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Abstract

XQuery is not only useful to query XML in
databases, but also to applications that must pro-
cess XML documents as files or streams. These
applications suffer from the limitations of current
main-memory XQuery processors which break
for rather small documents. In this paper we pro-
pose techniques, based on a notion of projection
for XML, which can be used to drastically reduce
memory requirements in XQuery processors. The
main contribution of the paper is a static analysis
technique that can identify at compile time which
parts of the input document are needed to answer
an arbitrary XQuery. We present a loading algo-
rithm that takes the resulting information to build
a projected document, which is smaller than the
original document, and on which the query yields
the same result. We implemented projection in the
Galax XQuery processor. Our experiments show
that projection reduces memory requirements by a
factor of 20 on average, and is effective for a wide
variety of queries. In addition, projection results
in some speedup during query evaluation.

1 Introduction
After several years of development by the World Wide Web
Consortium, XQuery [36] is becoming more stable and
starts being implemented and used. Although originally
designed to query XML databases [27, 38, 6], XQuery is
now being considered as a viable alternative in the context
of many other XML applications, such as streaming [35],
information integration [13, 22], services [11], full text
querying [3, 15], the Semantic Web [2, 26, 24], or sim-
ply to process the growing number of XML files generated
from various data sources. Main-memory XQuery proces-
sors [14, 16, 25, 28] are often the primary choice for those
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XQuery Processors Maximum Document Size
QuiP [25] 7 Mb

Kweelt [28] 17 Mb
IPSI-XQ [14] 27 Mb

Galax [16] 33 Mb

XSLT Processors Maximum Document Size
Saxon [30] 50 Mb
Xalan [33] 75 Mb

Table 1: XML processors maximum document size

applications that do not wish or cannot afford to build sec-
ondary storage indexes or load a database before starting
query processing.

However, existing main-memory XQuery implementa-
tions break for rather small documents. Table 1 shows the
largest document that we were able to process with four
popular XQuery implementations and two XSLT imple-
mentations, on an IBM T3 laptop with 256Mb of RAM1.
Memory limitations are problematic as larger XML docu-
ments are becoming more common. Only half of the sys-
tems we tried, including the more mature XSLT imple-
mentations, were able to process the XML version of the
EDICT English-Japanese dictionary2 (about 28Mb), and
none of them were able to process the XML version of
DBLP3 (about 145Mb). This is due in part to the sig-
nificant overhead imposed by XML data models [4, 12],
which have been reported in [20, 32], but more importantly
to the fact that implementations load the complete docu-
ment in memory before processing it. In this paper, we pro-
pose techniques based on a notion of projection for XML
documents to address current memory limitations in main-
memory XQuery processors.

We define the projection of an XML document by the set
of paths, within the document tree, which specify the nodes
to keep in aprojected document. Our approach relies on the
following simple idea: for a given query, a projected doc-
ument, smaller than the original document, and on which
the query yields the same result, can be created. The main
technical challenge is to be able to identify at compile-time

1Those tests were run using the first query of the XMark [31] bench-
mark, which is a simple lookup query. The XSLT implementations were
tested using a simple XSLT translation of the original XQuery.

2http://www.csse.monash.edu.au/ ˜ jwb/j jmdict.html
3http://dblp.uni-trier.de/xml



the paths which are required to evaluate a given query. This
requires a static analysis of the paths used within a given
XQuery expression, and is difficult because of both syntac-
tic and semantics aspects of the XQuery language.

Syntactic sugar.XQuery often offers several ways to write
the same operation. Navigation steps can be written with
either the XPath abbreviated or unabbreviated syntax [34],
composition of steps can be written with the XPath nota-
tion (/ and// ) or by composingfor loops with naviga-
tion steps, predicates can be written with the XPath nota-
tion ([..] ) or using awhere clause, etc.

Variables. The analysis must be able to remember which
paths were used to compute the content of each variable, in
order to apply navigation steps on variables correctly.

Composability. XQuery expressions can be composed ar-
bitrarily, which means navigation can occur within any sub-
expression or be applied to a previously computed result.
The analysis has to identify on which part of the document
a particular step applies. For instance, if a new element is
constructed, further navigation does not apply to the input
document and must not be taken into account. Moreover,
only certain sub-expressions contribute to the result, while
other sub-expressions (such as predicates) do not. Hence
navigation steps must be applied selectively to a subset of
the paths previously computed.

The main contribution of the paper is a static inference
algorithm which addresses these problems and computes
the paths needed by an arbitrary XQuery expression at
compile time. More specifically, the paper makes the fol-
lowing contributions:

• We define a notion of projection suitable for XML
documents, based on paths within the document tree.

• We develop a static analysis algorithm for XQuery,
which computes the set of paths used during the eval-
uation of a given expression. This algorithm is shown
to be correct, i.e., a query yields the same result when
evaluated on the projected document for the inferred
paths, as on the original document.

• We present a loading algorithm which, given a set of
projection paths, builds the projected document suit-
able for query processing. This algorithm works for
both XML files and XML streams.

• We show how projection techniques can be integrated
with minimal effort in a standard XQuery processing
architecture.

• We present detailed experiments that demonstrate the
effectiveness of the static analysis, and study the im-
pact of projection on execution time.

We implemented the projection technique as part of the
Galax [16] XQuery engine. Using projection, we were able
to run more than half of the XMark [31] queries over a
1-Gigabyte document using an IBM T23 laptop with 256
Megabytes of memory, and all queries on a 100Mb doc-
ument, increasing the maximal document size for every

query by at least a factor of 5. To the best of our knowl-
edge, this is the first XQuery implementation to support
querying over such large XML files without the need for
secondary storage indices. Our projection implementation
can be downloaded from the Web or tried on-line at:

http://db.bell-labs.com/galax/optimization/

The rest of the paper is organized as follows. Section 2
describes the architecture of a main-memory XQuery pro-
cessor and how projection impacts on that architecture. The
notion of XML projection is introduced in Section 3. Sec-
tion 4 gives the static path analysis algorithm for XQuery,
and Section 5 describes the loading algorithm. Section 6
contains the experimental evaluation for our projection
techniques. We review the related work in Section 7, and
conclude the paper with some future work in Section 8.

2 Processing XQuery in Main-Memory
Before describing the projection technique, we first show
how it fits in a typical main-memory XQuery processor.
We use the Galax system [16] as an illustration. We believe
our projection technique can be applied to any other main-
memory XQuery implementation in a similar way.

Architecture. Figure 1(a) shows the Galax processing ar-
chitecture in the absence of projection. On the one hand,
the XQuery expression is parsed to an abstract syntax tree.
On the other hand, the input document is parsed in a
streamed fashion using SAX [29], then loaded in memory
as an XML data model instance. In the case of a streaming
processor, the document is parsed directly from the net-
work instead of a local file. Finally, the query is applied on
the data model instance to yield a result.

Document Memory Memory as percentage
Size (text) Usage of Document Size

500Kb 2.2Mb 392 %
10Mb 38.9Mb 341 %
20Mb 77.9Mb 339 %
50Mb 192.4Mb 339 %

Table 2: Document size in Galax: file vs. memory

The role of the data model. The need for building a
data model in memory before query processing is due, to
a large extent, to the complexity of evaluating languages
such as XSLT and XQuery. Processing XML only as a
stream without building a data model instance is an active
area of research [1, 8], but such approaches only consider
fragments of XPath, and cannot deal with most XQuery ex-
pressions. Indeed, many XQuery expressions (joins, type
operations such astypeswitch , operations on document
order, backward XPath axis, function calls, let expressions,
namespaces, sorting, etc.) require to materialize part(s)
of the document. This is typically done using one of the
existing XML data models [4, 12], which provide infor-
mation necessary for query processing such as node iden-
tity, type annotations resulting from validation, namespace
nodes, pointers to parent nodes, etc.
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Figure 1: XQuery processing architecture

The complexity of XML data models accentuate the
problems related to memory management in XQuery im-
plementations. Benchmarks [20, 32] show that the size
of a DOM representation in memory is typically 4-5 times
larger than the original file. Some techniques can be used to
build a more compact representation. For instance, Galax
uses a simple hash-table to compress the tag names used
in the document instead of duplicating them. Still, Table 2
shows that the data model representation in Galax is still
3-4 times larger than the original file. Rather than trying
to improve further the data model representation, we focus
on avoiding to build a complete data model instance in the
first place. Our projection approach is independent from
the data model implementation and is expected to result in
memory gains regardless of the underlying data model.

Architecture with projection. An advantage of the projec-
tion technique is that it can be integrated in a main-memory
XQuery processor with minimal effort. Figure 1(b) shows
how the modified architecture with projection works: af-
ter the query is parsed, it is analyzed to produce a set of
projection paths. The result of this analysis is sent to the
data model loader which uses it to build a “projected” data
model instance which contains only the nodes specified by
the projection paths.

3 XML Projection
We now define projection over an XML document, and in-
troduce some notations for the projection paths.

3.1 Example

We illustrate projection using a simple example. Consider
the first query of the XMark benchmark [31], which returns
the name of the person withid attribute"person0" .

XMark Query 1

for $b in /site/people/person[@id="person0"]
return $b/name

XMark queries are expressed against a document con-
taining information about auctions, including bidders, bids,
items with their descriptions organized by categories, and
their location organized by region, etc. A fraction of the
XMark document is shown on Figure 2. This is likely that
some of the information in the document is not required to

answer any particular query. In the case of XMark Query 1
only theperson elements with theirid attribute andname
children are actually needed. The corresponding subset of
the original document is indicated in bold on Figure 2.

<site>
<regions>...</regions>
<categories>...</categories>
<catgraph>...</catgraph>
<people>

...
<person id=”person120”>

<name>Wagar Bougaut</name>
<emailaddress>mailto:Bougaut@wgt.edu</emailaddress>

</person>
<person id=”person121”>

<name>Waheed Rando</name>
<emailaddress>mailto:Rando@pitt.edu</emailaddress>
<address>

<street>32 Mallela St</street>
<city>Tucson</city>
<country>United States</country>
<zipcode>37</zipcode>

</address>
<creditcard>7486 5185 1962 7735</creditcard>
<profile income=”59224.09”>

<education>Other</education>
<business>Yes</business>
<age>35</age>

</profile>
</person>
...

Figure 2: The XMark auction document.

We use simple path expressions, that we call thepro-
jection paths, to describe the corresponding subset of the
original document. For XMark Query 1, we only need two
projection paths:

/site/people/person/@id
/site/people/person/name #

The ’#’ notation is used to indicate that the name ele-
ments’ subtrees, which are part of the query result, should
be kept. The result of applying the projection paths to a
given document is called theprojected document. Our pro-
jection approach is based on the following observations:

• The projected document tends to be much smaller than
the original document. For XMark Query 1, it is less
than 2% of the original document.



• The query on the projected document yields the same
result as if run on the original document.

It is clear that different sets of projection paths will result
in different projected documents. A query will only give a
correct result on the projected document if it preserves the
information needed to evaluate the query. The algorithm
in Section 4 preserves the information needed to evaluate a
given query.

3.2 Projection Paths

We define projection paths using a simple fragment of
XPath [34], which contains forward4 navigation but not
predicates. A projection path is made of a sequence of
steps composed by ’/ ’. Each step contains an axis and a
node test. Projection paths are described by the following
grammar and have the same semantics as in XPath 2.0 [34].

SimplePath ::= Axis NodeTest
| SimplePath / Axis NodeTest

Axis ::= child::
| self::
| descendant::
| descendant-or-self::
| attribute::

NodeTest ::= ((NCName | * ): )?(NCName | * )
| node()
| text()

Definition 3.1: [Projection Path] A projection path al-
ways starts from the root of the document5, and contains
a simple path expression followed by an optional ’#’ flag.

Path ::= / SimplePath #?

The ’#’ flag indicates whether the descendants of the
nodes returned by the path expression should be kept in the
projected document. The ’#’ flag is merely a convenience,
as the relevant paths could always be enumerated.

3.3 Projected Document

The projection of an XML document is defined as follows.

Definition 3.2: [Projected Document]Given a document
D and a set of projection pathsP . D′ is theprojected docu-
mentof D for the pathsP iff D′ is composed of the subset
of the nodesn in D such that either: (i) the noden is in
the result of the evaluation of a pathp in P overD, (ii) the
noden is an ancestor of a noden′, wheren′ is in the result
of the evaluation of a pathp in P overD, or (iii) the node
n is a descendant of a noden′, wheren′ is in the result of
the evaluation of a pathp in P overD andp has the flag#.

In that definition, the evaluation of a path expressionp
over a documentD follows the standard XPath 2.0 [34]
semantics.

4Note that we do not currently support theparent axis, but rewriting
techniques such as those presented in [23] should apply.

5For simplicity, the presentation assumes there is only one document.

4 Static Path Analysis

We now present the path analysis algorithm, which com-
putes a set of projection paths from an arbitrary XQuery
expression. In Section 4.1, we illustrate some of the prob-
lems involved in the development of the algorithm through
some examples, and introduce some basic notations. Sec-
tion 4.2 gives the main algorithm. Section 4.3 states the
correctness theorem for the algorithm. It turns out the al-
gorithm in Section 4.2 is not optimal for an important class
of path expressions, in Section 4.4 we propose an optimiza-
tion of the main algorithm which addresses that issue.

4.1 Analyzing an XQuery Expression

Analyzing an arbitrary XQuery expression is not a simple
task. In particular, the algorithm must be robust under the
syntactic variations supported by XQuery, and must deal
with variables and XQuery composability.

4.1.1 XQuery Syntax and the XQuery Core

XQuery often offers several ways to write the same opera-
tion. For instance, the following two XQuery expressions
are equivalent to the XMark Query 1 given in Section 3.1,
but are constructed in very different ways.

Query 1 (a)

for $b in /site/people/person
where $b/@id="person0"
return $b/name

Query 1 (b)

for . in / return
for . in child::site return

for . in child::people return
for . in child::person return

if ((some $id in (attribute::id) satisfies
typeswitch ($id)

case $n as node return data($n)
default $d return $d) = "person0")

then child::name
else ()

Query 1(a) is identical to the original XMark Query 1,
except that the condition predicate has been expressed with
a where clause. Query 1(b) seems more complex, but it is
the same query, in which some implicit XPath operations
have been replaced by explicit XQuery expressions. Path
navigation is done step by step, using XPath unabbreviated
syntax (child:: ), and binding the current node (. ) ex-
plicitly in a for expression. Thewhere clause has been
replaced by a conditional (if..then..else ). Finally, a
typeswitch is used to extract the attribute value.

The path analysis algorithm has to be robust under
XQuery syntactic variations. To address this problem, the
analysis is performed after the query has beennormalized
in the XQuery core [37]. The XQuery core is a subset of
XQuery in which all implicit operations are made explicit.
In fact, Query 1 (b) above is very similar to the normalized
version of XMark Query 1. An additional advantage is that



the paths analysis only has to be defined on the XQuery
core instead of the whole language.

Notations. The following grammar gives the subset of the
XQuery core used in the rest of the paper.

V ar ::= $QName
Expr ::= Literal

| ()
| Expr, Expr
| /
| $V ar
| for $ V ar in Expr return Expr
| let $ V ar := Expr return Expr
| AxisNodeTest
| if ( Expr) then Expr else Expr
| typeswitch ( Expr) Cases
| Expr (= | >) Expr

Cases ::= default return Expr
| case Type return Expr Cases

This subset contains: literal values (e.g., strings, inte-
gers), the empty sequence (() ), sequence construction, the
root path (/ ), variables,for andlet expressions, XPath
steps, conditionals, typeswitch and comparisons. This frag-
ment is sufficient [37] to capture all of XPath 1.0 plus
XQuery FLWR expressions, and it illustrates most of the
technical problems involved in the development of the al-
gorithm. We omit the following operations for lack of
space: element and attribute constructors,sort by , cast-
ing, and function calls. The complete path analysis can be
found in [19].

4.1.2 Variables and Environments

XQuery supports variables which can be bound using, for
instance,let or for expressions. Once a variable is
bound, it can be used in a subexpression. During the static
analysis, we need to be able to retrieve the set of projection
paths that correspond to a given variable, in order to apply
further navigation steps. For example, consider the query:

for $x in /site/people
return $x/person/name

During the analysis, we need to remember that the vari-
able$x has been bound to nodes resulting from the evalu-
ation of the path/site/people .

To address this problem, we use environments which
store bindings between variable and their corresponding
projection paths. We will see in Section 4.2 how the en-
vironment is maintained for each expression.

Notations. We write

Paths = Env(V ar)

if V ar is mapped toPaths in the environmentEnv. And
we write

Env′ = Env + (V ar ⇒ Paths)

to construct an environmentEnv′ with a new binding for
variableV ar to the projection pathsPaths.

For example, the following creates a new environment in
which the variable$x is bound to the one projection path
’ /site/people ’.

Env′ = Env + ($x ⇒ {/site/people })

4.1.3 XQuery Composability

XQuery expressions can be composed arbitrarily. To ad-
dress that problem, the analysis algorithm operates in a
bottom up fashion: the set of projection paths for a given
expression is computed from those of its subexpressions.
The analysis must carefully examine the semantics of each
kind of XQuery expression for the algorithm to work, as
illustrated by the following example. Consider the query:

(if (true())
then /site/people/person
else /site/open_auctions/open_auction)/@id

This query can be analyzed from its sub-expression:

• true() does not require any node from the tree;

• the then clause requires nodes reachable from the
path: /site/people/person

• the else clause requires nodes reachable from the
path: /site/open auctions/open auction

Therefore, the conditional requires the set of two paths:

{ /site/people/person ,
/site/open auctions/open auction }

The conditional is itself a subexpression of the path ex-
pression ((if ...)/@id ). The path step can be applied
to the previous result, giving us the following two paths:

{ /site/people/person/@id ,
/site/open auctions/open auction/@id }

A superficial analysis might conclude that the last naviga-
tion step should apply to all paths computed for its input
expression. Unfortunately, this does not work in the case
where some paths are used in the condition, since the cor-
responding nodes are not actually returned as a result. For
instance consider the following variation of the previous
query:

(if (count(/site/regions/*) = 3)
then /site/people/person
else /site/open_auctions/open_auction)/@id

By applying the same reasoning as before, we would
end up with the following paths:

{ /site/region/@id ,
/site/people/person/@id ,
/site/open auctions/open auction/@id }

However, the path expression/@id is never applied to the
path /site/region/* , the resulting path may not even
exist. Nevertheless, the path/site/regions/* is indeed



necessary to answer the query, but the last step@id should
not be applied to it.

As a consequence, the algorithm must differentiate paths
that are only used during the query, on which no fur-
ther navigation step will apply, from paths returned by the
query. Paths describing nodes which are returned by the
query are calledreturnedpaths. Paths describing nodes
which are necessary to compute an intermediate result but
are not actually returned as result are calledusedpaths.

For the above expression, the set of returned paths is:

{ /site/people/person/@id ,
/site/open auctions/open auction/@id }

and the set of used path is:

{ /site/region/* }

Notations. We are now ready to introduce the main judg-
ment used during the path analysis. The judgment:

Env ` Expr ⇒ Paths1 using Paths2

holds iff, under the environmentEnv, the expressionExpr
returns the set of pathsPaths1, and uses the set of paths
Paths2. Whether this judgment holds or not is defined
through the path analysis algorithm itself.

4.2 Paths Analysis Algorithm

We now give the path analysis rules, starting with the sim-
pler expressions. The algorithm is written using the in-
ference rule notation familiar to the fields of programming
languages and program analysis [21, 37].

4.2.1 Literal values

Literal values do not require any path.

Env ` Literal ⇒ {} using {}

The fact that there is nothing written above the inference
rule indicates that this judgment is always true (it does not
have any precondition).

4.2.2 Sequences

The empty sequence does not require any path.

Env ` () ⇒ {} using {}

Projection paths are propagated in a sequence.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` Expr2 ⇒ Paths2 using UPaths2

Env ` Expr1, Expr2 ⇒ Paths1 ∪ Paths2

using UPaths1 ∪ UPaths2

The two judgments above the rule are preconditions for
the judgment below the rule to hold. Computing the projec-
tion paths for a sequence of two expressions is done based
on the result of computing the projection paths for those
two sub-expressions.

4.2.3 Root path

Computing the root expressions requires to keep the root
path. The root expression is always the entry point for the
query and for the paths analysis.

Env ` / ⇒ {/ } using {}

4.2.4 Conditionals

Projection paths in the clauses of a conditional expression
are propagated. The paths required to compute the condi-
tion are added to the final set of used paths.

Env ` Expr0 ⇒ Paths0 using UPaths0

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` Expr2 ⇒ Paths2 using UPaths2

Env ` if ( Expr0) then Expr1 else Expr2

⇒ Paths1 ∪ Paths2

using Paths0 ∪ UPath0 ∪ UPaths1 ∪ UPaths2

4.2.5 Comparisons

Comparisons are interesting in that they never return nodes,
but a literal (boolean). Therefore, the paths needed for the
comparison will not be further modified and are placed in
the set of used paths.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` Expr2 ⇒ Paths2 using UPaths2

Env ` Expr1 = Expr2 ⇒ {}
using Paths1 ∪ Paths2 ∪ UPaths1 ∪ UPaths2

4.2.6 Variables

The algorithm returns the set of paths to which the variable
is bound in the environment, as discussed in Section 4.1.3.

Paths = Env(V ar)

Env ` V ar ⇒ Paths using {}

4.2.7 for and let expressions

for andlet expressions are binding new variables in the
environment.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env′ = Env + (V ar ⇒ Paths1)
Env′ ` Expr2 ⇒ Paths2 using UPaths2

Env ` for $ V ar in Expr1 return Expr2

⇒ Paths2

using Paths1 ∪ UPaths1 ∪ UPaths2

There are two important things to note here. First, the
environment is extended with a binding of the variable used
in the expression, and passed to the evaluation ofExpr2, in
order to compute the right set of paths. Then, the returned
paths forExpr1 will not be extended any further, unless
the variable is used, in which case they will be accessed
through the variable, thus these paths are kept as used paths
of thefor expression.



A similar rule applies tolet .

Env ` Expr1 ⇒ Paths1 using UPaths1

Env′ = Env + (V ar ⇒ Paths1)
Env′ ` Expr2 ⇒ Paths2 using UPaths2

Env ` let $ V ar := Expr1 return Expr2

⇒ Paths2

using UPaths1 ∪ UPaths2

4.2.8 XPath steps

XPath steps are the most important operation for the path
analysis since they actually modify the projection paths.
XPath steps are processed by first retrieving the projection
paths for the context node (. ) from the environment, then
applying the XPath step to each of the retrieved paths.

Paths = Env(. )
Paths = {Path1, ..., Pathn}

Env ` Axis NodeTest
⇒ {Path1/ Axis NodeTest,

..., Pathn/ Axis NodeTest}
using {}

Paths analysis exploits the fact that expressions are nor-
malized into the XQuery core. For instance, the path ex-
pression:/site/people is normalized as a combination
of for expressions and path steps:

for . in (for . in / return child::site)
return child::people

We illustrate the path analysis on this expression step
by step. The algorithm starts from the sub-expression ’/ ’
(matchingExpr1 for the innerfor loop). The name of the
inference rule applied is indicated in the prefix.

(ROOT) Env ` / ⇒ {/ } using {}
(FOR)1 Env′ = Env + (. ⇒ / )
(STEP)1 Env′ ` site ⇒ {/site } using {}
(FOR)1 Env ` for . in / ... ⇒ {/site } using {/ }
(FOR)2 Env′′ = Env + (. ⇒ /site )
(STEP)2 Env′′ ` people ⇒ {/site/people } using {}
(FOR)2 Env ` for . in (for ... ⇒ {/site/people }

using {/ , /site }

Note that intermediate paths are bound to the current
node (. ) and retrieved to apply the next XPath step. The
resulting set of paths is:

{ / , /site , /site/people }

Note that the path analysis keeps all intermediate paths,
which can result in the construction of some unnecessary
nodes in the projected document. For instance, in the
above example, allsite elements are kept by the projec-
tion although we only need thesite elements which have
people elements as children to evaluate the query. This
is an unwanted side effect of normalization, as all paths
expressions are decomposed infor loops, resulting in in-
termediate paths being saved in the set of used paths. We
will see in Section 4.4 how to optimize the inference rule
for for to remove those unwanted intermediate paths.

4.2.9 Typeswitch

Typeswitch, although a complex XQuery operation, is not
particularly difficult to analyze. Its inference rule is very
similar to the one for conditional, except that it needs to
handle multiple branches.

Env ` Expr0 ⇒ Paths0 using UPaths0

Env ` Expr1 ⇒ Paths1 using UPaths1

...
Env ` Exprn ⇒ Pathsn using UPathsn

Env `
typeswitch ( Expr0)

case Type1 return Expr1

...
default return Exprn

⇒ Paths1 ∪ ... ∪ Pathsn

using Paths0 ∪ UPath0 ∪ ... ∪ UPathsn

4.2.10 Wrapping up

Finally, after the set of projection paths has been computed,
a# marker must be added at the end of each returned paths,
as they corresponds to the actual result of the query.

4.3 Correctness

An essential property of the algorithm is that evaluating the
query on the projected document obtained using the paths
resulting from the inference must yield the same result than
on the original document. The algorithm described in Sec-
tion 4.2 verifies the following theorem.

Theorem 1 [Correctness]Let D be an XML document
and Expr be an XQuery expression. LetPaths be the
result of the static path analysis forExpr, i.e.,` Expr ⇒
Paths. Let D′ be the projected document ofD for the
pathsPaths. Then the evaluation ofExpr on D and the
evaluation ofExpr onD′ are the same.

A proof for the correctness theorem can be constructed
by induction on the inference rules for each expressions.
The detailed proof can be found in [19].

4.4 Optimized Inference Rules

In this section, we show how to optimize the inference
rule of thefor expression. First we need to understand
in which case the original rule computes some unwanted
intermediate paths. Recall that in the inference rule for
the for expression, the set of paths returned by thein
subexpression is kept as used paths. This is required only
when thefor is applied to certain kinds of sub-expressions
during iteration. Distinguishing which sub-expressions can
be optimized depend on a whether the expression in the
return clause yields an observable result when the input
is the empty sequence.

For example, consider the following two queries:

for $x in //person
return <add>{ $x/address }</add>

for $x in //person return $x/address



and assume that some persons have addresses and others
do not. In the first query, the persons who do not have an
address will still be “visible” in the result as an emptyadd
element. In that case, we should then keep the following
projection paths:

{ //person ,
{ //person/address }

However, the second query does not return anything for
persons which do not have an address. For such a query the
projection paths could simply be:

{ //person/address }

The distinction between these two queries is rather sub-
tle. In essence, the reason the second case can be optimized
is that when the return clause returns the empty sequence,
this does not appear in the final result since sequences are
flattened in XQuery.

The corresponding property can be captured by the fol-
lowing auxiliary judgment calledis empty . The judg-
ment

Env ` Expr is empty

holds if, under the environmentEnv, the expressionExpr
always evaluates to the empty sequence. For instance, the
following judgments hold

Env ` () is empty
Env ` let $x := () return $x is empty

The optimizedfor inference rule is written as follows

Env ` Expr1 ⇒ Paths1 using UPaths1

Env′ = Env + (V ar ⇒ Paths1)
Env′ ` Expr2 ⇒ Paths2 using UPaths2

Env′′ = Env + (V ar ⇒ () )
Env′′ ` Expr2 is empty

Env ` for $ V ar in Expr1 return Expr2

⇒ Paths2

using UPaths1 ∪ UPaths2

which means that the return path fromExpr1 can be omit-
ted in the final used paths ifExpr2 always evaluates to the
empty sequence when the for iteration variable is bound to
the empty sequence. This rule applies correctly to the pre-
vious example, since:

()/address ==() is empty
<add>{()/address}</add>==<add/> is not empty

Note that this presentation only gives the the intuition
behind the optimization. The complete optimized algo-
rithm can be found in [19].

5 Loading Algorithm
This section describes the loading algorithm used to create
a projected document from an original XML document and
a set of projection paths. The original document is parsed
using a SAX API [29]. For this discussion, we only con-
sider the following SAX events:

SAXEvent ::= Characters (String)
| OpeningTag (QName)
| ClosingTag

The loading algorithm operates in a left-deep recursive
fashion. It takes a set of projection paths as input and oper-
ates on a stream of SAX events returned by the parser. As
the SAX events are being processed, the algorithm main-
tains a set of paths to apply to the current XML document
node. For each node, the algorithm decides on one of four
actions to apply:

• Skip the node and its subtree (Skip );

• Keep the node and its subtree (KeepSubtree );

• Keep the node without its subtree (Keep);

• Keep processing the paths (Move).

The loading algorithm is illustrated on Figure 3 for a set
two projection paths:/a/b/c# and/a/d , over the follow-
ing document fragment:

<a>
<g><b></b></g>
<b>

<c><f></f></c>
</b>
<d><e></e></d>
<b></b>
<c></c>

<a>

The loading algorithm processes one SAX event at a
time, and maintains a set of current paths, correspond-
ing to the parts of the original projection paths that ap-
ply to the current node. Note that nodes are only loaded
(if needed) when theirClosingTag tokens are encoun-
tered, i.e., after all of their children have been processed.
In the first step shown on Figure 3, the processed token is
OpeningTag(a) (or <a>). The loading algorithm’s cur-
rent node is<a>, which is the first node for both projec-
tion paths. Given this and the projection paths informa-
tion, the algorithm only needs to load descendants of the
current node<a> that can be accessed through thecurrent
paths: /b/c# and /d . The loading algorithm then recur-
sively processes the stream, loading children before their
parents. When a projection path is verified, the correspond-
ing node is loaded (with its subtree in case the # flag is
present). On Figure 3, the node<c> that is a descendant
of /a/b is loaded with its subtree<f></f> as specified by
the projection path/a/b/c# . In contrast, the node<e> is
not kept in the projected document. When a node does not
verify a projection path, its entire subtree is skipped, i.e.,
the loading algorithm ignores the corresponding SAX to-
kens until corresponding closing tag is encountered (e.g.,
node<g> on Figure 3).

Dealing with thedescendant axis significantly com-
plicates the loading algorithm, since it might result in
one projection path spawning into two new projection
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Skip
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<c> </c>

Skip

<f> </f>

Keep Subtree

<c> </c>

Figure 3: Loading algorithm

paths when moving down the tree. For example, con-
sider the paths expression//a , which is expanded as
/descendant-or-self::node()/a . Assuming the cur-
rent node is an elementb, both the path/a , since we might
have a nodea that is a child ofb (self:: ), and the origi-
nal path/descendant-or-self::node()/a can lead to
nodes verifying the path expression. For this reason, the set
of current paths the algorithm maintains can become larger
during the loading process.

6 Experimental Evaluation
Experiments were run on a modified version of Galax [16]
in which we implemented projection. We performed sev-
eral kinds of experiments which were selected to evaluate
the following aspects of projection:

Correctness:We used Galax regression tests to check that
the implementation of our projection algorithm does pre-
serve the semantics of the query. (Section 6.1.)

Effectiveness:Projection is effective for a large family of
queries. We evaluate the relative size of the projected doc-
ument using using the XMark [31] benchmark, as well as
queries over the XML version of DBLP. (Section 6.2.)

Maximal document size: As expected, projection allows
to process queries on much larger documents than was pre-
viously possible (Section 6.3.)

Processing time:Measures of the evaluation time before
and after projection show that projection also improves run-
time performances. (Section 6.4.)

In order to understand the effect of projection on differ-
ent hardware configurations, we used three different ma-
chines with varying CPU speed and RAM size. The first
configuration (A) is a modern IBM laptop with 256M mem-
ory and a 1GHz CPU. The second configuration (B) is a
desktop PC with more memory but a slower CPU. Finally,
configuration (C) is a high-end server with a large 2Gb
memory and a fast CPU. All three machines were running
RedHat Linux. Configurations (A), (B) and (C) are sum-
marized on Table 3

6.1 Correctness

Before evaluating the performance of the projection tech-
nique, we used Galax infrastructure for regression tests

Configuration CPU Cache size RAM
A 1GHz 256Kb 256Mb
B 550MHz 512Kb 768Mb
C 1.4GHz 256Kb 2Gb

Table 3: Hardware configurations

to check that the implementation of our projection algo-
rithm is indeed working correctly. Galax regression tests
are composed of a large number of queries, each with its
corresponding expected result according to the XQuery se-
mantics. A simple perl script runs all queries using the
Galax interpretor, and verifies that the actual result returned
by the interpretor matches the expected result. The set of
tests contains more than 1000 queries which include sim-
ple atomic tests, the set of XQuery use cases, and queries
from additional sources including queries from the XMark
benchmark. We run those regression tests using Galax
without projection, with projection, and with optimized
projection to confirm that projection preserves the original
semantics of each query. The regression tests and the cor-
responding scripts come with the Galax code itself and can
be downloaded at [16].

6.2 Effectiveness

A second set of experiments was conducted to evaluate the
actual reduction of memory usage for a various queries. We
present experiments on all the XMark benchmark queries,
and on queries over a real document: the XML version of
the DBLP database6.

6.2.1 XMark Queries

The XMark benchmark [31] consists of a broad range
of queries, including simple lookups, joins, aggregations,
queries with long path traversals, and publishing queries.
XMark queries run over a single document about auctions.
XMark comes with a document generator that can create
auction documents of any size and can be downloaded from
the XMark Web site7.

For this experiment, we generated documents of varying
sizes (from 500Kb to 2Gb) and run the 20 XMark queries
on documents of increasing size for the three configura-
tions. We then compared the size of the projected document
against the size of the original document: as expected pro-
jection results in similar relative improvement for all sizes.
Figures in the rest of the effectiveness section report on the
evaluation of all XMark Queries on a 50Mb document over
Configuration C (Table 3).

Projected document size in file:Figure 4 shows the size
of the projected documents as a percentage of the size of the
original document. We report results for both versions of
the projection. The projected document is less than 5% of
the size of the document for most of the queries. On Query
19, Projection only reduces the size of the document by

6http://dblp.uni-trier.de/xml/
7http://monetdb.cwi.nl/xml/downloads.html
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Figure 4: Projected documents size as a percentage of the
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Figure 5: Projected document memory usage

40%, and it has no effects for Queries 6, 7, and 14. In con-
trast,Optimized Projectionresults in projected documents
of at most 5% of the document for all queries but Query
14 (33%). The reason for this difference is that Queries 6,
7, 14 and 19 evaluate descendant-or-self() (//) path expres-
sions for which projection without optimization performs
poorly. Query 14 is a special case since it selects a large
fragment of the original auction document. Obviously pro-
jection cannot perform as well for this kind of query.

Projected document size in memory:Figure 5 shows the
memory used by the query processor for the projected doc-
ument as a percentage of the memory used by the original
document. Memory usage for the projected document is
consistent with the relative size of the projected documents
on file. Small projected documents tend to use relatively
slightly more memory than their size, due to some over-
head in the XML data model representation.

Multi-query evaluation: To illustrate what happens when
several queries are run against the same document, we is-
suedall XMark queries at once. The corresponding pro-
jected document size in file is around 54% of the original
document size, and its size in memory is around 49% of the
memory used by the original document.8

8These results show that the XMark benchmark queries only consider
about half of the XMark document.

Query Projection Optimized Projection

DBLP Query 1 0.85Mb 0.76Mb
DBLP Query 2 97Mb 84Mb

Table 4: Projection on a real data XML document.

Configuration A B C

Query 3 NoProj 33Mb 220Mb 520Mb
OptimProj 1Gb 1.5Gb 1.5Gb

Query 14 NoProj 20Mb 20Mb 20Mb
OptimProj 100Mb 100Mb 100Mb

Query 15 NoProj 33Mb 220Mb 520Mb
OptimProj 1Gb 2Gb 2Gb

Table 5: Document size limits for three XMark Queries
with or without projection

6.2.2 DBLP Queries

The DBLP document contains a bibliography of over
325,000 publications. Its size stored as text is 144Mb. The
schema of the DBLP document is very simple and result
in shallow trees, therefore we could not evaluate compli-
cated queries, such as queries with descendant axis, on it.
We considered two queries. The first query asks for the ti-
tles of the books written by Jim Gray. This query is very
selective in terms of the projection, as only 0.25% of the
publications in the document are books.

DBLP Query 1

for $a in $dblp/dblp/book
where $a/author/text()="Jim Gray"
return $a/title/text()

The second query asks for the titles of the journal arti-
cles written by Jim Gray. This query is not as selective in
terms of the projection, as 35% of the publications in the
document are journal articles.

DBLP Query 2

for $a in $dblp/dblp/articles
where $a/author/text()="Jim Gray"
return $a/title/text()

We run the two DBLP queries on Configuration C (see
Table 3). We were not able to load the complete document
in memory without projection. Therefore, we report only
on the memory needed for DBLP Queries 1 and 2 in Table 4
for ProjectionandOptimized Projection.

6.3 Maximal Document Size

The main objective of projection is to overcome the strong
memory limitations that were reported in the introduction.
We compare the size of the largest document we were able
to process without projection, and with optimized projec-
tion on our three hardware configurations.

Table 5 gives for three XMark queries (3, 14 and 15)
the size of the largest document for which we could eval-
uate the query, with or without optimized projection. We
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Figure 6: Parsing and loading time, in seconds

selected these three queries as they result in different de-
creases in memory usage (Figure 5) when optimized pro-
jection is applied, from 82% (Query 14) to 99.9% (Query
15). We see that our projection approach makes it possible
to evaluate queries on significantly larger documents (up to
30 times larger for Query 15) than without any projection.

6.4 Processing Time

Finally, we study the impact of projection on processing
time. We now show that: (a) projection does not have a
significant impact on parsing and loading time, and (b) it
reduces, sometimes significantly, query evaluation time.

Parsing and Loading time: Figure 6 shows the impact
of path analysis for projection on the parsing and loading
time of the query (path analysis time included). For most
queries, the path analysis does not slow down document
loading, but actually speeds it up. This might look sur-
prising, but can be explained by the fact that less nodes
have to be created in the document data model. However,
for queries that contain descendant-or-self() axis, loading
is more expensive withProjection, due to the more com-
plex computation required during loading. The queries
for which Projection result in high loading times are ac-
tually the ones for whichProjectiondoes not perform well
in terms of memory reduction. For these queries, loading
with Optimized Projectionis still a little more expensive
than without any projection, but it is much faster than with
Projection, and results in decreased memory usage.

Query Execution time: Figure 7 shows the impact of pro-
jection on query execution time. Projection actually speeds
up query processing, as query evaluation has less unneces-
sary nodes to process since those have been discarded in ad-
vance by the loader. Some XMark queries are very expen-
sive to evaluate, because of expensive join operations. For
these queries, while projection still speed up processing,
query processing time is dominated by the cost of the join.
Note that for query 14, optimized projection only seems
more expensive because the query fails without projection,
therefore the figures for query execution show up as zero.

As a conclusion, we see thatOptimized Projectionre-
sults in significant savings in memory usage (more than
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Figure 7: Query execution time, in seconds

95% for all queries but one), and does not increase doc-
ument parsing and loading time significantly. In fact, for
most queries, parsing and loading are actually faster when
Optimized Projectionis applied. Additionally,Optimized
Projection results in lower query execution times for all
XMark queries.

7 Related Work
Projection operations have been proposed in previous al-
gebras for XML and for semistructured data. The TAX
tree algebra for XML [17] includes a projection operator,
which differs from ours in that it supports omitting inter-
mediate nodes while we require to keep all nodes from the
root of the document, and in that it only supports simple
wilcards* while we support all XPath node tests. The SAL
algebra [5] has a quite different projection operation based
on regular-expressions. Both work focus on the expressive-
ness of the projection operation, while our notion of projec-
tion is simpler but designed to support an efficient physical
implementation on XML files and streams.

Our loading algorithm has some similarity with work
on filtering XML documents [1, 8]. However, they focus
on processing efficiently subsets of XPath without building
intermediate data structures, while we support the construc-
tion of a data model instance that can be used to process
arbitrary XQuery expressions.

Finally, we have studied the impact of projection in
isolation from other optimization techniques. However,
we believe work on XML indexes [10, 18] and XML
joins [7, 9] could be used in conjunction with projection.

8 Conclusion
In this paper, we have presented projection techniques that
can be used to support main-memory XQuery evaluation
over large XML documents. The main contribution of the
paper is a path analysis technique that infers the set of paths
used for an arbitrary XQuery expression. Our experiments
show that this technique can be used to evaluate queries
on files up to two Gigabyte even on machines with lim-
ited memory. Our implementation is fully functional and
available for download on the Web at [16]. As future work,
we plan to work on a tighter integration between the query



evaluation and the loading, which are currently done in sep-
arate steps, and investigate methods to quantify the preci-
sion of our projection algorithm compared to theoptimal
projection. Finally, we believe the techniques presented
here should be integrated with other forms of optimization,
including XML join algorithms and query rewritings.
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