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Abstract

Database engines are well-designed for stor-
ing and processing text data based on Latin
scripts. But in today’s global village, databases
should ideally support multilingual text data
equally efficiently. While current database
systems do support management of multilin-
gual data, we are not aware of any prior stud-
ies that compare and quantify their perfor-
mance in this regard. In this paper, we first
compare the multilingual functionality pro-
vided by a suite of popular database systems.
We find that while the systems support most
SQL-defined multilingual functionality, some
needed features are not yet implemented. We
then profile their performance in handling text
data in 1S0:8859, the standard database char-
acter set, and in Unicode, the multilingual
character set. Our experimental results indi-
cate significant performance degradation while
handling multilingual data in these database
systems. Worse, we find that the query opti-
mizer’s accuracy s different between standard
and multilingual data types. As a first step
towards alleviating the above problems, we
propose Cuniform, a compressed format that
is trivially convertible to Unicode. Our ini-
tial experimental results with Cuniform indi-
cate that it largely eliminates the performance
degradation for multilingual scripts with small
repertoires. Further, the Cuniform format can
elegantly support extensions to SQL for multi-
lexical text processing.
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1 Introduction

Database engines have been designed and fine tuned
for storing and processing text data in Latin-based
scripts, encompassing languages such as English,
French and German. But, in today’s global village, the
engines should ideally be equally efficient in supporting
alternative scripts such as Arabic, Indic and Chinese-
Japanese-Korean (CJK), as the Internet demographics
are turning steadily multilingual [7]. In fact, a recent
survey indicates that users are likely to stay twice as
long and four times more likely to buy if the informa-
tion is presented in their native language [1], making
multilingualism a critical factor in global e-Commerce.
Similarly, the importance of multilingual support in e-
Governance solutions has been well documented [2].

While today’s commercial database systems do sup-
port storage and manipulation of multilingual data, we
are not aware of any in-depth study to compare their
support, or to quantify their performance, with mul-
tilingual data as compared to the standard ISO:8859
(popularly known as ASCII) data. In this paper, we
take a first step towards addressing this lacuna. The
basic question we address here is what does one pay,
in functionality or performance, for choosing to store
data in native languages of non-Latin scripts?

With regard to functionality, we compared a suite
of popular database systems with respect to storage
formats and facilities for user interface, access and
manipulation. We found that while these systems
support most SQL-defined multilingual functionality,
some needed features, such as user-defined collations
are yet to be implemented.

With regard to performance, the database systems
were subjected to a common testing framework to eval-
uate the performance impact on the basic database
operators (e.g. scan, join, etc.) of storing multilingual
data in the popular multilingual character set, Unicode
as opposed to the standard ASCII. An obvious perfor-
mance hit is that Unicode takes more storage space
than ASCII, therefore requiring more disk accesses
to retrieve the same semantic content. However, the
novel insight from our experiments is that there are sig-
nificant in-memory performance degradations as well,



leading to an overall situation wherein Unicode per-
formance is seriously compromised with regard to both
storage and processing. Worse, we find that the query
optimizer’s accuracy is different between standard and
multilingual text data, and in some cases the optimizer
is impervious to the differences between them. Such
inequity could result in choice of sub-optimal plans for
query execution.

The above results raise concerns about the suitabil-
ity of current database systems for multilingual de-
ployment. An obvious solution would be to translate
all multilingual data into ASCII and to do a reverse
translation when providing the results to the user. But
translation, apart from being itself slow, can be a se-
mantically lossy process [3] and would therefore not
serve as a viable general remedy.

We outline here an alternative solution wherein
multilingual data is stored in a new compressed inter-
nal storage format, called Cuniform, which is triv-
ially convertible to Unicode format. Our implemen-
tation of Cuniform is also tested under the same per-
formance framework and the results indicate that the
database performance can be made almost as good as
that of ASCII for scripts with repertoires less than 256,
covering a majority of the Unicode-specified scripts.
Further, the script of the underlying data is identified
explicitly in Cuniform, which can be extended to sup-
port some of the multilingual requirements specified in
SQL:1999. Additionally, such identification helps in
implementing multilexical operators that can extend
the current capabilities of SQL.

1.1 Organization

The remainder of this paper is organized as follows:
Section 2 outlines a sample e-Commerce application,
underscoring the multilingual support needed from
database systems. Section 3 reviews the required
background and related research. Section 4 provides
an overview of the multilingual support specified in
the SQL standards and that provided by the popular
database systems. Section 5 describes a framework for
measuring the multilingual performance and Section 6
presents the experimental results. Section 7 describes
and evaluates our new Cuniform storage format. Fi-
nally, Section 8 summarizes the paper and outlines fu-
ture research avenues.

2 Example Multilingual e-Business

In this section we highlight the need for efficient sup-
port from databases for multilingual processing with
a sample global e-Business. Similar need from a large
scale e-Governance application is detailed in [14].
Consider a hypothetical Books.com that sells books
around the globe, presumably in different languages.
The product catalog of such an e-Business may have
records in different languages, as shown in Figure 1.

It should be noted that such a need is different from
the SQL:1999 recommended option of restricting a col-
umn to be of a specified language type. Further, a
given attribute value itself may store a string that
contains characters from different languages, as it is
customary to represent common abbreviations such as
150, in English. Overall, the requirement for multi-
lingual storage may be at the attribute, record, table
or schema level. In special cases the requirement may
even be at the catalog level, if the database objects are
to be identified with multilingual names.

Author_LastName | Author_FirstName | Title Price
Descartes [René Meditations € 9.00
[B/T 1T TULIGT Rials FouTiblyh FGar® sisemnts  |INR 250
TTOBT R.K. SRwy s dest INR 155
Q¢ guig Casde | Aol e 3 lexll [SARTS
Nehru Jawaharlal Discovery of India $9.95
SIED Ei KO LRHR ¥ 7500
Tew ESCiil AT T @i INR 175

Figure 1: Catalog of Multilingual Books.com

We expect that in due course querying across lan-
guages would be a feature desired by Internet service
providers like Books.com. As will be shown in sub-
sequent sections, the performance of such multilin-
gual applications is expected to be noticeably worse
with current database systems, raising serious con-
cerns about the quality of service rendered to global
customers. Hence, it is imperative that solutions be
found to improve multilingual database performance.

2.1 Multilingual Application Requirements

In a nutshell, global multilingual applications impose
the following two major requirements for database sys-
tems:

Standard Multilingual Interchange: The multi-
lingual data must be interchanged in a stan-
dard format that is recognizable by other systems.
Hence it is preferable to store data in an internal
format that is closer to the interchange format, in
order to minimize conversion costs at query time.

Language Independent Query Processing: The
database system must be equally efficient in any
of the languages chosen by the user; that is, the
database performance for two languages must be
identical, if their repertoire sizes are similar.

We explore, in the remainder of this paper, how well
current database systems handle the above require-
ments, and address their limitations in this regard.



3 Background

In this section, we review basic concepts in encoding
multilingual data and survey prior research in multi-
lingual database processing.

3.1 Character Set and Encoding

A Character is the smallest component of a written
language that has a semantic value. The set of all
the characters in a language is called a Repertoire.
A Character Encoding assigns a unique value to each
of the characters in a repertoire. There are several
well-known encodings, such as 15S0:8859 [10] (based
on ASCII), UCS-2 [9] and Unicode [25], that form
the basis for storage and interchange of text data
among computer systems. Regional encodings, such
as ISCII [5] for Indic languages, also exist, catering to
specific regional requirements. While ISO:8859 based
character sets are the most widely used currently, Uni-
code is becoming a de-facto standard for global inter-
change of information.

Representition
{Hexadecimal)

Language | Encoding String

English | ASCIl Narayan F4.16.27.16.97.16.E6
English | Unicode (UTF-16) | Narayan 00.£4.00.16.00.27.00.16.00.97.00.16.00.E6
English | Unicode (UTF-B) | Narayan £4.16.27.16.97.16.E6

Tamil | ISCI FTOTAKE | A5 BE.80.BE AF A9.CD

Tamil | Unicode(WTF-45) | FTOTENE | 05 49 08 BE.0B.B0.0B. BE.0B. A 0. A9.08.CD

Tamil | Uneode(ITF®) | FTOTRE | EO.AE.A9.ED. AE,E.ED. AE.BO.EO AE. DE.ED. AELAF EO AE. D, ED.AF 8D
Kanj | Unicode TF8) | SFFFIERE | 56.Fa.4E.95.68.63.59.54

Waj  |UniodeTFY) | SFREEME | ES.BALAF.BA.E4.E6.95.43.A5.80. £5.9A

Figure 2: Sample Encoding in Various Formats

Unicode [25] is a uniform 2-byte encoding stan-
dard that allows storage of characters from any known
alphabet or ideographic system irrespective of plat-
form or programming environments. Unicode is closely
aligned to the ISO:10646 [9] standard, called Univer-
sal Character Set or UCS-2. The Unicode codes are
arranged in Character Blocks, which encode contigu-
ously the characters of a given script, typically char-
acters in a single repertoire. Unicode has specified 3
different byte encodings (UTF-8, UTF-16 and UTF-
32) to store the same character codes in a byte, word
or double-word formats. UTF-16 specifies the basic 2-
byte representation for each and every character, sim-
ilar to UCS-2. UTF-8 provides a variable length en-
coding that preserves the encoding of the ISO:8859
based character sets (1-byte per character), while us-
ing 2, 3 or 4 bytes for other character sets. Under-
standably, such preference for ISO:8859 is due to the
existence of large legacy data. Each of these encodings
are equivalent and can be transformed into the others
by simple, fast bit-wise operations. A vendor is free
to choose from any of the above three encodings to be
fully compliant with Unicode [24].

Figure 2 shows some sample strings in three dif-
ferent scripts (Latin script — English, Indic script —
Tamil, and CJK script — Kanji). Each string is shown
in UTF-16 and UTF-8 encodings. The English string
that needs 1 byte/character in ASCII needs double the
space in UTF-16 but preserves the ASCII encoding in
UTF-8. The bytes per character for Indic and CJK
scripts are 2 in UTF-16, but 3 in UTF-8. In partic-
ular, the storage for Indic strings doubles in UTF-16
and triples in UTF-8, from their proprietary ISCII en-
coding. It should be noted here that due to the large
repertoire size of CJK languages, any proprietary en-
coding of these languages would need a minimum of 2
bytes per character, equal to the storage needed under
Unicode.

3.2 Related Research

While a rich body of literature on multilingual data ex-
ists from the Natural Language Processing and Infor-
mation Retrieval communities, there is comparatively
very little in the database context. The only papers we
are aware of are the implementations of multilingual
database systems for Arabic and CJK languages that
are detailed in [12] and [15]. These two papers focus
on implementations of features in databases to sup-
port specific requirements of the respective languages,
such as storage of composite characters, and features
for complex sub-string searches, but do not extend to
general purpose solutions.

The performance of various algorithms in compress-
ing large Unicode files are discussed in [4], [8] and
[26]. However, these algorithms are not suited for
compressing attribute data. BOCU [22] and Multi-
code [19] discuss encodings that reduce the size of even
small Unicode strings, but neither of them support
random access of sub-strings, which is necessary for
most database operations. A framework for storing
shared lexical resources for databases is discussed in
[27], but the focus is on improving the efficiency of
administration and not query performance.

4 Support for Multilingual Data

In this section, we outline briefly the multilingual sup-
port specified by the SQL standards and the imple-
mentation approaches taken by different database ven-
dors.

4.1 SQL Standards

SQL-92 [16] was the first standard that specified SQL
features for multilingual support, and the current
SQL:1999 Standard [11] [17] has largely left it un-
modified. Currently, SQL specifies a new data type
— NATIONAL CHAR (referred to as NChar) — large
enough to store characters from any national character
set. However, the NChar data type is not a core re-
quirement in SQL:1999. The NChar data type may be



defined and manipulated similar to the normal charac-
ter data type and may be used in all character predi-
cates. The storage format of NChar is left unspecified,
though Unicode is considered to be the primary can-
didate for future SQL specification. SQL also specifies
that new repertoires may be defined by the users and
that a column may be restricted to hold only charac-
ters from a specific repertoire, whether system-defined
or user-defined. Finally, the standard specifies that
comparison and sorting of strings are meaningful only
within a repertoire.

4.2 Database Systems

Table 1 provides a comparison of the multilingual fea-
tures supported by a suite of popular database sys-
tems including Oracle 9 (9.0.1), IBM DB2 Univer-
sal Server (7.1.0), Microsoft SQL Server (8.00.194),
MySQL (4.0.3 Beta). The information provided in
this comparison is gathered from white papers, prod-
uct literature and other information published in their
respective web-sites [13] [18] [20] [21]. Due to legal re-
strictions, the databases are randomly identified only
as a, 3, and 4.

All these database systems, except for §, support
multilingual storage using either Unicode or UCS-2. In
&, multilingual data may be stored only using binary
data type. All systems support multilingual specifica-
tion at all levels — schema, table, record and attribute,
while 8 provides multilingual support for database cat-
alogs as well. No system has support for restricting
the data in a column to be from a single repertoire
as no explicit language identification is available at
the attribute level. All of them pre-define collations,
the lexical resource required to sort the data for user
presentation and for internal indexes. Though the
SQL standard specifies user-defined collations, most
database systems haven’t implemented this feature as
yet. User defined collations may be added to the §
system by source changes. The multilingual query
processing is supported along the same lines as that
for standard database character sets, using SQL pred-
icates. Though minor differences exist in the differ-
ent database systems, each vendor has a road map to
support the multilingual requirements specified in the
SQL standards.

Only binary comparison is used to compare strings
in different scripts in all database systems. Currently,
no database system supports cross-language querying
of data — that is, searching across different languages
for a given query string. Support for linguistic query-
ing of text data is not uniform among the databases
due to the fact that the SQL standard has not yet
specified guidelines for such content-based retrieval. A
variety of statistical and natural language processing
techniques are employed, though such capabilities are
currently restricted to a handful of languages.

5 Multilingual Performance Study

In this section, we describe a test framework for mea-
suring the query performance of the aforementioned
database systems with respect to multilingual data.

5.1 Experimental Setup
5.1.1 Hardware Environment

A stand-alone Intel Pentium 4 (1.7 GHz) system with
512MB memory, 40 GB disk, and running Windows
2000 Professional operating system was used as the
test machine for the performance study. All the
database systems were installed and tested on this ma-
chine to normalize the effects of the hardware environ-
ment. Before each experiment, the machine was qui-
esced and only the database system being tested and
allied processes were allowed to run in order to have
measurement parity between the systems.

5.1.2 Database Environment

Three of the aforementioned database systems were
evaluated in our performance study. Due to legal re-
strictions, we identify them randomly as A, B and C
in the remainder of this discussion. The database sys-
tems were installed with default configurations as sug-
gested by the vendor-provided installation scripts. All
three systems were configured to use only 64 MB for
the database buffer pool, a popular choice among the
systems. No optimization of the parameter settings
was attempted as the focus of our study was to re-
port the performance of the database systems under
default conditions and not to optimize individual per-
formance. It is worth noting here that apart from the
format specification of NChar data type, we found no
other database system parameters that are specifically
designated for multilingual character sets.

The TPC-H benchmark [23] data generator was
used to generate a large database for the the study. A
specific table (partsupp) that stores the part-supplier
relationship was modified further, as shown in Fig-
ure 3, for our experiments. Specifically, two different
tables — partsuppChar and partsuppNChar, with at-
tributes in Char and NChar (in UTF-16 format) data
types, respectively, were created. The Char attributes
are in English while Tamil, a prominent Indian lan-
guage, was used for the NChar attributes.

These tables were populated with a modified
TPC-H generator that embeds integer keys in the
part and supplier name attributes, resulting in
{SuppName,PartName} becoming a candidate key.
After population, each of the tables held the same in-
formation as the original partsupp table, but with keys
that are in Char or NChar data types, respectively. It
should be noted that both the tables contain data of
the same logical length, but the NChar attributes need
more physical storage than the Char attributes. Thus,



| Database || System « | System f3 | System 7y | System § |
Storage Supports Unicode 3.01 | Supports UCS-2 Supports Unicode 3.01 | No Unicode support
Format UTF-8 / 16 Supports UTF-8 for XML | UTF-8 / 16
Support At schema, table At schema, table, record At schema, table At Schema, table
Level record and attr levels and attr levels; record and attr levels record and attr levels
Supports catalog
Collation Pre-defined; Pre-defined Pre-defined Pre-defined; User
Sequence Also uses OS Collations. definable via
source changes
Indexing Using pre-defined Using pre-defined Using pre-defined Using pre-defined
Collations; Uses Collations; Uses Collations; Uses & user-defined
Unicode Algorithms Unicode Algorithms Unicode Algorithms Collations
Query NChar can use all NChar can use all NChar can use all Limited to
Processing || Char predicates Char predicates Char predicates Binary predicates
Locale About 50 Locales Uses all Locale About 40 Locale About 23 Locale
pre-specified specified in OS pre-specified pre-specified

Table 1: Comparison of Database Systems vis-a-vis Multilingual Support

the performance of a given query on each of these ta-
bles is indicative of performance of the operators on
each of the data types.

Finally, a common table, partsuppCom, was created
by adjoining all the attributes of the above individual
tables. While the queries on the Char and NChar ta-
bles provide differential performance between the data
types including the I/O costs, queries on the common
table isolate the differential performance solely due to
in-memory processing, since the queries need to access
the same database blocks irrespective of the data type
on which the query was issued. Hence, queries on the
common table provide a lower bound on differential
performance between the data types.

partsupp Table

SuppKey |PartkKey|Qty | Price
2503 18 200

Comment

18.98 | Colorless Green Ideas Sleep Furiously

partsuppChar Table

SuppNameChar
(Char)
supplier 2503

partsuppNChar Table

SuppNameNChar
(MNChar)
surfltiuand 2503

- =

PartNameChar
(Char)y
PartName 0018

PartNameNChar
(MCHar)

LimsECant 0018

PartNameChar
(Char)
PartName 0018

partsuppCom Table

SuppName Char
(Chary
Supplier 2503

SuppNameNChar
(NChar)
sorfliiuen 2503

PartNameNChar
(NChar)
ursb@Quun 0018

Figure 3: Data Setup for Performance Study

The tables were populated with four million records,
taking up to 1.2 GB in the common table. Appropriate
commands were issued to ensure that the systems com-
puted the table statistics necessary for the optimizer to
make more precise estimates of operator costs. Lastly,
indexes were created as and when necessary on Char
and NChar fields to measure index performance.

5.1.3 Queries for Performance Measurement

The prime objective of our performance study was to
measure the performance of basic database operators;
hence, simple queries as described below were used.

To model the Table-scan operator, a query that
scans the appropriate table for all the parts supplied
by a given manufacturer was used. To model the per-
formance on Char and NChar data types, the select
condition was specified on the appropriate attribute.
For example, the table scan query on partsuppCom ta-
ble is as follows:

select count(*) from partsuppCom

where { suppNameChar } _ { ‘Supplier 2503’ }
suppNameNChar J ~ | ‘swrfiiiueay 2503’

The Indez-scan operator performance was mea-
sured by running a index-scan query, which returns
20% of the tuples in the table (i.e. 800,000 rows),
making the run time large enough to nullify any mea-
surement errors. For example, the index scan query
on partsuppCom table is as follows:

select count(*) from partsuppCom

where{ suppNameChar } ={ ‘Part 200000’ }
suppNameNChar ‘ursw@uuy 200000°

The Join query finds those suppliers who supply at
least two distinct parts, modeling a multi-scan opera-
tion. An example join query that self-joins the part-
suppCom table is given below. The join query was used
for measuring performance of the join operator, using
one of three different join techniques : Sort-Merge,
Hash or Nested-Loop.

select count(#) from partsuppCom P1,
partsuppCom P2

where Pi.{ suppNameChar }: P2. { suppNameChar }

suppNameNChar suppNameNChar
partNameChar } { partNameChar }
. <> .
and P1 {partNameNChar P2 partNameNChar



All queries were further simplified by eliminating
the post-processing of output data. As the queries re-
turn a large number of records (up to 12M records),
an aggregate function, count(x), is used to nullify the
output time. The query plans obtained from the op-
timizers confirmed that most of the work done for the
queries was executed in the targeted basic relational
operators. The query run time was measured as the
wall-clock time, using database time-stamps. The av-
erage of the run times from several runs was taken
as the final run time of a query. Before each query
was executed, a large unrelated table was scanned to
flush the database buffers and a large unrelated file
was read to flush the OS buffers, thereby ensuring a
“cold” start.

5.2 Performance Metrics

We measured three different performance metrics, to
quantify the differential performance of the database
operators and the optimizer, as outlined below.

5.2.1 Operator Performance

The operator performance is measured by the run
times for the above simple queries that approxi-
mate the database operators under default conditions.
We define a metric Multilingual Runtime Overhead
(M ROoper), as:

MROOpeT = W

where Topar and Tncher are the run times for the
Char and NChar data types, respectively. This metric
measures the performance overhead of operators on
multilingual data in Unicode with respect to default
character data in ASCIIL. A figure close to zero indi-
cates equitable performance between Char and NChar
data types.

5.2.2 Multilingual Efficiency

We also define an aggregate metric for a database sys-
tem, Multilingual Efficiency (M Eppums), as:

GChar
GNChar

MEppus =

where G NOhar 18 the geometric mean of the run times
of operators on NChar data and Ggper is the geo-
metric mean' of the run times of operators on Char
data. While the run times from a complete set of op-
erators will model this metric accurately, we use the
run time figures for the following operators measured
in the study — Table-Scan, Sort, Indezx-Create, Index-
Scan and the variations of Join operator, to provide
an estimate of this efficiency. The M Eppars measure

!Similar to other database benchmarks (e.g. Bucky [6]), we
use the geometric mean to ensure that all queries are represented
in the final metric, independent of the scales of their run times.

indicates how well the database handles multilingual
character sets with respect to the basic database char-
acter set, with a value close to 1 indicating equitable
performance across the sets.

5.2.3 Optimizer Prediction Accuracy

In addition to measuring operator run times, we also
recorded the optimizer estimate of the cost, to as-
sess the relative accuracy of the optimizer between
Char and NChar data types. We define the optimizer
metric for an operator, Multilingual Prediction Equity
(MPEoper), as:

( OOIVC}‘Lha'r )
MPEOPCT = (TNC::r)
TChar
where Ocpar and Toper are the optimizer estimate and
the actual run time of the operator for Char, while
ONChar and Tnchqer are the corresponding numbers
for NChar.

The MPFE metric measures how equitable the op-
timizer is between the two character data types, by
comparing the ratio of optimizer prediction to the ra-
tio of actual performance. A MPE value close to 1
indicates equitable prediction accuracy between Char
and NChar data types, while numbers significantly dif-
ferent from 1 indicate non-uniform prediction accura-
cies.

6 Performance Results

In this section, we present the results of the experi-
ments that we conducted in the above framework for
the various database systems.

6.1 Space Overheads

We found, as expected, a space overhead of 100% for
multilingual data, since each ASCII character that is
coded in 1-byte in Char attribute needs 2-bytes in
Unicode (UTF-16) format. Curiously, however, the
database systems seem to store even NChar data spec-
ified in the UTF-8 format internally as UTF-16 (and
convert it to UTF-8 format at the interface layer) — this
was indicated by the minimal difference in the storage
size between the two formats (< 1%) and a very slight
query performance degradation (~ 4%).

6.2 Separate Table Processing

When the Char and NChar data types were cre-
ated and queried in separate tables, namely, partsup-
pChar and partsuppNChar, the Table-scan operator
was slower on the NChar table by up to 475% from
the corresponding Char performance, and the join op-
erators were slower by up to 275% (for 55 characters
long Char and NChar attributes). At first glance, it
might be thought that these effects are solely due to
the increased storage required by NChar. However,



as we will show next, even if we run all queries on
a common table, thereby ensuring that the total disk
I/0 is identical for both query sets, there still remain
computational factors that come into play resulting in
differential performance.

6.3 Common Table Processing

In Table 2, we present the performance of the various
operators when the queries were run on the partsupp-
Com common table, forcing the same database blocks
to be accessed, irrespective of the data type on which
the query was issued. This means that the perfor-
mance differentials are solely due to in-memory pro-
cessing.

Char | NChar
Database | Query | Query | M ROoper MPEoper
System Time Time
(Sec) | (Sec) (%)
Table Scan Operator
A 50 136 172 0.37
B 116 154 32.8 0.75
C 232 246 5.90 0.94
Sort Operator
A 78 142 80.7 1.30
B 159 235 47.8 0.68
C 352 431 22.4 1.01
Index Create Operator
A 214 259 21.1 NA
B 457 591 24.9 NA
C 388 538 38.7 NA
Index Scan Operator
A 2.73 4.78 75.1 0.38
B 8.51 114 35.3 1.55
C 3.33 6.54 96.7 0.31
Join (Sort-Merge) Operator
A 1156 2198 91.5 0.89
B 841 1304 55.0 1.20
C 852 1143 34.2 0.95
Join (Hash) Operator
A 4558 11848 159.9 1.26
B 576 778 35.1 0.75
C 754 971 28.8 1.22
Join (Nested-Loop) Operator
A 799 823 3.1 0.97
B 323 334 34 0.97
C 144 230 59.3 1.16

Table 2: Performance of Basic Operators

Table Scan Operator: For the Table-Scan opera-
tor, very similar performance for Char and NChar
should be expected, since the same database
blocks are accessed for both the queries and the
selection is done on the fly. While we observe
that systems B and C do exhibit this behavior,

for system A, however, there is a very substantial
difference.

Sort Operator: The cost of this operator includes
the cost for the required initial table scan. The
differential sort cost is only about 20% in systems
B and C, but it is a high 80% in system A.

Index Create Operator: All three database sys-
tems were slower in building index on NChar at-
tribute by about 20 to 40 percent. Though the
slowdown in index creation may not be a source
of concern as it is typically an off-line activity, in-
dex maintenance, especially in a 24 x 7 operation
may well be affected adversely, by this slowdown.

Index Scan Operator: The Index-Scan perfor-
mance figures indicate that all three systems have
significant deterioration in NChar performance,
with systems A and C being especially slow.
Since the query is answered by accessing a small
number of index blocks, thus incurring only a
small I/O cost, the index scan performance is
a good indicator of the absolute main memory
processing efficiency of the databases with respect
to multilingual data.

Join Operator: For the join operator, we evaluated
three standard implementation techniques: Sort-
Merge, Hash and Nested-Loop. Only a small por-
tion of the original table was used for the Nested-
Loop implementation, since joining the full table
proved to be prohibitively expensive, time-wise.

In Table 2, we see that for all these various
join implementations, there are substantial per-
formance differences between NChar and Char.
Specifically, the join queries are 35% to 90%
slower for Sort-Merge, 25% to 160% for Hash, and
up to 60% for Nested-Loop across the database
systems.

To summarize the above results, we computed the Mul-
tilingual Efficiency of each of the database systems
using the run time figures for the seven database op-
erators — the results are presented in Table 3.

Database System | MEpgus
System A 0.57
System B 0.76
System C 0.70

Table 3: Multilingual Efficiency

We see here that all the database systems are in-
equitable with a wide variation in relative perfor-
mance, indicated by the M E values ranging from 0.57
to 0.76, implying that the systems are 33% to nearly
100% slower in handling multilingual data.



6.4 Optimizer Prediction Accuracy

The accuracy of the optimizer is an important factor
in database system performance, since errors in esti-
mation could lead to a huge performance degradation
as grossly inefficient plans could be chosen. Table 2
also provides the optimizer metric, Multilingual Pre-
diction Equity, for each of the database operators (ex-
cept Index-Create, which is a DDL statement).

For most of the operators, the optimizer predictions
were inequitable (indicated by the M PE figures much
different from 1). The accuracies of the Table-Scan,
Sort, Index-Scan, Sort-Merge join and Hash join es-
timates on NChar are different by up to 60%, 30%,
60%, 20% and 25%, with respect to the correspond-
ing Char estimates. In addition, we find that in some
cases, the optimizers are impervious to the differences
between the data types; they estimate the operators
to perform equally, though the actual run times vary
by more than 100%. Such inequities in prediction may
indicate a non-uniform cost model between Char and
NChar. In conjunction with the large slowdowns in
query performance, such mis-estimation may have se-
rious impact on database performance, due to selec-
tions of inefficient plans for complex queries.

6.5 Overall Performance Analysis

Given that all the database systems were slow in pro-
cessing multilingual data, we conducted a series of ex-
periments to understand the trend of and reasons for
the slowdown, in order to pinpoint the sources of inef-
ficiency. We selected the database system that exhib-
ited the most inequitous performance, that is, system
A, for this study.

6.5.1 Slowdown vs. String Length

As a first step towards calibrating the performance
with respect to multilingual data, we studied the effect
of the string length on the differential performance.
Specifically, we ran the table scan and join (Sort-Merge
and Hash) queries on the common table with Char and
NChar attributes of equal logical length, varying from
15 to 95 characters long. (Note that, as mentioned
before, though the strings lengths are equal, the NChar
strings need twice as many bytes as Char strings for
storage.)

The results for this experiment are shown in Fig-
ure 4, which captures how the NChar performance
slowdown with respect to Char varies with the length
of a text string. The table scan slowdown is very
high at small string lengths but decreases with increas-
ing length and asymptotically settles at about 125%.
At small string lengths, the large differential perfor-
mance in NChar data indicates very high fixed cost
(such as function call overheads) in multilingual data
over ASCII data. As the string length increases, the
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Figure 4: Query Slowdown with String Size
variable cost of string comparison becomes significant,
dominating the function overheads, and hence the dif-
ferential performance reduces.

The Hash join technique exhibits a fairly steady
trend of increasing differential performance with string
length, indicating that the operator is affected more by
the string processing overheads in NChar than those in
Char. Sort-Merge, on the other hand, exhibits a fairly
constant slowdown, indicating that the slowdown is
balanced between string processing and disk access.

Overall, one can observe that the slowdowns exist
for all operators and at all string lengths, though it is
more serious for short strings for scan operators and
for long strings for join operators.

6.5.2 Components of the Slowdown

We took the default size of character attribute in TPC-
H database (55 characters) and conducted a second
set of experiments to determine the specific reasons
for the slowdown. In database systems, typically the
operators are implemented as common functions, but
invoked with different type parameters. Hence we as-
sumed that the same code path will be taken for each
of the above queries irrespective of the data types on
which the queries were issued, as long as the plans
are the same. Under the above assumption, the slow-
down between Char and NChar data types may be
attributable to the following three components:

AT = AT]/O + ATType + ATStv"ingProcessz’ng

where ATy/o is the differential cost due to the in-
creased disk access for NChar storage over Char stor-
age, ATy, is the differential cost in handling different
data type (Char vs. NChar) and ATs¢ringProcessing 1S
the difference in the cost due to processing of the string
— due to both the function call overheads invoked with
different byte lengths and the actual comparison of
different byte strings. Of the three, the first factor
corresponds to slowdown due to increased disk access
and the next two correspond to that due to in-memory
computation.

The slowdown due to the increased disk access,
namely ATy, is zero, as all the performances were



observed by running the queries on partsupp Com table,
thereby forcing the same disk blocks to be accessed.

Next, to isolate the cost due to the data type,
namely AT7y,., we created the partsuppCom table
with Char attribute of size 110 and NChar attribute
of size 55, forcing each attribute to store the attribute
values in equal number of bytes. We ran the scan and
join queries on each data type as before to find any
variation in performance which can be attributed to
data type specific processing. The NChar queries are
slower by about 10% indicating that AT, is small,
but not insignificant.
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Finally, to isolate the cost due to the size of the
data, namely ATStringProcessing, We created a set of
tables with NChar attributes replaced by Char at-
tributes, but with different sizes ranging from 55 char-
acters to 165 characters, corresponding to scale fac-
tors between 1 and 3. The keys were embedded at the
end of the character strings forcing each comparison
to scan the entire length of the string to determine
[in]equality. The slowdowns of Table-scan and Join
queries on scaled up Char attribute, relative to nor-
mal Char attribute, are shown in Figure 5, as lines
marked Max Comparison. The relative slowdown in
a single-scan Table-Scan operator is very low with a
maximum slowdown of 10% for a scale up factor of 3.
Such negligible relative slowdown indicates that the
overall cost of the operator is dominated by disk I/0,
which is equal for the two attributes due to the com-
mon table design. The performance of the multi-scan
Sort-Merge and Hash join operators, however, show
that the relative slowdowns increase substantially with
scale-up, indicating that the join and string process-
ing costs dominate disk I/O cost for long strings. Also,
the slowdowns for the Sort-Merge and Hash joins, for
a scale up factor of 2 in Figure 5, match closely with
those reported earlier, in Table 2, for NChar that takes
twice the space as Char.

We also isolated the specific costs due to actual
string comparison itself, by re-running the experiments
with Char data strings that have integer keys embed-
ded in the beginning of the string, thus causing nearly
95% of the comparisons to fail in the first few bytes

of data itself. The associated performance graphs are
marked in Figure 5 as Min Comparison. The differ-
ence between the operator performance for maximal
and minimal comparison provide the differential cost
due to byte comparison itself. We found such cost to
be negligible for Table-scan operator, confirming our
initial observation that disk I/O time is dominating
the string processing time. For Join operators, such
costs are not negligible, and becomes significant for
long strings (up to 15%).

As a result of the above experiments we could ef-
fectively isolate the main reasons for the differential
performance between Char and NChar data types in
system A as the following: primarily, the differential
costs associated with the size of the data (> 80%) and,
secondarily, that due to the data type. While we have
established that the comparison of strings itself plays
a role in the slowdown, we ignore this data-dependent
slowdown for efficiency improvements. Hence, to im-
prove the performance of NChar it is imperative that
we find methods to reduce the storage required, which
is explored in the next section.

7 The Cuniform Storage Format

In this section, we propose a simple, compressed repre-
sentation for Unicode to reduce the multilingual stor-
age size, identified as the prime reason for the slow-
down. Our proposal stems from the following two ob-
servations:

Character Block Information: Unicode charac-
ters are organized in Character Blocks (variable
in length, corresponding to the size of the
script used in that language). Character block
information forms a part of the character code
in Unicode characters. Since most scripts in
Unicode have less than 256 characters, for these
scripts about half of the Unicode code is used for
representing the character block information.

Language of an Attribute Value: We expect that
even in a highly multilingual environment, a data
item stored in NChar field is likely to have all the
characters from the same script. Hence, storing
the character block information for each character
would be wasteful of resources in the database
context.

Based on the above two observations, we propose
a new compressed internal representation of Unicode
called Cuniform (Compressed Unicode Format),
which splits each Unicode string into two pieces. The
first piece stores the information about the common
character block from where the characters of the
strings occur. This information may be the starting
code of that character block or a Script Identifier that
may be translated to the starting code of the char-
acter block. The second piece stores the offsets of



each character in the original Unicode string, in the
common character block. We term such splitting of
a Unicode string into a pair of Cuniform strings as
“skinning”. When the string contains characters from
multiple code blocks, skinning is not possible, and
hence the original string is stored without any modifi-
cation. Skinning allows the code block information to
be stored as a meta-data only once for the entire string,
effectively reducing the storage of Unicode strings, yet
ensuring that the original string is reproducible by as-
sembling the two pieces. The proposed format is triv-
ially convertible to the Unicode format, since our pri-
mary design goal is to find a solution within, and not
outside, the framework of Unicode.
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Figure 6: Skinning of Unicode Strings

Examples of Unicode to Cuniform transformation
are shown in Figure 6. The first two strings (in En-
glish and Tamil) have only characters from a single
character block each and hence may be skinned, set-
ting the script identifier (SID) as the respective code
block identifier, and the skinned string as the string of
offsets into the code block. The sizes of the Cuniform
strings thus reduce to about half that of the corre-
sponding Unicode strings. The third string which has
mixed scripts is not skinnable, but we expect only a
small fraction of strings to have such a characteristic.
The fourth string in Kanji may be skinned, but since
each of the offsets would need about 2 bytes due to
the large size of the character block, it may not pro-
vide any saving over the storage needed for the Uni-
code format itself. Hence for such languages that have
a large repertoire, we store the Unicode strings as-is.

7.1 Changes to Database Architecture

The specific database architecture components that
are to be modified to handle the Cuniform format are
highlighted in Figure 7.

The Data and Record Management module of the
server must be enhanced with the functions to han-
dle the Cuniform representation and efficient bit-wise
operations to convert strings between the Unicode
and Cuniform formats. The parser/code generator

N
Query Processing System
( Parse ) (Optimize ) (Code Gen)
Execution )
g Ss
S j=21
g 2
Data (Records) gs
Lexical Monager Cuniform .
Resources Processing
_ _——
DB Files
Ne———

Figure 7: Changes to Database Architecture

modules of the query processing code must map the
user queries transparently to those that take into ac-
count the split image of Cuniform. Most importantly,
changes must be made in the optimizer module to ac-
curately model the costs associated with the Cuniform
representation. The semantics of conversion of the Cu-
niform format to other standard types must be speci-
fied, though we expect them to be similar to those of
NChar data type. Finally, lexical resources, such as
Unicode character block information, must be stored
in main memory for efficient processing.

7.2 An Outside the Server Implementation

Since we lacked access to the source code of the
database system A, we implemented a prototype of the
Cuniform representation using an outside the server
approach. Each NChar attribute was converted into
a pair of attributes — Cunis;q and Cunisiring, Where
Cunigiq is the Script Identifier that stores the start-
ing code of the character block, and Cunisgring stores
the offsets into the common character block of each
character in the original Unicode string.

During data input, the common character block of
the Unicode string was identified and stored in Cunig;q
and the offsets of each character in the input string was
stored in C'unistring. If a mix of code blocks existed in
the input string, then the input string was stored with
no modification in Cunisiying and a null was inserted
into Cunigiq. For output, the Cunigiq was byte-by-
byte merged with Cunisiring, thereby reconstructing
the original Unicode string.

All SQL queries were recast to handle the split im-
age of Cuniform attributes. While explicit representa-
tion of Unicode strings in NChar attributes in SELECT,
INSERT and UPDATE statements are handled easily by
skinning them into Cuniform format, the predicates in-
volving NChar attributes in WHERE clause were recast
into more complex predicates. An equality predicate
between NChar attributes was replaced with a con-
junction of equalities on both Cunigziq and Cunigring
components of the respective attributes. Similarly, an
inequality predicate was replaced by a disjunction of
inequalities on C'unisig and Cunigring components of



the respective attributes. Correlated sub-queries were
replaced with the conjunction or disjunction of the pair
of Cuniform attributes, as appropriate. The details are
omitted due to space limitations. Overall, for most op-
erations the Cuniform attributes were used as-is, with
no conversion to Unicode.

7.2.1 Performance of Cuniform Format

The common partsuppCom table that was used for the
experiments detailed in Section 5 was augmented with
Part and Supplier names in Cuniform format. We
assumed that all the NChar values are from a distinct
multilingual script and hence each value was skinnable
into Cuniform. All the previous queries were run on
this new table and the performance of operators on
each of the attributes are provided in Table 4. It
should be noted that the figures are different from the
previous results, since the new table has two additional
attributes (in Cuniform format).

DBMS Char | NChar | Cuni MRO MRO
Opera- || Time | Time | Time | (NChar) | (Cuni)
-tor (Sec) | (Sec) | (Sec) (%) (%)
T-Scan 52.9 135 55.5 156 5.10
I-Scan 2.89 5.46 5.60 88.3 99.3
SM Join 1188 2371 1370 99.6 15.3
H Join 4575 12534 5591 174 22.2
NL Join 805 834 827 3.60 2.74

Table 4: Performance of Cuniform Data type

As can be seen from Table 4, the performance of
the operators on multilingual data in the Cuniform
format is vastly better than the corresponding per-
formance in the Unicode format, except for Index-
Scan. The performance of Table-Scan on Cuniform
is almost identical to ASCII and the performance of
join operators are only moderately slower than that
on ASCII. However, the performance of Index-Scan
on Cuniform attribute is slower than the correspond-
ing Unicode data type, primarily due to the additional
overheads of the composite index on a pair of Cuniform
attributes. Significantly, the Cuniform representation
incurred only a negligible space overhead (approxi-
mately 2%), a tremendous improvement over NChar’s
100%.

Finally, we computed a new Multilingual Efficiency
for system A using the Cuniform performance num-
bers, which evaluated to 0.81. Compared to the M E
figure of 0.57 presented in Table 3, the NChar stored
using Cuniform improves the multilingual performance
of A substantially, bringing it to within 20% of the per-
formance on ASCII. Note further that this is a conser-
vative improvement since it has been achieved with
an outside-the-server implementation. An internal en-
gine implemenation could be expected to narrow the
gap even further.

In summary, Cuniform shows that multilingual data
may be stored and manipulated almost as efficiently as
the default character data in ASCII by using an ap-
propriate internal storage format. Further it retains
random access into strings that is needed for database
processing and is trivially convertible to Unicode for-
mat for data interchange.

7.2.2 Further Performance Improvement

An important by-product of skinning Unicode strings
into Cuniform strings is the explicit availability of
character block information of the multilingual at-
tributes. This additional piece of information may be
used for partitioning the multilingual data, and further
used as a query predicate to improve the selectivity of
the query. Such partitioning of data would make all
the operators more efficient, as they need to work only
on a subset of the tuples. In such an environment, it
may be advantageous to store information in multilin-
gual scripts, rather than in a single script.

7.3 Limitations of Cuniform Format

While there are important advantages to the Cuniform
representation, as discussed above, there are some lim-
itations as well.

Firstly, if each of the data items stored in the Cu-
niform attribute is a mix of characters from different
code blocks, the space compression and the associated
performance improvements may not materialize. As
Unicode has allocated special blocks for common char-
acters (e.g., Math symbols), mix of characters from dif-
ferent blocks may occur frequently in some domains.

Secondly, languages with character block size more
than 256 may be able to store the offsets in a string
of bits that is logarithmic in the size of the character
block, and hence may still benefit from Cuniform for-
mat. However, due to the non-byte aligned nature of
the offsets, the performance improvements may not be
easily realizable.

8 Conclusions and Future Research

In this paper, we outlined the features required for
supporting multilingual text in relational databases
and compared a suite of popular database systems
in this regard. While all the systems support equiv-
alent multilingual functionality, we found that some
features that are needed, such as user-defined colla-
tions and multilexical string comparisons, are yet to
be supported.

An experimental framework to measure the stor-
age and query processing efficiency of basic database
operators on multilingual data was described and the
performance of the database systems in this framework
were presented. Our experimental results indicate that
multilingual data stored in the popular Unicode encod-



ing suffers from a serious space and query processing
overhead in all the database systems.

We proposed Cuniform, a compressed storage for-
mat that is trivially convertible to Unicode, to over-
come such performance overheads. Multilingual data
in Cuniform format exhibited marginal space overhead
and correspondingly small query overheads, improving
significantly the corresponding performance in Uni-
code format. While our outside the server implemen-
tation yielded such performance benefits, we expect
to see further improvements with an inside the server
implementation, leading to efficiency that is almost as
good as that of ASCII. Further, performance of opera-
tors on Cuniform could further be improved in highly
multilingual environments by partitioning of data us-
ing the explicit script handle available in Cuniform.

The proposed Cuniform representation encodes the
script of the multilingual data explicitly, which may
be extended further to implement the character set
restriction specification of SQL:1999 and to richly ex-
tend SQL with multilexical operators.

8.1 Further Research Areas

The SQL:1999 [11] requirement that a column of a ta-
ble may be restricted to contain data only from a single
character set, has not been implemented in any of the
databases due to the lack of explicit language handles
for stored multilingual strings. We are working in ex-
tending Cuniform format for this purpose, using the
Script Identifier that is available explicitly in Cuni-
form.

While the SQL:1999 specifies that comparison of
multilingual strings across scripts to be meaningless,
consider the user requirement in Books.com to retrieve
all works of a specific author, irrespective of the lan-
guage of publication. Currently, a query with an ex-
haustive list of the author’s name in different lan-
guages would be needed. We therefore see a need for
an operator that can compare multilingual attributes
across languages. Such an operator may also be used
for sorting of multilingual attributes, to create a com-
mon index tree, for accessing strings in different lan-
guages. We are currently implementing such an op-
erator to solve the real-life e-Governance application
outlined in [14] for retrieval between English and Indic
languages.

Since database servers are the backbones of e-
Commerce and e-Governance applications, multilin-
gual text is becoming a major component of the stor-
age today. But we are not aware of any benchmarks for
comparing different database systems with respect to
multilingual functionality and performance, similar to
the TPC [23] set of benchmarks. We suggest that stan-
dard benchmark suites be developed along the lines of
experiments outlined in this paper.
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