extreme adaptability but has limited
scalability for the types of applications and workloads we
address. Urhan’s work [22] on rate-based pipeline
scheduling prioritizes and schedules the flow of data
between pipelined operators so that the result output rate
is maximized. This work does not address multiple query
plans (i.e., multiple outputs) or deal with and support the
notion of QoS issues (and neither does Eddies).

Related work on continuous queries by Viglas and
Naughton [23] discusses rate-based query optimization
for streaming wide-area information sources in the
context of NiagaraCQ [9]. Similar to Aurora, the
STREAM project [6] also attempts to provide
comprehensive data stream management and processing
functionality. The Chain scheduling algorithm [5]
attempts to minimize intermediate queue sizes, an issue
that we do not directly address in this paper. Neither
NiagaraCQ nor STREAM has the notion of QoS.

8 Conclusions
This paper presents an experimental investigation of
scheduling algorithms for stream data management
systems. It demonstrates that the effect of system
overheads (e.g., number of scheduler calls) can have a
profound impact on real system performance. We have
run our experiments on the Aurora prototype since
simulators do not reveal the intricacies of system
implementation penalties.

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 Q
oS

Num Partitions

BUCKETING
SLOPE-SLACK

Figure 13: Bucketing effects on QoS

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300 350 400

Sc
he

du
lin

g
O

ve
rh

ea
d

/ R
un

ni
ng

 T
im

e

Num Partitions

BUCKETING
SLOPE-SLACK

Figure 14: Bucketing overheads

We show that the naïve approach of using a thread per
box does not scale. We further show that our approaches
of train scheduling and superbox scheduling help a lot to
reduce system overheads. We have also discussed exactly
how these overheads are affected in a running stream data
manager. In particular, these algorithms require tuning
parameters like train size and superbox traversal methods.

We also addressed QoS issues and extended our basic
algorithms to address application-specific QoS
expectations. Furthermore, we described an
approximation technique based on bucketing that trades
off scheduling quality with scheduling overhead.

The overriding message of this paper is that to build a
practical data stream management system, one must
ensure that scheduler overhead be small relative to useful
work. We have provided some interesting results in this
direction by focusing on batching techniques. We intend
to extend these studies in the future by examining self-
tuning approaches that dynamically revise algorithm
parameters based on workload and resource conditions.
We are also considering extending our scheduling
techniques to distributed environments and other
resources (such as bandwidth) in the context of Aurora*
[10].

References
[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.

Convey, C. Erwin, E. Galvez, M. Hatoun, J. Hwang, A.
Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul,
Y. Zing, R.Yan, and S. Zdonik. Aurora: A Data Stream
Management System (demo description). In Proceedings
of the 2003 ACM SIGMOD Conference on Management of
Data, San Diego, CA, 2003.

[2] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A New Model and Architecture for Data Stream
Management. In VLDB Journal, 2003 (to appear).

[3] R. J. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: a performance evaluation. ACM Transactions
on Database Systems (TODS), 17(3):513-560., 1992.

[4] R. Avnur and J. Hellerstein. Eddies: Continuously
Adaptive Query Processing. In Proceedings of the 2000
ACM SIGMOD International Conference on Management
of Data, Dallas, TX, 2000.

[5] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain:
Operator Scheduling for Memory Minimization in Stream
Systems. In Proc. of the International SIGMOD
Conference, San Diego, CA, 2003.

[6] S. Babu and J. Widom. Continuous Queries over Data
Streams. SIGMOD Record, 30(3):109-120, 2001.

[7] R. Brown. Calendar Queues: A Fast O(1) Priority Queue
Implementation of the Simulation Event Set Problem.
Communications of the ACM, 31(10):1220-1227, 1988.

[8] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S.
Zdonik. Monitoring Streams: A New Class of Data
Management Applications. In proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB'02), Hong Kong, China, 2002.

[9] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas,
TX, 2000.

[10] M. Cherniack, H. Balakrishnan, M. Balazinska, D.
Carney, U. Cetintemel, Y. Xing, and S. Zdonik. Scalable
Distributed Stream Processing. In Proceedings of
CIDR'03, Asilomar, California, 2003.

[11] J. R. Haritsa, M. J. Carey, and M. Livny. Value-Based
Scheduling in Real-Time Database Systems. VLDB
Journal: Very Large Data Bases, 2(2):117-152, 1993.

[12] J. R. Haritsa, M. Livny, and M. J. Carey. Earliest Deadline
Scheduling for Real-Time Database Systems. In IEEE
Real-Time Systems Symposium, 1991.

[13] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A.
Deshpande, K. Hildrum, S. Madden, V. Raman, and M.
Shah. Adaptive Query Processing: Technology in
Evolution. IEEE Data Engineering Bulletin, 23(2):7-18,
2000.

[14] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU Reservations
and Time Constraints: Efficient, Predictable Scheduling of
Independent Activities. In Symposium on Operating
Systems Principles, 1997.

[15] B. Kao and H. Garcia-Molina, “An Overview of Realtime
Database Systems,” in Real Time Computing, A. D.
Stoyenko, Ed.: Springer-Verlag, 1994.

[16] C. D. Locke. Best-Effort Decision Making for Real-time
Scheduling, CMU TR-88-33, 1988.

[17] J. Nieh and M. S. Lam. The Design, Implementation and
Evaluation of SMART: A Scheduler for Multimedia
Applications. In Proc. 16th ACM Symposium on OS
Principles, 1997.

[18] G. Ozsoyoglu and R. T. Snodgrass. Temporal and Real-
Time Databases: A Survey. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 7(4):513-532,
1995.

[19] K. Ramamritham. Real-Time Databases. Distributed and
Parallel Databases, 1(2):199-226, 1993.

[20] K. Ramamritham and J. Stankovic. Scheduling algorithms
and operating systems support for real-time systems.
Proceedings of the IEEE, 82(1):55-67, 1994.

[21] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load Shedding in a Data Stream
Manager. In Proceedings of VLDB, Berlin, Germany,
2003.

[22] T. Urhan and M. J. Franklin. Dynamic Pipeline
Scheduling for Improving Interactive Query Performance.
In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB), Rome, Italy, 2001.

[23] S. Viglas and J. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin,
2002.

