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Abstract 
Many stream-based applications have sophisticated 
data processing requirements and real-time 
performance expectations that need to be met under 
high-volume, time-varying data streams. In order to 
address these challenges, we propose novel operator 
scheduling approaches that specify (1) which 
operators to schedule (2) in which order to schedule 
the operators, and (3) how many tuples to process at 
each execution step. We study our approaches in the 
context of the Aurora data stream manager.  
    We argue that a fine-grained scheduling approach 
in combination with various scheduling techniques 
(such as batching of operators and tuples) can 
significantly improve system efficiency by reducing 
various system overheads. We also discuss 
application-aware extensions that make scheduling 
decisions according to per-application Quality of 
Service (QoS) specifications. Finally, we present 
prototype-based experimental results that characterize 
the efficiency and effectiveness of our approaches 
under various stream workloads and processing 
scenarios. 

1 Introduction 
Applications that deal with potentially unbounded, 
continuous streams of data are becoming increasingly 
popular due to a confluence of advances in real-time, 
wide-area data dissemination technologies and the 
emergence of small-scale computing devices (such as 
GPSs and micro-sensors) that continually emit data 
obtained from their physical environment. Example 

applications include sensor networks, position tracking, 
fabrication line management, network management, and 
financial portfolio management. All these applications 
require timely processing of large numbers of continuous, 
potentially rapid and asynchronous data streams. 
Hereafter, we refer to such applications as stream-based 
applications. 

The Aurora data stream manager [1, 8] addresses the 
performance and processing requirements of stream-
based applications. Aurora supports multiple concurrent 
continuous queries, each of which produces results to one 
or more stream-based applications. Each continuous 
query consists of a directed acyclic graph of a well-
defined set of operators (or boxes in Aurora terminology). 
Applications define their service expectations using 
Quality-of-Service (QoS) specifications, which guide 
Aurora’s resource allocation decisions. We provide an 
overview of Aurora in Section 2.  

A key component of Aurora, or any data-stream 
management system for that matter, is the scheduler that 
controls processor allocation. The scheduler is 
responsible for multiplexing the processor usage to 
multiple queries according to application-level 
performance or fairness goals. Simple processor 
allocation can be performed by assigning a thread per 
operator or per query. Such standard techniques do not 
scale since no system that we are aware of can adequately 
deal with a very large number of threads. More 
importantly, any such approach would abdicate the 
details of scheduling to the operating system, thereby 
making it impossible to account for application-level 
constraints (QoS). We demonstrate this quantitatively in 
Section 6. 

This paper shows that having finer-grained control 
over processor allocation can make a significant 
difference to overall system performance by reducing 
various system overheads associated with continuous 
query execution. We propose a set of novel scheduling 
techniques that address scheduler overheads by batching 
(of operators and tuples), approximation, and pre-
computation. 
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In particular, we describe the design and 
implementation of the Aurora scheduler, which performs 
the following tasks: 
1. Dynamic scheduling-plan construction: The 

scheduler develops a scheduling plan that specifies, 
at each scheduling point, (1) which boxes to 
schedule, (2) in which order to schedule the boxes, 
and (3) how many tuples to process at each box 
execution. 

2. QoS-aware scheduling: The Aurora scheduler 
strives to maximize the overall QoS delivered to the 
client applications. At a high level, our scheduling 
decisions are based on a novel box priority 
assignment technique that uses the latencies of 
queued tuples and application-specific QoS 
information. For improved scalability, we also use an 
approximation technique, based on bucketing and 
pre-computation, which trades scheduling quality 
with scheduling overhead. 

We also evaluate and experimentally compare these 
algorithms on our Aurora prototype under various stream 
processing and workload scenarios. Through the 
implementation of our techniques on the prototype rather 
than a simulator, we were better able to understand the 
actual system overheads. 

The rest of the paper is organized as follows: Section 2 
provides an overview of the Aurora data stream manager. 
Section 3 describes the state-based execution model used 
by Aurora. Section 4 discusses in detail Aurora’s 
scheduling algorithms. Section 5 discusses our prototype-
based experimental study that provides quantitative 
evidence regarding the efficiency and effectiveness of 
Aurora’s scheduling algorithms. Section 6 extends our 
basic approaches to address QoS, describing queue-based 
priority assignment and an approximation technique for 
improving the scalability of the system. Section 7 
describes related work, and Section 8 concludes the 
paper. 

2 Aurora Overview 

2.1 Basic Model 
Aurora data is assumed to come from a variety of data 
sources such as computer programs that generate values 
(at regular or irregular intervals) or hardware sensors. We 
will use the term data source for either case. In addition, 
a data stream is the term we will use for the collection of 
data values that are presented by a data source. Each data 
source is assumed to have a unique source identifier and 
Aurora timestamps every incoming tuple to monitor the 
prevailing QoS. 

The basic job of Aurora is to process incoming streams 
in the way defined by an application administrator. 
Figure 1 illustrates Aurora’s high-level system model. 
Aurora is fundamentally a data-flow system and uses the 
popular boxes and arrows paradigm found in most 
process flow and workflow systems. Hence, tuples flow 

through a loop-free, directed graph of processing 
operations (a.k.a. boxes). Ultimately, output streams are 
presented to applications, which must be programmed to 
deal with output tuples that are generated 
asynchronously. Aurora can also maintain historical 
storage, primarily in order to support ad-hoc queries.  

Tuples generated by data sources arrive at the input 
and are queued for processing. The scheduler selects 
boxes with waiting tuples and executes them on one or 
more of their input tuples. The output tuples of a box are 
queued at the input of the next box in sequence. In this 
way, tuples make their way from the inputs to the 
outputs. Each output is associated with one or more QoS 
specifications, which define the utility of stale or 
imprecise results to the corresponding application.  

The primary performance-related QoS is based on the 
notion of the latency (i.e., delay) of output tuples—output 
tuples should be produced in a timely fashion, otherwise, 
QoS will degrade as latencies get longer. In this paper, 
we will only deal with latency-based QoS graphs; for a 
discussion of other types of QoS graphs and how they are 
utilized, please refer to [2, 8]. Aurora assumes that all 
QoS graphs are normalized, and are thus quantitatively 
comparable. Aurora further assumes that the QoS 
requirements are feasible; i.e., under normal operation 
(i.e., no peak overload), an idealized scheduler will be 
able to deliver maximum possible QoS for each 
individual output. 

Aurora contains built-in support for a set of primitive 
operations for expressing its stream processing 
requirements. Some operators manipulate the items in the 
stream, others transform individual items in the stream to 
other items, while other operators, such as the aggregates 
(e.g., moving average), apply a function across a window 
of values in a stream. A description of the operators is 
outside the scope of this paper and can be found in [2, 8]. 

2.2 Architecture 
Figure 2 illustrates the architecture of the basic Aurora 
run-time engine. Here, inputs  from data sources and 
outputs from boxes are fed to the router, which forwards 
them either to external applications or to the storage 
manager to be placed on the proper queues. The storage 
manager is responsible for maintaining the box queues 
and managing the buffer, properly making tuple queues 
available for read and write by operators. Conceptually, 
the scheduler picks a box for execution, ascertains how 

Input data 
streams

Output to 
applications

Continuous & ad hoc
queries

Operator boxes Historical
Storage

QoS specs

 
Figure 1: Aurora system model 



 

many tuples to process from its corresponding input 
queue, and passes a pointer to the box description 
(together with a pointer to the box state) to the multi-
threaded box processor. The box processor executes the 
appropriate operation and then forwards the output tuples 
to the router.  The scheduler then ascertains the next 
processing step and the cycle repeats. 

The QoS monitor continually monitors system 
performance and activates the load shedder when it 
detects an overload situation and poor system 
performance. The load shedder sheds load until the 
performance of the system reaches an acceptable level. 
The catalog contains information regarding the network 
topology, inputs, outputs, QoS information, and relevant 
statistics (e.g., selectivity, average box processing costs), 
and is essentially used by all components. 

3 Basic Execution Model 
The traditional model for structuring database servers is 
thread-based execution, which is supported widely by 
traditional programming languages and environments. 
The basic approach is to assign a thread to each query or 
operator. The operating system (OS) is responsible for 
providing a virtual machine for each thread and 
overlapping computation and I/O by switching among the 
threads. The primary advantage of this model is that it is 
very easy to program, as OS does most of the job. On the 
other hand, especially when the number of threads is 
large, the thread-based execution model incurs significant 
overhead due to cache misses, lock contention, and 
switching. More importantly for our purposes, the OS 
handles the scheduling and does not allow the overlaying 
software to have fine-grained control over resource 
management.  

Instead, Aurora uses a state-based execution model. In 
this model, there is a single scheduler thread that tracks 
system state and maintains the execution queue. The 
execution queue is shared among a small number of 
worker threads responsible for executing the queue 

entries (as we discuss below, each entry is a sequence of 
boxes). This state-based model avoids the mentioned 
limitations of the thread-based model, enabling fine-
grained allocation of resources according to application-
specific targets (such as QoS). Furthermore, this model 
also enables effective batching of operators and tuples, 
which we show has drastic effects on the performance of 
the system as it cuts down the scheduling and box 
execution overheads. 

In order to illustrate the basic performance benefits of 
Aurora’s state-based model over the traditional thread-
based model (where each operator is assigned a single 
thread), we ran a simple processing network consisting of 
multiple queries, each consisting of a chain of five filter 
operators (see Section 5.1 for a description of our 
experimental testbed). Figure 3 shows the tuple latencies 
observed as a function of the total number of operators. 
As we increase the system workload in terms of number 
of operators, the performance degrades in both cases, 
however much less in the Aurora case. In fact, 
performance degrades almost linearly in Aurora and 
exponentially in the thread-per-box case, a result that 
clearly supports the aforementioned scalability 
arguments. 

An important challenge with the state-based model is 
that of designing an intelligent but low-overhead 
scheduler. In this model, the scheduler becomes solely 
responsible for keeping track of system context and 
deciding when and for how long to execute each operator. 
In order to meet application-specific QoS requirements, 
the scheduler should carefully multiplex the processing of 
multiple continuous queries. At the same time, the 
scheduler should try to minimize the system overheads, 
time not spent doing “useful work” (i.e., processing), 
with no or acceptable degradation in its effectiveness. 

4 Two-Level Scheduling 
Aurora uses a two-level scheduling approach to address 
the execution of multiple simultaneous queries. The first-
level decision involves determining which continuous 
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Figure 2: Aurora run-time engine 
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Figure 3: High-level comparison of stream execution models 



 

query to process. This is followed by a second-level 
decision that then decides how exactly the selected query 
should be processed. The former decision entails 
dynamically assigning priorities to operators at run-time, 
typically according to QoS specifications, whereas the 
latter decision entails choosing the order in which the 
operators involved in the query will be executed. The 
outcome of these decisions is a sequence of operators, 
referred to as a scheduling plan, to be executed one after 
another. Scheduling plans are inserted into an execution 
queue to be picked up and executed by a worker thread. 

In order to reduce the scheduling and operator 
overheads, Aurora heavily relies on batching (i.e., 
grouping) during scheduling. We developed and 
implemented algorithms that batch both operators and 
tuples. In both cases, we observed significant 
performance gains over the non-batching cases. We now 
describe in detail our batching approaches for 
constructing scheduling plans. 

4.1 Operator Batching - Superbox Processing 
A superbox is a sequence of boxes that is scheduled and 
executed as an atomic group. Superboxes are useful for 
decreasing the overall execution costs and improving 
scalability as (1) they significantly reduce scheduling 
overheads by scheduling multiple boxes as a single unit, 
thereby decreasing the number of scheduling steps; (2) 
they eliminate the need to access the storage manager for 
each individual box execution by having the storage 
manager allocate memory and load all the required tuples 
at once1. 

Conceptually, a superbox can be an arbitrary 
connected subset of the Aurora network. However, we do 
constrain the form of superboxes such that each is always 
a tree of boxes rooted at an output box (i.e., a box whose 
output tuples are forwarded to an external application). 
The reasons that underlie this constraint are twofold. 
First, only the tuples that are produced by an output box 
provide any utility value to the system. Second, even 
though allowing arbitrary superboxes provide the highest 
flexibility and increase opportunities for optimization, 
this will also make the search space for superbox 
selection intractable for large Aurora networks.  

The following subsections discuss the two key issues 
to deal with when scheduling superboxes, namely 
superbox selection and superbox traversal. 
4.1.1 Superbox Selection 
The first-level scheduling issue involves determining 
which superboxes to schedule. Fundamentally, there are 
two different approaches to superbox selection: static and 
dynamic. Static approaches identify potential superboxes 

                                                           
1 Another benefit of superbox scheduling, which we do not 
address in this paper, is that it improves effective buffer 
utilization by consuming as many tuples as possible once the 
tuples are in memory. This potentially reduces the number of 
times each tuple is swapped between memory and disk. 

statically before run time, whereas the dynamic 
approaches identify useful superboxes at run time. 

In Aurora, we implemented a static superbox selection 
approach, called application-at-a-time (AAAT). AAAT 
statically defines one superbox for each query tree. As a 
result, the number of superboxes is always equal to the 
number of continuous queries (or applications) in the 
Aurora network. Figure 4 illustrates a simple query tree 
that consists of six boxes (the tree is rooted at box b1). 
Once the superboxes are identified, they can be scheduled 
using various scheduling policies (e.g., round-robin). 

We also implemented a dynamic approach, called top-
k spanner, which identifies, at run-time, the operator tree 
that is rooted at an output box and that spans the k highest 
priority boxes for a given application (see Section 6.1 to 
see how we compute box priorities). However, we do not 
study dynamic approaches in this paper and rely only on 
static AAAT scheduling. 
4.1.2 Superbox Traversal 
Once it is determined which superboxes need to be 
executed, a second-level decision process specifies the 
ordering of component boxes. This is accomplished by 
traversing the superbox. The goal of superbox traversal is 
to process all the tuples that are queued within the 
superbox (i.e., those tuples that reside on the input queues 
of all boxes that constitute the superbox). 

We investigate three traversal algorithms that primarily 
differ in the performance-related metric they strive to 
optimize: throughput, latency, and memory consumption. 

Min-Cost (MC). The first traversal technique attempts 
to optimize per-output-tuple processing costs (or average 
throughput) by minimizing the number of box calls per 
output tuple. This is accomplished by traversing the 
superbox in post order, where a box is scheduled for 
execution only after all the boxes in its sub-tree are 
scheduled. Notice that a superbox execution based on an 
MC traversal consumes all tuples (available at the start of 
execution) while executing each box only once. 

Consider the query tree shown in Figure 4 and assume 
for illustration purposes that a superbox that covers the 
entire tree is defined. Assume that each box has a 
processing cost per tuple of p, a box call overhead of o, 
and a selectivity equal to one. Furthermore, assume that 
each box has exactly one non-empty input queue that 
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Figure 4: Sample query tree 



 

contains a single tuple. An MC traversal of the superbox 
consists of executing each box only once: 

b4 → b5 → b3 → b2 → b6 → b1 
This traversal consists of six box calls. A simple back-

of-the-envelope calculation tells us that the total 
execution cost of the superbox (i.e., the time it takes to 
produce all the output tuples) is 15p + 6o and the average 
output tuple latency is 12.5p + 6o. 

Min-Latency (ML). Average latency of the output 
tuples can be reduced by producing initial output tuples 
as fast as possible. In order to accomplish this, we define 
a cost metric for each box b, referred to as the output cost 
of b, output_cost(b). This value is an estimate of the 
latency incurred in producing one output tuple using the 
tuples at b’s queue and processing them downstream all 
the way to the corresponding output.  

This value can be computed using the following 
formulas: 

( )

_ ( ) ( )
k D b

o sel b sel k
∈

= ∏  

( )
_ ( ) ( ) / _ ( )

k D b
output cost b cost k o sel k

∈

= ∑  

where D(b) is the set of boxes downstream from b and 
including b, and sel(b) is the estimated selectivity of b. In 
Figure 4, D(b3) is b3 → b2 → b1, and D(b1) is b1. The 
output selectivity of a box b, o_sel(b), estimates how 
many tuples should be processed from b’s queue to 
produce one tuple at the output.  

To come up with the traversal order, the boxes are first 
sorted in increasing order of their output costs. Starting 
from an empty traversal sequence and box b with the 
smallest such value, we can then construct the sequence 
by appending D(b) to the existing sequence. 

An ML traversal of the superbox of Figure 4 described 
above is: 

b1 → b2 → b1 → b6 → b1 → b4 → b2 → b1 → b3 → b2 → 
b1 → b5 → b3 → b2 → b1 

The ML traversal incurs nine extra box calls over an 
MC traversal (which only incurs six box calls). In this 
case, the total execution cost is 15p + 15o, and the 
average latency is 7.17p + 7.17o. 

Notice that MC always achieves a lower total 
execution time than ML. This is an important 
improvement especially when the system is under CPU 
stress, as it effectively increases the throughput of the 
system. ML may achieve lower latency depending on the 
ratio of box processing costs to box overheads. In this 
example, ML yields lower latency if p / o > 0.22. 

Min-Memory (MM). This traversal is used to 
maximize the consumption of data per unit time. In other 
words, we schedule boxes in an order that yields the 
maximum increase in available memory (per unit time). 

( ) (1 ( ))_ ( )
( )

tsize b selectivity bmem rr b
cost b

× −
=  

The above formula is the expected memory reduction 
rate for a box b (tsize(b) is the size of a tuple that reside 

on b’s input queue). Once the expected memory 
reduction rates are computed for each box, the traversal 
order is computed as in the case of ML.  

Let’s now consider the MM traversal of the superbox 
in Figure 4, this time with the following box selectivities 
and costs: b1 = (0.9, 2), b2 = (0.4, 2), b3 = (0.5, 1), b4 = 
(1.0, 2), b5 = (0.4, 3), b6 = (0.6, 1). Assuming that all 
tuples are of size one, mem_rr for all the boxes, b1 
through b6 respectively, are computed as follows: 0.05, 
0.3, 0.5, 0, 0.2, 0.4. Therefore, the MM traversal is: 

b3 → b6 → b2 → b5 → b3 → b2 → b1 → b4 → b2 → b1 
Note that this traversal might be shorter at run time: for 
example, if b5 consumes all of its input tuples and 
produces none on the output, the execution of b3 after b5 
will clearly be unnecessary. In this example, the average 
memory requirements for MM, MC, and ML turn out to 
be approximately 36, 39, and 40 tuples, respectively 
(memory requirements are computed after the execution 
of each box and averaged by the number of box 
executions).  

4.2 Tuple Batching - Train Processing 
A tuple train (or simply a train) is a sequence of tuples 
executed as a batch within a single box call. The goal of 
tuple train processing is to reduce overall tuple 
processing costs. This happens due to several reasons: 
First, given a fixed number of tuples to process, train 
processing decreases the total number of box executions 
required to process those tuples, thereby cutting down 
low-level overheads such as scheduling overhead 
(including maintenance of the execution queue and 
memory management), calls to the box code, and context 
switch. Second, as in the case of superbox scheduling, 
train processing also improves memory utilization when 
the system operates under memory stress (see Section 
4.1). A third reason, which we do not directly explore in 
this paper, is that some operators may optimize their 
execution better with larger number of tuples available in 
their queues. For instance, a box can materialize 
intermediate results and reuse them in the case of 
windowed operations, or use merge-join instead of nested 
loops in the case of joins. 

The Aurora scheduler implements train processing by 
telling each box when to execute and how many queued 
tuples to process. This approach contrasts with traditional 
blocking operators that wake up and process new input 
tuples as they arrive. This somewhat complicates the 
implementation and increases the load of the scheduler, 
but is necessary for creating and processing trains, which 
significantly decrease overall execution costs. 

Aurora allows an arbitrary number of tuples to be 
contained within a train. In general, the size of a train can 
be decided by constraining a specific attribute such as the 
number of tuples, variance in latencies, total expected 
processing cost, and total memory footprint. Intelligent 
train construction is a research topic on its own and is 
outside the scope of this paper. 



 

5 Experimental Evaluation 

5.1 Experimental Testbed 
We use the Aurora prototype system to study our 
operator scheduling techniques. The reference run-time 
architecture is defined in Section 2.2. 

The prototype is implemented on top of Debian 
GNU/Linux using C++. In the experiments, we used a 
dedicated Linux workstation with 2 Ghz Pentium IV 
processors and 512M of RAM. The machine was isolated 
from the network to avoid external interference.  

Due to the fact that the domain of stream-based 
applications is still emerging and that there are no 
established benchmarks, we decided to artificially 
generate data streams and continuous queries to 
characterize the performance of our algorithms, as 
described below. 

We generated an artificial Aurora network as a 
collection of continuous queries, each feeding output 
tuples to individual applications. We modeled a 
continuous query as a tree of boxes rooted at an output 
box (i.e., a box whose outputs are fed to one or more 
applications). We refer to such a query tree as an 
application tree. Each query is then specified by two 
parameters: depth and fan-out. Depth of a query specifies 
the number of levels in the application tree and fan-out 
specifies the average number of children for each box. 

For ease of experimentation, we implemented a 
generic, universal box whose per-tuple processing cost 
and selectivity can be set. Using this box, we can model a 
variety of stateless stream-based operators such as filter, 
map, and union. For purposes of this paper, we chose not 
to model stateful operators as their behavior is highly-
dependent on the semantics they implement, which would 
introduce another dimension to our performance 
evaluation and restrict the generality of our conclusions. 
This would complicate the understanding of the results 
without making a substantial contribution to the 
understanding of the relative merits of the algorithms.  

An Aurora network consists of a given number of 
query trees. All queries are then associated with latency-
based QoS graphs, a piece-wise linear function specified 
by three points: (1) maximum utility at time zero, (2) the 
latest latency value where this maximal utility can be 
achieved, and (3) the deadline latency point after which 
output tuples provides zero utility.  

To meaningfully compare different queries with 
different shapes and costs, we use an abstract capacity 
parameter that specifies the overall load as an estimated 
fraction of the ideal capacity of the system. For example, 
a capacity value of .9 implies that 90% of all system 
cycles are required for processing the input tuples. Once 
the target capacity value is set, the corresponding input 
rates (uniformly distributed across all inputs) are 
determined using an open-loop computation. Because of 
various system overheads, the CPU will saturate typically 
much below a capacity of one. 

The graphs presented in the rest of the paper provide 
average figures of six independent runs, each processing 
100K input tuples. Unless otherwise stated, the fan-out 
parameter is set to three; the depth is set to five; the 
selectivities of the boxes are set to one; and the per-tuple 
processing costs are selected from the range [0.0001 
sec/tuple - 0.001sec/tuple]. Furthermore, unless otherwise 
stated, we use the round-robin scheduling policy to 
arbitrate among boxes and superboxes. 

5.2 Operator Batching – Superbox Scheduling 
We investigate the benefits of superbox scheduling by 
looking at the performance of the round-robin (RR) 
algorithm, run in the default box-at-a-time (BAAT), and 
the MC traversal algorithm applied to superboxes that 
correspond to entire applications (i.e., application-at-a-
time or AAAT, which is described in Section 4.1.1).  

Figure 5 shows the average tuple latencies of these 
approaches as a function of the input rate (as defined 
relative to the capacity of the system) for five application 
trees. As the arrival rate increases, the queues eventually 
saturate and latency increases arbitrarily. The interesting 
feature of the curves in the figure is the location of the 
inflection point. RR-BAAT does particularly badly. In 
these cases, the scheduling overhead of the box-at-a-time 
approach is very evident. This overhead effectively steals 
processing capability from the normal network 
processing, causing saturation at much earlier points. On 
the other hand, the MC_AAAT algorithm performs quite 
well in the sense that it is resistant to high load. This 
technique experiences fewer scheduler calls and, thus, 
have more processing capacity and is able to hang on at 
input rates of over 90% of the theoretical capacity.  

5.3 Superbox Traversal 
We first investigate the performance characteristics of the 
Min-Cost (MC) and Min-Latency (ML) superbox 
traversal algorithms. In this experiment, we use a single 
application tree and a capacity of 0.5.  
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Figure 5: Box vs. application scheduling 



 

Figure 6 shows the average output tuple latency as a 
function of per-tuple box processing cost. As expected, 
both approaches perform worse with increasing 
processing demands. For most of the cost value range 
shown, ML not surprisingly performs better than MC as it 
is designed to optimize for output latency. Interestingly, 
we also observe that MC performs better than ML for 
relatively small processing cost values. The reason is due 
to the relationship between the box processing cost and 
box call overhead, which is the operational cost of 
making a box call. The box call overhead is a measure of 
how much time is spent outside the box versus inside the 
box (processing tuples and doing real work). As we 
decrease the box processing costs, box call overheads 
become non-negligible and, in fact, they start to dominate 
the overall costs incurred by the algorithms. As we 
explained in Section 4.1.2, an MC traversal always 
requires less number of box calls than ML does. We thus 
see a cross-over effect: for smaller box processing costs, 
box call overheads dominate overall costs and MC wins. 
For larger processing costs, ML wins as it optimizes the 
traversal for minimizing output latency. 

A set of complementary results (not shown here due to 
space limitations) demonstrates that MC incurs less 
overall box overhead as it minimizes the number of box 
calls. The difference increases as the applications become 
deeper and increase in the number of boxes. In fact, the 
overhead difference between the two traversals is 
proportional to the depth of the traversed tree.  

These key results can be utilized for improving the 
scheduling and overall system performance. It is possible 
to statically examine an Aurora network, obtain box-
processing costs, and then compare them to the (more or 
less fixed) box processing overheads. Based on the 
comparison and using the above results, we can then 
statically determine which traversal algorithm to use. A 
similar finer-grained approach can be taken dynamically. 
Using a simple cost model, it is straightforward to 
compute which traversal algorithm should do better for a 
particular superbox. 

Figure 7 demonstrates the amount of memory used 
over the time of superbox run. The curves are normalized 
with respect to the MM values. ML is most inefficient in 
its use of memory with MC performing second. MC 
minimizes the amount of box overhead. As a result MC 
discards more tuples per unit of time than ML. 

MM loses its advantage towards the end since all three 
traversals are executed on a common query network. 
Even though each chooses a different execution sequence 
and incurs different overhead, all of them push the same 
tuples through the same sequence of boxes. The 
crossover towards the end of the time period is a 
consequence of the fact that different traversals take 
different times to finish. In general, MC has the smallest 
total execution time−the reason why it catches up with 
MM at towards the end of the shown execution range. 

5.4 Tuple Batching - Train Scheduling 
Train scheduling is only relevant in cases in which 
multiple tuples are waiting at the inputs to boxes. This 
does not happen when the system is very lightly loaded. 
In order to see how train scheduling affects performance, 
we needed to create queues without saturating the system. 
We achieved this by creating a bursty (or clustered) 
workload that simply gathers tuples in our previously 
studied workloads and delivers them as a group. In other 
words, if our original workload delivered n tuples evenly 
spaced in a given time interval T, the bursty version of 
this delivers n tuples as a group and then delivers nothing 
more for the next T time units. Thus, the bursty workload 
is the same in terms of average number of tuples 
delivered, but the spacing is different.  

The graph in Figure 8 shows how the train scheduling 
algorithm behaves for several bursty workloads. In this 
experiment, we have a single application tree with a fan-
out of two and a depth of five. In order to isolate the 
effects of operator scheduling, we use round-robin BAAT 
for this experiment. The train size (x-axis) is given as a 
percentage of the queue size. As we move to the right, the 
trains bite off increasingly larger portions of the queues. 
With a burst size of one, all tuples are evenly spaced. 
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Figure 6: Min-cost vs min-latency traversals 
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Figure 7: Memory requirements of traversal algorithms 



 

This is equivalent to the normal workload. Notice that the 
curve for this workload is flat. If there are no bursts, train 
scheduling has no effect. For the other two curves, 
however, as the burst size increases, the effect gets more 
pronounced. With small a train size of 0.2, the effect on 
the overhead (i.e., total execution time less processing 
time) of increasing the burst size is substantial. For a 
burst size of 4, we quadruple the average overhead. Now 
as we increase the train size, we markedly reduce the 
average overhead for the bursty cases. In fact, when the 
train size is equal to one (the entire queue), the average 
overhead approaches the overhead for the non-bursty 
case. Trains improve the situation because tuples do not 
wait at the inputs while other tuples are being pushed 
through the network. It is interesting to note that the 
bursty loads do not completely converge to the non-
bursty case even when the train size is one (i.e., the whole 
queue). This is because the tuples still need to be 
processed in order. Since the bursty workload generation 
delivers n-1 of the tuples early, their latency clock is 
ticking while the tuples in front of them are being 
processed. In the non-bursty case, the tuples arrive spaced 
out in time, and a fair amount of processing can be done 
on queued tuples before more tuples arrive. 

5.5 Overhead Distribution 
Figure 9 shows a comparison of the relative execution 
overheads and how they are distributed for TAAT (tuple-
at-a-time), BAAT (tuple trains), and MC (superbox), for 
four application trees. Each bar is divided into three 
fundamental cost components: the worker thread 
overhead, the storage management overhead, and the 
scheduler overhead. The number at the top of each bar 
shows the actual time for processing 100K tuples in the 
system.  

Looking at the total running times, the first thing to 
notice is that TAAT is significantly worse than the other 
two methods, underscoring our conclusion that train and 
superbox scheduling are important techniques for 
minimizing various system overheads and improving the 
overall system throughput. Additionally, this graph shows 

clearly the benefits of superbox scheduling, which 
decreased the overall execution time of the system 
running tuple trains almost by 50%. 

Finally, we note the interesting trend in the relative 
component costs for each approachwhile the 
percentages of the worker thread and storage manager 
overheads decrease, as we go from the leftmost bar to the 
right, the percentage of the scheduler overhead increases 
and starts to dominate the rest. The reason is that, as 
batching is increased, increasingly more tuples get 
processed at each scheduling step. In other words, the 
number of scheduling steps to process a specific number 
of tuples decreases, but the number of box executions 
decreases more. Because the worker thread and storage 
management overheads are primarily associated with the 
number of box executions, their overheads decrease more 
relatively to that of the scheduler. Another contributing 
factor is that, again as we go from left to right, the 
scheduler algorithms become increasingly more 
intelligent and sophisticated, taking more time to generate 
the scheduling plans.  

6 QoS-Driven Scheduling 
We first discuss how we compute box priorities and, at a 
coarser level, output priorities using application-specific 
QoS information and tuple latencies. After describing our 
basic approach, we propose and experimentally evaluate 
an approximation technique, based on bucketing and pre-
computation, which is used to improve scalability by 
trading off scheduling overhead with scheduling quality. 

6.1 Computing Priorities 
The basic approach is to keep track of the latency of 
tuples that reside at the queues and pick for processing 
the tuples whose execution will provide the most 
expected increase in the aggregate QoS delivered to the 
applications. Taking this approach per tuple is not 
scalable. We therefore maintain latency information at 
the granularity of individual boxes and define the latency 
of a box as the averaged latencies of the tuples in its input 
queue(s).  
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Figure 8: Train scheduling effects 
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Figure 9: Distribution of execution overheads 



 

Our priority assignment approach is to order the boxes 
in terms of their utility and urgency. We define the 
importance of a box b in terms of its expected slope 
value, slope(b), and define its urgency in terms of its 
expected slack time, slack(b). 

We compute the utility of b as follows:  
( ) ( ( ))utility b gradient eol b=  

This value is the gradient of the QoS-latency curve for 
b’s corresponding output at the latency value eol(b), 
where eol(b) is the expected output latency of b. This 
value is an estimation of where b’s tuples currently are on 
the QoS-latency curve at the corresponding output. In 
other words, this value provides a lower bound on the 
expected latency of the corresponding tuples at the output 
(assuming that the tuples are pushed all the way to the 
output without further delay). The value eol(b) is 
computed by adding the current latency value to the 
expected computation time for a given output as follows: 

( ) ( ) ( ( ))eol b latency b cost D b= +  
where D(b) is the set of boxes downstream from b  and 
cost(D(b)) is an estimate of how long it will take to 
process the tuples downstream from b. This utility 
function is a measure of the expected QoS (per unit time) 
that will be lost if the box is not chosen for execution. 

The expected slack time, est(b), is an indication of how 
close a box is to a critical point; i.e., a point where the 
QoS changes sharply. Urgency can be trivially computed 
by subtracting the expected output latency from the 
latency value that corresponds to the critical point. If 
there are multiple critical points, est(b) always 
corresponds to the distance to the closest critical point. 
These concepts are illustrated in Figure 10, where the 
QoS is specified as a piece-wise linear function of latency 
with three critical points. 

At each scheduling point in time, we can order the 
boxes with respect to their priority tuple, or p-tuple2: 

( ) ( ( ), ( ))priority b utility b est b= −  

                                                           
2 If a box b has multiple downstream applications, utility(b) is 
defined as the sum, and est(b) as the minimum value computed 
across all applications. 

In other words, we first choose for execution those boxes 
that have the highest utility, and then choose from among 
those that have the same utility, the ones that have the 
minimum (i.e., least) slack time. 

Figure 11 shows a comparison of Aurora’s QoS-aware 
scheduling approach (p-tuple) and a simple round-robin 
BAAT scheduling policy (RR). In the experiment, there 
are 20 applications, each with a fan-out of one and a 
depth of five. Two types of QoS graphs, tight and loose 
QoS, are modeled (the graphs are specified by the set of 
points {(0,1), (0.001,1), (1,0)} and {(0,1), (4,1), (5,0)}, 
respectively) and are randomly assigned to applications.  

 The graph reveals a significant difference between the 
average QoS values achieved by the algorithms. The 
difference is pretty much stable up to a capacity value of 
0.7, after which the system becomes overloaded and the 
performances of both algorithms decrease drastically and 
will eventually drop to zero (note that they remain above 
zero due to the finite amount of time experiments were 
run). 

6.2 Approximation for Scalability 
A straightforward implementation of the above QoS-
driven scheduling approach requires, at each scheduling 
point, computing the p-tuple for each box and then 
sorting the boxes with respect to their p-tuples. This is an 
O(n × logn) operation, where n is the number of boxes. 
We improve upon the basic algorithm using a 
combination of (1) approximation (via bucketing) and (2) 
pre-computation. Our approach is to partition the utility-
urgency space into discrete buckets, and efficiently assign 
boxes to individual buckets based on their p-tuple values 
at run time. During scheduling, buckets can be traversed 
in the order of decreasing p-tuples (illustrated in Figure 
12(a)), and the corresponding boxes are placed in the 
execution queue. Given a latency value, our first goal is 
to compute the corresponding bucket assignment in O(1). 
To do this, we make use of two auxiliary graphs, 
gradient- and slack-latency graphs. 

We divide the range of the gradient (i.e., utility) values 
into g buckets (Figure 12(b) shows an example with four 
buckets; the cross symbols highlight the latency values 
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Figure 10: Critical points and expected output delay 
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Figure 11: QoS-aware scheduling 



 

where bucket transitions take place). All gradient values 
in the same bucket are treated as the same. The width of 
each bucket, thus, defines a bound on the inaccuracy (or 
variance) that we are willing to tolerate in terms of the 
potential deviation from the highest possible gradient 
value. In other words, the width of a bucket is a measure 
of the bound on the quantitative deviation from the 
optimal (with respect to the heuristic) scheduling 
decision. 

Similarly, we divide the slack values into s buckets 
(Figure 12(c)) and treat all the slack values within a 
single bucket as equal. Again, the width of a bucket is an 
indication of the level of approximation we make with 
regards to the slack values. 

Given pre-computed gradient-latency graphs, it is 
possible to pre-compute the application-specific latency 
ranges that correspond to each bucket. For example, b1 
will be in bucket2 beyond latency = 5 and in bucket3 
beyond latency = 15; whereas b3 will be in bucket1 till 
latency = 12 and in bucket4 afterwards. Slack-latency 
graphs can be interpreted in a similar fashion as 
illustrated in the figure: b1 falls in bucket2 when latency is 
between 5 and 10, and in bucket1 for other latency values. 

When the execution queue is about to become empty, 
the scheduler wakes up and performs bucket assignment 
by going through the boxes and assigning them into their 
current buckets. A straightforward implementation of 
bucket assignment takes O(n) time by going through all 
the boxes, computing the bucket for each box in O(1). 
This approach has the potential drawback of redundantly 
reassigning buckets for each box, even if the box’s bucket 
has not been changed since the last assignment. In 
particular, we want the bucket assignment overhead to be 
proportional to the number of boxes that made a 
transition to another bucket. In order to accomplish this, 
we use a calendar queue [7], which is a multi-list priority 
queue that exhibits O(1) amortized time complexity for 
the relevant operations (insertion, deletion, and extract-
min) under popular event distributions. As a result, we 
can implement all phases of bucket assignment in 
constant amortized time. 

6.3 Bucketing Results 
We ran the slope-slack (p-tuple) algorithm and our 

bucketing algorithm on a network with 200 non-
overlapping straight-line applications, each with five 
boxes. The results are shown in Figure 13. The x-axis 
represents the number of partitions for each of the QoS-
gradient and the slack time ranges. We assume that these 
two dimensions are partitioned equally. Thus, for 
example, 10 partitions represent 100 buckets. 

The slope-slack method produced a measured QoS of 
0.796, which is shown for reference on the graph as a 
horizontal line. When there is only one bucket, the 
observed QoS is a very poor 0.427. This is because with 
one bucket all runnable boxes end up in a single grouping 
which is then equivalent to round-robin scheduling. 
Notice, however, that as we increase the number of 
buckets, the QoS rises sharply; until at 20 partitions we 
reach a maximum QoS value of 0.85. We manage to 
exceed the slope-slack value (although only by 7%) 
because the decrease in scheduler overhead dominates the 
loss of precision in scheduling decisions introduced by 
bucketing. 

Increasing the number of partitions and thus the 
number of buckets improves the accuracy of scheduling 
decisions. Working against this effect, though, is the fact 
that as the number of buckets grows past some moderate 
level (approximately 30 partitions), the scheduler 
overhead begins to increase as can be seen in Figure 14. 
Simply having a very large number of buckets becomes a 
bookkeeping problem. Thus, the scheduler overhead will 
begin to dominate the incremental gain in accuracy which 
we see in Figure 13 as the QoS curve steadily declines 
from its maximum and eventually drops below the slope-
slack technique at about 260 partitions. 

7 Related Work 
There has been extensive research on scheduling tasks 
under real-time performance expectations both in 
operating systems [14, 16, 17, 20] and database systems 
[3, 11, 12, 18, 19]. To the best of our knowledge, 
Aurora’s scheduling approach that combines priority 
assignment and dynamic scheduling plan construction is 
the first comprehensive proposal for scheduling 
continuous queries over real-time data streams and QoS 
expectations. Our solutions no doubt borrow a lot from 
the myriad of existing work on scheduling. Due to lack of 
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Figure 12: Illustrating (a) bucket traversal, (b) gradient-latency graphs, and (c) slack-latency graphs  



 

space, however, we only discuss related work that is 
particularly relevant to our work and highlight the 
primary differences. 

Scheduling proposals for real-time systems commonly 
considered the issue of priority assignment and 
consequent task scheduling based on static (table- or 
priority-driven) approaches or dynamic (planning or best-
effort) approaches [19]. Static approaches are inherently 
ill suited for the potentially unpredictable, aperiodic 
workloads we assume, as they assume a static set of 
highly periodic tasks. Dynamic planning approaches 
perform feasibility analysis at run-time to determine the 
set of tasks that can meet their deadlines, and rejecting 
the others that cannot [14]. This decision is based on two 
key observations: First, our priority assignment algorithm 
is based on a variation of Earliest-Deadline-First (EDF) 
algorithm [16], which is well known to have optimal 
behavior as long as no overloads occur. Second, Aurora 
employs a load shedding mechanism (not described in 
this paper but can be found in [8, 21]) that is initiated 
when an overload situation is detected and that 
selectively sheds load to get rid of excess load in a way 
that least degrades the QoS. This allows our scheduling 
algorithm to focus only on underload situations. We note 
here that Haritsa et al. [12] proposed an extension of EDF 
that is designed to handle overloads through adaptive 
admission control. 

Real-time database systems [3, 11, 12, 15, 18, 19] 
attempt to satisfy deadlines associates with each 
incoming transaction, with the goal of minimizing the 
number of transactions that miss their deadlines. These 
systems commonly support short-running, independent 
transactions, whereas Aurora deals with long-running 
continuous queries over streaming data Leaving aside 
these differences, of particular relevance to Aurora 
scheduling is the work of Haritsa et al. [11] that studied a 
model where transactions have non-uniform values (or 
utilities) that drop to zero immediately after their 
deadlines. They studied different priority assignment 
algorithms that combine deadline and value information 
in various ways, one of which is a bucketing technique. 

This technique is similar to ours in that it assigns 
schedulable processing units into buckets based on their 
utility. The differences are that (1) we use bucketing to 
trade off scheduling quality for scheduling overhead and, 
consequently, for scalability; and (2) we also use 
bucketing for keeping track of slack values. 

Also related to Aurora scheduling is the work on 
adaptive query processing and scheduling techniques [4, 
13, 22]. These techniques address efficient query 
execution in unpredictable and dynamic environments by 
revising the query execution plan as the characteristics of 
incoming data changes. Eddies [4] tuple-at-a-time 
scheduling provides extreme adaptability but has limited 
scalability for the types of applications and workloads we 
address. Urhan’s work [22] on rate-based pipeline 
scheduling prioritizes and schedules the flow of data 
between pipelined operators so that the result output rate 
is maximized. This work does not address multiple query 
plans (i.e., multiple outputs) or deal with and support the 
notion of QoS issues (and neither does Eddies).  

Related work on continuous queries by Viglas and 
Naughton [23] discusses rate-based query optimization 
for streaming wide-area information sources in the 
context of NiagaraCQ [9]. Similar to Aurora, the 
STREAM project [6] also attempts to provide 
comprehensive data stream management and processing 
functionality. The Chain scheduling algorithm [5] 
attempts to minimize intermediate queue sizes, an issue 
that we do not directly address in this paper. Neither 
NiagaraCQ nor STREAM has the notion of QoS. 

8 Conclusions 
This paper presents an experimental investigation of 
scheduling algorithms for stream data management 
systems. It demonstrates that the effect of system 
overheads (e.g., number of scheduler calls) can have a 
profound impact on real system performance. We have 
run our experiments on the Aurora prototype since 
simulators do not reveal the intricacies of system 
implementation penalties. 
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Figure 13: Bucketing effects on QoS 
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Figure 14: Bucketing overheads 



 

We show that the naïve approach of using a thread per 
box does not scale. We further show that our approaches 
of train scheduling and superbox scheduling help a lot to 
reduce system overheads. We have also discussed exactly 
how these overheads are affected in a running stream data 
manager. In particular, these algorithms require tuning 
parameters like train size and superbox traversal methods. 

We also addressed QoS issues and extended our basic 
algorithms to address application-specific QoS 
expectations. Furthermore, we described an 
approximation technique based on bucketing that trades 
off scheduling quality with scheduling overhead. 

The overriding message of this paper is that to build a 
practical data stream management system, one must 
ensure that scheduler overhead be small relative to useful 
work. We have provided some interesting results in this 
direction by focusing on batching techniques. We intend 
to extend these studies in the future by examining self-
tuning approaches that dynamically revise algorithm 
parameters based on workload and resource conditions. 
We are also considering extending our scheduling 
techniques to distributed environments and other 
resources (such as bandwidth) in the context of Aurora* 
[10]. 
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