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Abstract

Personalization, advertising, and the sheer
volume of online data generate a staggering
amount of dynamic web content. In addition
to web caching, View Materialization has been
shown to accelerate the generation of dynamic
web content. View materialization is an at-
tractive solution as it decouples the serving
of access requests from the handling of up-
dates. In the context of the Web, selecting
which views to materialize must be decided
online and needs to consider both performance
and data freshness, which we refer to as the
Online View Selection problem. In this pa-
per, we define data freshness metrics, provide
an adaptive algorithm for the online view se-
lection problem, and present experimental re-
sults.

1 Introduction

The frustration of broken links from the early Web has
been replaced today by the frustration of web servers
stalling or crashing under the heavy load of dynamic
content. In addition to data-rich online web services,
even seemingly static web pages are usually generated
dynamically in order to include personalization and
advertising features. However, dynamic content has
significantly higher resource demands than static web
pages (at least one order of magnitude) and creates a
huge scalability problem at web servers.

Dynamic web caching [8, 3, 4, 5, 13] has been pro-
posed to solve this scalability issue. The biggest prob-
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lem of employing caching techniques for dynamic web
content is the coupling of serving access requests and
handling of updates, since an update that invalidates
a cached object will result in the object being recom-
puted on the next access request. For example, imag-
ine a cache that can store dynamically generated web
pages. During normal operation we get an 80% hit rate
(which means that only 20% of the pages will need to
be recomputed). If we get a small surge in the update
stream, a big percentage of the cached pages could be
invalidated, and the hit rate will drop significantly. A
sudden drop in hit rate leads to a sudden increase in
the average response time and possibly to server satu-
ration. View materialization can solve this problem,
since it decouples the serving of access requests from
the handling of the updates.

Selecting which views to materialize, the view selec-
tion problem, has been studied extensively in the con-
text of data warehouses[15, 7, 6, 14]. However, unlike
data warehouses, which are off-line during updates,
most web servers maintain their back-end databases
online and perform updates concurrently with user ac-
cesses. Therefore, in the context of the Web, selecting
which views to materialize must be decided dynami-
cally and needs to consider both performance and data
freshness.

In this paper, we present OVIS(6), an adaptive algo-
rithm for the Online View Selection problem. OVIS(0)
acts as a knob in the system, determining at run-
time which views should be materialized (cached and
refreshed immediately on updates) and which ones
should just be cached and re-used as necessary. Pa-
rameter 6 corresponds to the level of data freshness
that is considered acceptable for the current applica-
tion. In addition to maintaining high performance
given the data freshness demands, OVIS() also de-
tects infeasible thresholds, when the freshness de-
mands would create a backlog at the web server.

Motivating Example: Our motivating exam-
ple is a database-driven web server that provides re-
altime stock information to subscribers. Updates to
stock prices and other market derivatives are streamed



to the back-end database and must be performed on-
line. The web server provides users with up-to-date
information that includes current stock prices, moving
average graphs, comparison charts between different
stocks and personalized stock portfolio summaries. In
general, we are interested in data-intensive web servers
that provide mostly dynamically generated web pages
to users (with data drawn from a DBMS) and also face
a significant online update workload.

Structure of paper: In the next section, we
present our metrics for measuring system performance
and data freshness. We also define the Online View Se-
lection Problem. In Section 3 we describe the proposed
Online View Selection Algorithm and in Section 4 we
discuss the results of our experiments. Section 5 sum-
marizes related work. We conclude in Section 6.

2 Problem Definition

We extend the typical three-tier architecture of mod-
ern web servers, by adding an Asynchronous Cache
module, between the application server and the
database server (Figure 1). In this architecture, the
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Figure 1: System Architecture

web server module is responsible for serving user re-
quests and the application server is responsible for web
workflow management. Instead of interfacing the ap-
plication server directly to the database server, the
Asynchronous Cache module acts as an intermediary.
Unlike traditional caches in which data is simply inval-
idated on updates, data in the asynchronous cache can
be materialized and immediately refreshed on updates.
Recent products from IBM and Microsoft incorporate
such an asynchronous middle-tier cache [1, 12].

2.1 Web Page Derivation Graph

There are three types of data objects in the system:
relations, WebViews, and web pages.

e Relations are stored in the database server and
are the primary “storage” for structured data.
They are affected by the incoming update stream.

e WebViews, introduced in [11], are HTML or
XML fragments. WebViews are usually gener-
ated by “wrapping” database query results (i.e.
database views) with HTML formatting com-
mands or XML semantic tags. We allow Web-
Views to be formed from any type of database
queries. We prefer the term WebView over the
term “HTML fragment”, which was introduced
earlier, in order to stress that these HTML frag-
ments are derived from a database. In fact, we

will use the terms “view” and “WebView” inter-
changeably for the rest of the paper.

e Web pages are composed of one or more Web-
Views. Web pages are what the user is served
with in response to his/her access requests.

A WebView W; is derived from relation R; if W; in-
cludes data which is generated by querying R;. A web
page Py is considered to be derived from WebView W;
if P, contains W;.

Figure 2: Web Page Derivation Graph

The associations between these data objects are de-
picted using a Web Page Derivation Graph, which is
a directed acyclic graph. The nodes of the graph cor-
respond to relations, WebViews, or web pages. An
edge from node a to node b exists only if node b is
derived directly from node a. A node can have multi-
ple “parents”, therefore the in-degree of a node can be
bigger than one. Relations are the roots of the graph,
with zero in-degree, and web pages are the leafs of the
graph, with zero out-degree. Figure 2 has an exam-
ple of a Web Page Derivation Graph. We assume a
database with three relations (R1, Ry, R3), four Web-
Views (W, Wa, W3, W,) and two web pages (Py, Pz).

Figure 2 is a very small example of an actual Web
Page Derivation Graph. In practice, we usually have
thousands of web pages in a web site, with dozens of
HTML/XML fragments on each page [3]. However, we
also expect to have a significant amount of WebView
“sharing” among these web pages. Imagine, for exam-
ple, a personalized newspaper site. Each user selects
the type of news to be included (e.g. local, national,
economy), specifies a city for the weather forecast, and
gives a list of stock symbols along with the purchase
price and quantities for calculating his/her portfolio
value. Although the combination of the above ele-
ments is most probably unique, there is clearly a finite
number of cities/stock symbols, which will be shared
among thousands of users (in addition to the standard
navigation/presentation fragments).



2.2 The Asynchronous Cache

All requests that require dynamically generated con-
tent are intercepted by the Asynchronous Cache mod-
ule (ASC for short). ASC maintains WebViews using
one of the following three policies.

Virtual WebViews are always executed on demand
and never cached. Intercepted queries against Vir-
tual WebViews are forwarded to the database server,
whereas database updates do not affect them.

Non-Materialized (cached) WebViews are cached
in ASC, in anticipation of future requests. While they
are fresh, they are served very efficiently from the
cache. When an update affects a WebView, the cached
WebView is invalidated and needs to be re-generated
on a following request. This is similar to traditional
caching with invalidation rather than a Time-to-Live
(TTL) consistency protocol.  Assuming that invali-
dating “dirty” WebViews in ASC is not a costly oper-
ation, non-Materialized WebViews is always a better
policy than Virtual, since, without any loss in data
freshness, one obtains significant improvement in re-
sponse time (for the times when a fresh version of the
WebView is in the ASC). Serving from ASC results
in two orders of magnitude improvement in response
time compared to querying the DBMS.

Materialized WebViews are cached and continu-
ously maintained in the presence of updates. Accesses
to them are always served from the ASC. The response
time is similar to a fresh non-materialized WebView.
We assume that the response time remains almost con-
stant, since a Materialized WebView is served from
ASC even when it is not fresh. However, there is a
limit as to how many WebViews should be material-
ized. Materializing too many WebViews increases the
overhead of refreshing them all in the background and
can have a negative effect on both server performance
and WebView freshness.

The big difference between materialized and non-
materialized WebViews is the decoupling of serving
access requests from updating WebViews. With ma-
terialization, updates are not in the critical path of
serving user requests. Without materialization, up-
dates must be taken care of while serving user re-
quests (i.e. by refreshing a stale WebView before re-
sponding). In addition to providing data storage, the
asynchronous cache module is responsible for auto-
matically selecting which WebViews to materialize. In
this work we consider HTML WebViews only. Dealing
only with HTML WebViews means that the cost to
generate any WebView from other WebViews will be
negligible (simple concatenation of HTML fragments).
Therefore, in this work we only consider materializing
WebViews which are generated directly from relational
data (stored in the database server). As was suggested
in the literature [11, 18], response times for such Web-
Views can be reduced dramatically if they are mate-
rialized. Thus, they are the only ones that could off-

set the overhead of materialization (keeping them up
to date in the background). Finally, we assume that
WebViews are refreshed by recomputation.

2.3 Measuring Performance

We define the performance of data-intensive web
servers by observing the incoming access request
stream for a time interval 7" and measuring the av-
erage response times for each user request.

Definition 1: Performance is measured as

the average response time for user requests.
Specifically, we measure the time between the arrival
of the request at the web server and the departure of
the response. We measure response times at the web
server, since all our techniques aim at improving the
performance of the web server.

Improving web server performance might actually
not be visible to the end user. Even a ten-fold im-
provement in response time at the server (e.g., from
100 msec to 10msec) can stay undetected by end users
who will receive their responses after a few seconds of
network delay. However, a ten-fold performance im-
provement at the web server clearly improves scala-
bility: the same web server configuration can serve
ten times more users or handle sudden ten-fold surges
in traffic without the cost of additional hardware.

2.4 Measuring Quality of Data

The “goodness” of the results generated by data-
intensive web servers has been neglected in the past.
However, with web servers being used for increasingly
important applications (e.g. stock market informa-
tion), it is crucial to measure and improve the Quality
of Data served to the users. One common character-
istic across data-intensive web servers is their online
nature: updates to source data are applied concur-
rently with user accesses, since web servers are always
available and never off-line. Therefore, the freshness of
data served is the most important measure of Quality
of Data.

Definition 2:  Quality of Data (QoD) for

data-intensive web servers is the average fresh-

ness of the served web pages.
When an update to a relation is received, the relation
and all data objects that are derived from it become
stale. Database objects remain stale until an updated
version of them is ready to be served to the user.

We illustrate this with an example. Let us assume
the Web Page Derivation Graph of Figure 2, and that
only WebViews W7 and W, are materialized. If an
update on relation Ry arrives at time #1, then relation
R, will be stale until time ¢5 > ¢4, the time when the
update on R; is completed (Figure 3). Although we
do not cache relations, relation R; will be considered
stale because of the unapplied update during [t1,¢2].
On the other hand, materialized WebView W; will be

stale from time ¢; until time ¢35 > t2, when its refresh



is completed. If an update on relation Rj3 arrives at
a later time, t4, then relation R3 will be stale for the
[ta,15] time interval, until ¢5, when the update on R3
is completed (Figure 3). Also, non-materialized Web-
Views W3 and W, will be stale for the same interval
[t4,t5]. On the other hand, materialized WebView W5
will be stale from time ¢4 until time tg > {5, when its
refresh is completed.
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Figure 3: Staleness Example

We identify four types of data objects that can be
stale: relations, non-materialized WebViews, materi-
alized WebViews, and web pages.

e Relations are stale when an update for them has
arrived, but not yet executed.

e Non-materialized WebViews are stale when
an update for a parent relation has arrived, but
not yet executed.

e Materialized WebViews are stale if the Web-
Views have not been refreshed yet (after an up-
date to a parent relation).

e Web pages are stale if a parent WebView is stale.

In order to measure freshness, we observe the access
request stream and the update stream for a certain
time interval T. We view the access stream during
interval T as a sequence of n access requests:

ceey Axa Ax+17 Ax+27 RN Ax+n—la

Access requests A, are encoded as pairs (P}, t;), where
t; is the arrival time of the request for web page P;.
Each web page P; consists of multiple HTML frag-
ments (WebViews).

We define the freshness function for a WebView W;

at time ¢t as follows:

{ 1, if W; is fresh at time #;

FWits) = 0, if W; is stale at time g (1)

A WebView W; is stale, if W; is materialized and has
been invalidated, or if W; is not materialized and there
exists a pending update for a parent relation of W;. A
WebView W; is fresh, otherwise.

In order to quantify the freshness of individual ac-
cess requests, we recognize that web pages are based on

multiple WebViews. A simple way to determine fresh-
ness is by requiring that all WebViews of a web page
be fresh in order for the web page to be fresh. Under
this scheme, even if one WebView is stale, the entire
web page will be marked as stale. In most occasions,
a strict Boolean treatment of web page freshness like
this will be inappropriate. For example, a personalized
newspaper page with stock information and weather
information should not be considered completely stale
if all the stock prices are up to date, but the temper-
ature reading is a few minutes stale.

Since a strict Boolean treatment of web page fresh-
ness is impractical, we adopt a proportional definition.
Web page freshness is a rational number between 0
and 1, with 0 being completely stale and 1 being com-
pletely fresh. To calculate f(Ag), the freshness value of
web page P; returned by access request Ay = (P;,tx)
at time tg, we take the weighted sum of the freshness
values of the WebViews that compose the web page:

nj

F(Ag) = F(Pj ) =Y i x f(Wisty)  (2)

i=1

where n; is the number of WebViews in page P;, and
a; ; is a weight factor.

Weight factors a; ; are defined for each (WebView,
web page) combination and are used to quantify the
itmportance of different WebViews within the same web
page. Weight factors for the same web page must sum
up to 1, or 27;1 a; ; = 1, for each web page P;. When
a WebView W; is not part of web page P;, then the
corresponding weight factor is zero, or a;; = 0. By
default, weight factors are set to a; ; = nij, where n;

is the number of WebViews in page P; (which gives all
WebViews equal importance within the same page).
Weight factors can also be user-defined.

The overall Quality of Data for the stream of n ac-
cess requests will then be:

rz+n—1

QD= 1x 3 f(A) (3)

k=zx
2.5 Online View Selection Problem

The choice of WebViews to materialize will have a big
impact on performance and data freshness. On the
one extreme, materializing all WebViews will give high
performance, but can have low quality of data (i.e.
views will be served very fast, but can be stale). On
the other hand, keeping all views non-materialized will
give high quality of data, but low performance (i.e.
views will be as fresh as possible, but the response
time will be high).

We define the Online View Selection problem as fol-
lows: in the presence of continuous access and update
streams, dynamically select which WebViews to ma-
terialize, so that overall system performance is maxi-
mized, while the freshness of the served data (QoD) is



maintained at an acceptable level. In addition to the
incoming access/update streams, we assume that we
are given a web page derivation graph (like the one in
Figure 2), and the costs to access/update each rela-
tion/WebView.

Given the definition of QoD from Section 2.4, an
acceptable level of freshness will be a threshold 6 €
[0, 1]. For example, a threshold value of 0.9 will mean
that roughly 90% of the accesses must be served with
fresh data (or that all web pages served are composed
of about 90% fresh WebViews).

The view selection problem is characterized online
for two reasons. First, since updates are performed on-
line, concurrently with accesses, we must consider the
freshness of the served data (QoD) in addition to per-
formance. Second, since the accesses and updates are
continuously streaming into the system, any algorithm
that provides a solution to the view selection problem
must decide at run-time and have the ability to adapt
under changing workloads. Off-line view selection can-
not match the wide variations of web workloads.

We will use the term materialization plan to re-
fer to any solution to the Online View Selection prob-
lem. We do not consider the virtual policy for Web-
Views, since caching will always give as fresh data as
the virtual policy and will reuse results, giving better
performance. In this paper we assume that the Asyn-
chronous Cache module has infinite size and thus there
is no need for a cache replacement algorithm (which
would distort the comparison).
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Figure 4: Perf/QoD of all Materialization Plans

To visualize the solution space for the Online View
Selection Problem we enumerate all possible materi-
alization plans for a small workload and compute the
performance and QoD in Figure 4. The different mate-
rialization plans provide big variations in performance
and Quality of Data. For example, plans in the bot-
tom left corner of Figure 4 correspond to materializing
most WebViews (with very low average response time
and low QoD), whereas plans in the top of the plot
correspond to not materializing most WebViews (with
very high QoD and high average response times).

3 The OVIS Algorithm

Traditional view selection algorithms work off-line and
assume knowledge of the entire access and update
stream. Such algorithms will not work in an online en-
vironment, since the selection algorithm must decide
the materialization plan in real-time. Furthermore,
updates in an online environment occur concurrently
with accesses, which makes the freshness of the served
data an important issue. Finally, the unpredictable
nature of web workloads mandates that the online view
selection algorithm be adaptive in order to evolve un-
der changing web access and update patterns.

In this section we describe OVIS(@), an Online Vlew
Selection algorithm, where 6 is a user-specified QoD
threshold. OVIS(#) strives to maintain the overall
QoD above the user-specified threshold 6 and also keep
the average response time as low as possible. OVIS
also monitors the access stream in order to prevent
server backlog.

OVIS(6) is inherently adaptive. The algorithm op-
erates in two modes: passive and active. While in
passive mode, the algorithm collects statistics on the
current access stream and receives feedback for the
observed QoD. Periodically, the algorithm goes into
active mode, where it will decide if the current mate-
rialization plan must change and how.

QoD surplus
QoD
1
threshold [~77 777 """\~ TS S S
QoD deficit
0 ; ; ; ; ; ;

decision points

Figure 5: OVIS(#) Algorithm

Figure 5 illustrates the main idea behind the OVIS(6)
algorithm. By constantly monitoring the QoD for the
served data, the algorithm distinguishes between two
cases when it must change the materialization plan.
When the observed QoD is higher than the threshold
6, OVIS(0) identifies a QoD surplus, which chooses
to “invest” in order to improve the average response
time. On the other hand, when the observed QoD is
less than the threshold 6, the algorithm identifies a
QoD deficit, for which it must compensate.

3.1 OVIS(6) Statistics

We want to be able to estimate the change in average
response time and overall QoD after adapting the ma-
terialization plan. We also want to accurately observe



the QoD for the served data in order to determine
whether we have a QoD surplus or a QoD deficit. For
that purpose we maintain statistics for each WebView
and use them to estimate future behavior. Specifically,
we estimate:

e the access frequency for each WebView,

e the performance contribution for each WebView
in case it will be materialized and in case it will
not be materialized,

e the overall data freshness (QoD) contribution of
each WebView in case it will be materialized and
in case it will not be materialized, and,

e the amount of change in performance and QoD
(differentials) if we change the materialization
policy for a WebView.

We explain these statistics, along with the estimation
methods, in the next paragraphs.

Estimating the access frequency

The most important statistic in our system is the num-
ber of accesses each WebView gets. We must consider
popularity, because the materialization decision for
popular WebViews will have great impact on both the
average response time and the overall QoD. We main-
tain the total number of accesses for a WebView W,
which we write as N gee(W;). The N gee(W;) counter
is incremented whenever there is an access request for
a web page that contains W;.

We use the Recursive Prediction Error Method [9]
to estimate the number of accesses a WebView will
have in the near future. According to this method, we
use the measurement for the current period, m, and
the previous estimate a, to generate a new estimate a’
using the following formula:

a=(1-g)a+gm (4)

where g is a gain factor, 0 < ¢ < 1. Gain was set
to 0.25 for all of our experiments (as was suggested
by [9]). As illustrated in Figure 5, the OVIS(6) algo-
rithm is executed periodically in order to adapt the
materialization plan. Periods can be defined either by
the number of web page requests received (e.g., adapt
every 1000 page requests) or by time intervals (e.g.,
adapt every 2 minutes). Before each adaptation, we
consolidate all statistics and generate estimates for the
future. Using Equation 4, we have

Nlacc = (1 - g)NGCC + gNTec (5)
where N’

' cc 18 the new estimate for the number of ac-
cesses, N 4cc is the old estimate for the number of ac-
cesses, and N7 is the number of accesses measured
for the current interval.

Estimating Performance

We estimate the overall cost for implementing a mate-
rialization policy and use it to quantitatively compare

the changes in performance. High cost will correspond
to high average response times and thus low perfor-
mance.

If a WebView W; is not materialized, then the over-
all cost will depend on the Asynchronous Cache hit
ratio, or how many times we have a cache miss ver-
sus a cache hit. Cache misses mandate recomputation
of W;, whereas cache hits will lower the overall cost.
We use “W; + mat” to denote that W; will not be
materialized. If H, is the estimate of the hit ratio for

WebView W;, we have:

cost(W; +» mat) =
Hr X Nacc X Ahit + (1 _Hr) X Nacc X Amiss (6)

cache hits

cache misses

where NV 4. 1s the estimate for the number of accesses
for W;, A st is the access cost for a cache hit on W,
and A ,,;ss 1s the access cost for a cache miss on W;.
All estimates are computed using Equation 4. For
readability, we do not use the W; subscripts whenever
they can be easily inferred.

The hit ratio, H,, depends on the materialization
policy. If a WebView is materialized, we expect a high
hit ratio, because WebViews are refreshed immediately
after an update. On the other hand, if a WebView
is not materialized, we expect a lower hit ratio (even
if eventually the user receives fresh results after cache
misses). For that purpose, we maintain separate statis-
tics depending on whether the WebView was materi-
alized or not. When we are trying to estimate the
overall cost for a WebView that will not be material-
ized, we use the statistics from when the WebView was
not materialized. When we are trying to estimate the
overall cost for a WebView that will be materialized,
we use the statistics from when the WebView was ma-
terialized. The only exception to this is the estimation
for the number of accesses and the number of updates
which do not depend on the materialization policy.

The hit ratio used in Equation 6 is based on statis-
tics from when WebView W; was not materialized. If
such statistics are not available (because W; was al-
ways materialized in the past), then we use an opti-
mistic estimate for the hit ratio, H, = 100%.

If a WebView W; is materialized, the overall cost
will not depend on the Asynchronous Cache hit ratio
(since all accesses are served from the Asynchronous
Cache), but it will depend on the update rate. Updates
lead to immediate refreshes and thus impose a compu-
tational “burden” on the system. We use W; ~» mat
to denote that W; will be materialized. The overall
cost in this case will be:

cost(W; ~ mat) = Ngee X Apit + Br X Nupa X Upat

accesses refreshes

(7)
where R, is an estimate of what percentage of source
updates leads to WebView refreshes for W;, N,q is



the estimate of the number of source updates that af-
fect W;, and U4 is the cost to refresh WebView
W;. The refresh ratio, R,, is not always 100% because
sometimes refreshes are “batched” together (e.g., when
there is an update surge). Finally, all estimates are
computed using Equation 4.

Eq. 7 assumes that the cost of refreshing the ma-
terialized WebViews in the asynchronous cache will
impact the response time of serving access requests.
This is true when all three software components (Web
Server, Asynchronous Cache, DBMS) reside in the
same machine, which is a typical configuration for
data-intensive web servers today [13].

Estimating the QoD

Similarly to performance, we use statistics to estimate
the overall Quality of Data after adapting the mate-
rialization plan. Let us assume that N greon(W; | P;)
is the number of fresh accesses to WebView W; which
originated from requests to page P;. The overall QoD
definition from Equation 3 can be rewritten as follows:

1
QoD = — ZZ[C‘” X N gresn(Wi | Pj)]

J

for all WebViews W; and all web pages P;, where n is
the total number of page access requests and a; ; are
the weight factors defined in Section 2.4. Weights a; ;
sum up to 1.0 for all WebViews in the same web page.

Instead of separate N fresn(W; | P;) counters for all
(WebView, page) combinations, we maintain only one
weighted counter, N fresh.q(W;) for each WebView W;.
We increment N fresp-o W) by the weight value a; ;
for each fresh access to W; originating from a request
to page Pj. We have that Npesp.o(W;) = Ej [am X
N tresn(W; | Pj)], for all web pages P;. Therefore, the

QoD definition can be simplified as:
1
D= — N fresh-a i
QoD = — x XZ: fresh-a(Wi) (8)

To estimate the contribution of an individual Web-

View W; to the overall QoD, we maintain a fresh-

: N h- .
ness ratio, F,, defined as eraa’ where N gee.q IS a

counter computed similarly to ]-Vfresh_a for each Web-
View W;. The difference is that N 4., is incremented
by a; ; on every access, not just the accesses that pro-
duced fresh results, which is the case for N presp-0 . The
freshness ratio depends on the materialization policy,
therefore we need to maintain separate statistics for
when the WebView was materialized and for when it
was not materialized, similarly to the hit ratio esti-
mation in the previous section. Given the freshness
ratio, F,, and Equation 8, the QoD contribution for
each WebView W; will be:

Nacc-a
n

QoD(W;) = F, x (9)

where n is the total number of web page requests.

Estimating the differentials

At each adaptation step, OVIS(6) must decide if
changing the materialization policy for a particular
WebView is warranted or not. In other words, it must
determine whether it should stop materializing a mate-
rialized WebView, or whether it should begin material-
izing a WebView that was not previously materialized.

After estimating the performance and QoD for all
WebViews using the formulas from the previous para-
graphs, we compute the performance and QoD differ-
entials for switching materialization policies. For ex-
ample, if a WebView W; is currently materialized, we
compute the difference in performance and QoD, if W;
were to stop being materialized.

To estimate A ,erp, the performance differential
for WebView W;, we use the cost formulas from Eq. 6
and Eq. 7. If W; is materialized, then we want to
estimate how much the performance will change if W;
stops being materialized:

A perp = cost(W; o4 mat) — cost(W; ~ mat) (10)

Similarly, if W; is not currently materialized, then
we want to estimate how much the performance will
change if W; starts being materialized:

A perp = cost(W; ~ mat) — cost(W; 4 mat) (11)

A positive performance differential means that the av-
erage response time will increase, whereas a negative
performance differential means that the average re-
sponse time will decrease (which is an improvement).
To estimate A g,p, the QoD differential for Web-
View W;, we use the QoD formulas from Eq. 9. If W;
is materialized, then we want to estimate how much
the QoD will change if W; stops being materialized:

A gop = QoD (W; 4> mat) — QoD (W; ~ mat) (12)

Similarly, if W; is not currently materialized, then we
want to estimate how much the QoD will change if W;
starts being materialized:

A gop = QoD (W; ~ mat) — QoD (W; 4 mat) (13)

A positive QoD differential means that the QoD will
increase, (which is an improvement), whereas a neg-
ative QoD differential means that the QoD will de-
crease.

3.2 OVIS(6) Algorithm

The OVIS(6) algorithm constantly monitors the QoD
of the served data and periodically adjusts the materi-
alization plan (i.e. which WebViews are materialized
and which ones are not materialized). By maintain-
ing the statistics presented in the previous subsection,
OVIS(6) has a very good estimate of how big an effect
on the overall performance and QoD the changes in the



materialization plan will have. As we outlined at the
beginning of this section, OVIS(#) “invests” QoD sur-
plus or tries to compensate for QoD deficit (Figure 5).
In the following paragraphs we present the details of
the OVIS(0) algorithm.

QoD Surplus

When the observed QoD @ is higher than the user-
specified threshold 6, the algorithm will “invest” the
surplus QoD (= @ —0) in order to decrease the average
response time. This is achieved by materializing Web-
Views which were not previously materialized. For
the algorithm to take the most profitable decision, we
just need to maximize the total performance benefit,
> A perp, for the WebViews that become materialized,
while the estimated QoD “losses”, " A gop, remain
less than @) — 6. A greedy strategy, that picks Web-
Views based on their A ,..; improvement provides a
good solution, as we explain later.

QoD Deficit
When the observed QoD @ is less than the thresh-

old 8, the algorithm will have to compensate for the
QoD deficit (= 0 — Q). In this case, OVIS(8) will stop
materializing WebViews thus increasing QoD, at the
expense of increasing the average response time. For
the algorithm to take the most profitable decision, we
just need to maximize the total QoD benefit, Y~ A gop,
for the WebViews that stop being materialized, while
the estimated overall QoD does not increase above the
threshold 8. A greedy strategy, that picks WebViews
based on their A g,p benefit provides a good solution,
as we explain later.

Maximum Change Constraint

Allowing any number of WebViews to change materi-
alization policy during a single adaptation step of the
OVIS(0) algorithm can have detrimental effects. Since
we do not have prior knowledge of the future, any es-
timate of future performance and QoD after a materi-
alization policy change is just an estimate and can be
wrong. Therefore it is preferable to take smaller adap-
tation “steps”, which should result in a more stable
algorithm. For this reason, we impose a limit on the
number of WebViews that can change materialization
policy during a single adaptation step. We specify this
limit as a percentage over the total number of Web-
Views in the system and denote it as MAX_CHANGE.
For example, if MAX_CHANGE = 5% and we have
1000 WebViews in our system, then at most 50 of them
can change materialization policy at a single adapta-
tion step of the OVIS(8) algorithm.

Greedy Strategy

With the maximum limit in mind, the desired be-
havior for OVIS(6) under QoD surplus can be sum-

marized as follows: maximize improvement in perfor-
mance and minimize decrease in QoD, while QoD > 0,
while changing the materialization policy of at most
MAX_CHANGE WebViews. A knapsack-style greedy
algorithm (i.e. A ,..f per QoD unit) would be prefer-
able if there was no limit to the number of WebViews.
However, with the maximum change constraint, a
greedy algorithm selecting the top MAX_CHANGE
WebViews with the highest A ,..ris the best solution.

Similarly, the desired behavior for OVIS(#) under
QoD deficit can be summarized as follows: maxi-
mize improvement in QoD and minimize decrease in
performance, while QoD < 6, and while changing
the materialization policy of at most MAX_CHANGFE
WebViews. With the maximum change constraint,
a greedy algorithm selecting the top MAX_CHANGE
WebViews with the highest A g,p is the best solution.

Server Lag Detection

From elementary queueing theory we know that sys-
tem performance worsens dramatically as we approach
100% utilization. In practice, there can be cases where
the incoming access and update workload generate
more load than what the server can handle, resulting
in backlog, which we refer to as server lag.

It is crucial to detect server lag in an online system.
For users, server lag means near-infinite response times
- this holds for both current (i.e. those still waiting a
response) and future users of the system. For system
administrators, failure to identify server lag can lead
to long, ever-increasing backlogs which will eventually
crash the server.

We detect server lag by monitoring the average re-
sponse time and the QoD of the served results. Specif-
ically, we compute the rate of change between consecu-
tive calls to the OVIS() algorithm. We conclude that
server lag is imminent, if: 1) the rate of increase for
the average response time is too high (for example, a
100 msec increase in average response time over 1000
accesses), or, 2) the rate of decrease for the average
QoD is too high (for example, a 0.1 drop in QoD over
1000 accesses). A sudden increase in the average re-
sponse time is a textbook case for server lag. A sudden
decrease in the average QoD indicates that our system,
with the current configuration of materialization poli-
cies, has surpassed its capacity to handle updates in a
timely manner, as a result of server lag.

Server lag is used to detect infeasible QoD thresh-
olds. For example a QoD threshold very close to 1 will
most likely lead to a server meltdown and should be
detected, since no WebView could be materialized and
thus the system will be vulnerable to overloads.

Pseudo-code

The OVIS(6) algorithm is in Passive Mode most of
the time, collecting statistics (Figure 5). Periodically,
OVIS(6) enters Active Mode in order to adapt the



OVIS(6) - QoD Surplus

OVIS(6) - QoD Deficit

qod_diff = QoD — 6 >0
ignore all materialized WebViews
ignore all WebViews with A . > 0
find W; with min A ,¢f
if MAX_CHANGE not reached
and (qod_diff + A g,p(W;)) >0
materialize W;
qod_diff + = A QoD(VVi)
goto step 3
else

STOP

SO0 TDHDOU WD —O

—_

0. qoddiff =0 — QoD >0
1. ignore all WebViews not materialized
2. ignore all WebViews with A g,p <0
3. find W; with max A gop
4. if MAX_CHANGE not reached
5. stop materializing W;
6. qu_diff —-=A QoD(VVi)
7. if qod_diff > 0
8. goto step 3
9. else
10. STOP
11.  else
12. STOP

Figure 6: Pseudo-code for OVIS(6) - QoD Surplus

materialization plan. Before deciding on a new ma-
terialization plan, the algorithm will check if there is
server lag. If server lag is detected, OVIS(#) makes
all WebViews materialized. This action corresponds
to pressing a “panic” button.

Making all WebViews materialized will have the
best performance and thus should help alleviate server
backlog before it is too late. Materialization essen-
tially “protects” accesses from overload by removing
the handling of the updates from the critical path.
Assuming “well-behaved” update processes, a surge in
updates will lead to reduced QoD without impact on
performance.

There are two cases when OVIS(6) skips an oppor-
tunity to adapt the materialization plan: for an initial
warm-up period we forbid adaptation in order to col-
lect enough statistics about the workload; after detect-
ing server lag, we impose a short mandatory cool-down
period, during which we do not allow any plan adap-
tations, in order to let the system reach a stable state
again. Figures 6 and 7 present the active mode of
the OVIS(6) algorithm under QoD Surplus and QoD

Deficit conditions.

4 Experiments

In order to study the online view selection problem,
we built osim, a data-intensive web server simulator
in C++. The database schema, the costs for updating
relations; the costs for accessing/refreshing views, the
incoming access stream, the incoming update stream
and the level of multitasking are all inputs to the simu-
lator. The simulator processes the incoming access and
update streams and generates the stream of responses
to the access requests, along with timing information.
Among other statistics, the simulator maintains the
QoD metric for the served data.

osim runs in two modes: static mode and adaptive
mode. In static mode, the materialization plan is pre-
specified and is fixed for the duration of the simulation.

Figure 7: Pseudo-code for OVIS(6) - QoD Deficit

In adaptive mode, the materialization plan is modified
at regular intervals using the OVIS(6) algorithm (Fig-
ures 6 and 7). We report the average response time
and the observed QoD for each experiment.

We used synthetic workloads in all experiments.
The database contained 200 relations, 500 WebViews
and 300 web pages. Each relation was used to create
3-7 WebViews, whereas each web page consisted from
10 to 20 WebViews. Access requests were distributed
over web pages following a Zipf-like distribution [2]
and the updates were distributed uniformly among re-
lations. We also generated random Web Page Deriva-
tion Graphs (like the one in Figure 2). Although up-
dates were distributed uniformly among relations, this
did not correspond to uniform distribution of updates
to WebViews because of the random view derivation
hierarchy. Interarrival rates for the access and the up-
date stream approximated a negative exponential dis-
tribution. The cost to update a relation was 150 ms,
the cost to access a WebView from the Asynchronous
Cache was 10 ms and the cost to generate/refresh a
WebView was 150 ms in all experiments.

4.1 Providing the full spectrum of QoD

In this set of experiments we vary the QoD thresh-
old 0 in order to produce the full spectrum of choices
between the (low QoD, high performance) case of full
materialization and the (high QoD, low performance)
case of no materialization. The workload had 35,000
accesses and 32,000 updates. The duration of the ex-
periment was 2400 seconds whereas the QoD threshold
0 was set to 0.925.

Figure 8 shows the QoD over time. The top line
is the QoD for the no materialization case (i.e. only
caching) and the bottom line is the QoD for the fully
materialized case. Both policies correspond to static
materialization plans. The middle line is the QoD
over time for the OVIS algorithm (our adaptive pol-
icy) and the straight line is the QoD threshold, 0.925.
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Figure 8: QoD over time for OVIS(0.925)

Initially all WebViews under OVIS start as being ma-
terialized. However, in this experiment, the QoD for
OVIS quickly “climbs” to the threshold levels and
stays around the threshold for the duration of the ex-
periment.

Figure 9 shows the fluctuation of average response
time. The top line is the average response time for
the no materialization case and the bottom line is the
average response time for the fully materialized case.
The middle line is the average response time for the
OVIS algorithm, with 8 = 0.925. The high QoD with
the no materialized case is “penalized” by widely fluc-
tuating response times (up to ten times worse than
OVIS). On the other hand, the near-constant response
times for the fully materialized case correspond to rela-
tively poor QoD. Clearly, the OVIS algorithm provides
a good trade-off between these two extremes.
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Figure 10: QoD for OVIS(0.90)
We changed the QoD threshold to 0.90 and ran the

same experiment. We plot the QoD and the average
response times in Figures 10 and 11. In this experi-
ment, the QoD produced by the OVIS(0.90) algorithm
is less than that of the OVIS(0.925) algorithm (from
Figure 8). In other words, OVIS seems to track the
specified QoD threshold.

Finally, we ran the same experiment with a thresh-
old value of 0.85 for OVIS. Since the QoD for the fully-
materialized policy is very close to 0.85, the behavior
of OVIS mirrored that of the fully-materialized case.

theta=0.925 (Performance)

2500 T
. all-mat —~—
_ OVIS -+
g 2000 | H none-mat -e
Y P
£ i
o 1500 |
2 e ?
o
& H P :
& 1000 7T iiop o L ali .
& et moe f .
> H AT & o) - s
> 500 Qi Pwoia i PE
< plipl o emie LB g0img g8
g iﬁ HEl* i T e SR ﬁ'\'iw*ﬂ+ww*w§w
0 h A f :
0 500000 1e+06 1.5e+06  2e+06 2.5e+06

Simulation Time (ms)

Figure 9: Performance for OVIS(0.925)

theta=0.9 (Performance)

2500 T
. all-mat ——
OVIS
’g 2000 - i none-mat -s
Y P
£ i
5 1500 |
17} g o
g H
& H P :
¢ 1000 7 P i ol .
® H LI @i il
g PoiEril®mLowl A Pof
5 iR PR A B e (e mid
500 (/i e S AN
< PP E‘Dmnm‘ F Lo e gm0
o O & o R e o o B
T PR TS Y
0 ; ; ; :
0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Simulation Time (ms)
Figure 11: Performance for OVIS(0.90)

This was true for both the data freshness and the av-
erage response time.

4.2 Detecting infeasible QoD thresholds

In this set of experiments we wanted to see the behav-
ior of the OVIS algorithm under server lag conditions.
The workload had 40,000 accesses and 35,000 updates.
The duration of the experiment was 2400 seconds. Un-
der this workload, without materialization, the server
exhibits significant lag, the average response times in-
crease monotonically, and the server essentially crashes
under the heavy load.

Figure 12 has the average response time for the
three policies: no materialization (cached), full ma-
terialization (mat) and that produced by the adaptive
OVIS algorithm (ovis). The response times for the
fully materialized and OVIS are very close together, at
the bottom of the graph. The average response time
for the no materialization policy increases constantly
because the server has been saturated. At the end of
the experiment, the average response times without
materialization are three orders of magnitude worse
that the OVIS or fully-materialized policies. Clearly,
this is a situation we want to avoid, regardless of how
good the QoD is under the no-materialization policy.

We plot the QoD for the three different policies in
Figure 13. The top line is when we do not materialize
any WebView, the bottom one is when we material-
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Figure 12: Performance for OVIS(0.875)

ize all WebViews and the middle line is when we use
the OVIS algorithm to decide the materialization pol-
icy for each WebView. The OVIS algorithm tries to
“climb” towards the QoD threshold 0.875, but, after a
while (t=1563 sec), detects the server lag and “resets”
to a fully-materialized policy, from which it starts to
improve the overall QoD again. This behavior is more
clear if we look at the average response times of just
the fully materialized and the OVIS algorithm, in Fig-
ure 14. The response time under the OVIS algorithm
increases slowly, then it stabilizes (when the QoD is
also stabilized around the QoD threshold), but at some
point a sudden increase in response time leads to server
lag detection and thus reverting to a fully materialized
policy.
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Figure 14: Performance for OVIS(0.875)

We ran the same experiment with different QoD
thresholds, one higher (0.90) and one lower (0.85). In
the experiment with the lower 6, the QoD stabilizes
around the threshold and we do not detect any server
lag. On the other hand, in the experiment with the
higher 6, the OVIS algorithm detects server lag twice
(while trying to reach the high QoD threshold) and
resets to a fully materialized policy both times.

4.3 Scaling the number of WebViews

In this set of experiments we evaluated the behavior
of the OVIS algorithm with a higher number of Web-
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Figure 13: QoD over time for OVIS(0.875)

Views. The workload had 800 relations, 2000 Web-
Views, and 1500 web pages. Each web page consisted
of 10 to 20 WebViews, whereas each relation was used
to generate 5 to 15 WebViews. A total of 40,000 web
page accesses and 25,000 relation updates occurred in
a 2400-second interval, which was the duration of the
experiment.

We plot the QoD and average response time in Fig-
ure 15 and Figure 16. In both plots, the top line is
the case without any materialization (none-mat), the
middle curve is when we ran OVIS with a threshold
of 0.85 (ovis(0.85)), and the bottom line is the fully
materialized case (all-mat). In Figure 16, the Y-axis
(average response time) is in logarithmic scale in order
to distinguish between the OVIS and all-mat curves.
Clearly, even at a higher number of WebViews, OVIS
continues to provide a hybrid solution between the
fully-materialized and no materialization cases. Also,
OVIS avoids the server overload that is exhibited by
the materialize-nothing approach (top curve). In fact,
OVIS is able to track the user-specified QoD threshold
of 0.85 very well.

5 Related Work

Our work stands between: 1) view selection and run-
time buffer management for data warehouses, and 2)
dynamic web caching.

View selection has been studied extensively in the
context of data warehouses [15, 7, 6, 14]. However, in
all of the current literature, the selection process is off-
line, requiring complete knowledge of the access and
update workloads in advance. This is an unrealistic
assumption for web servers, which are always online.

Run-time buffer management for data warehouses
is an online process [17, 16, 10]. However, updates in
this environment are not online: the data warehouse
is taken off-line during the maintenance window. In
the context of the Web, we have to perform updates
concurrently with user requests.

Dynamic web caching was introduced in [8]. Un-
til recently, research has focused on providing an in-
frastructure to support caching of dynamically gener-
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Figure 15: QoD - 25K updates

ated web pages [3, 18]. The decision of which pages to
cache, when to cache them and when to invalidate or
refresh them is left to the application program or the
web site designer. There is recent work on cache man-
agement for dynamic web content. [4, 5] presents a Dy-
namic Content Accelerator prototype that can cache
fragments of dynamically generated web pages. [13]
presents DBCache, which is an IBM DB2 database
which can cache entire database tables transparently
to the application server.

6 Conclusions

Traditional caching techniques, if used in isolation to
accelerate dynamic web content, face the possibility
of server backlogs, because the handing of updates is
in the critical path of serving access requests. In this
paper, we have introduced the Online View Selection
Problem: dynamically select which views to materi-
alize in order to maximize performance while keep-
ing data freshness at acceptable levels. We presented
OVIS(6), an adaptive algorithm which combines view
materialization with caching, and effectively allows for
the decoupling of serving of access requests and han-
dling of updates. Parameter 6 in OVIS is the level
of data freshness that is considered acceptable for the
current application. Through extensive experiments
we showed that OVIS(#) can: 1) provide the full spec-
trum of quality of data, and 2) detect and prevent
server backlogs. We envision OVIS(6) being used to-
gether with current dynamic content accelerators in
order to build web-aware database servers that are self-
manageable, robust, and scalable.
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